Learning Models and Rules (l)

Jin Young Choi
Seoul National University

Outline

" |Learning rules and models

Statistical nature of learning

= Empirical risk minimization

Structural risk minimization

Learning Models

= Probability Discriminant Functions
—
* A Posteriori Probability Function ol \ TN

~) \
6,09 = p(@ 1) e 7N\ L

DA

= Linear Learning Models N N

= Universal Learning Models
* Basis networks
* Gaussian basis
* High order basis
* Sine, cosine, wavelet basis
 (Deep) Neural networks

Linear Learning Models

height

A

Linear Decision Surface

= Hyperplane H

g(x) =V

V"X

+V

VO =

Universal Learning Models

A

height

= Hypersurface H

]
Nonlinear Decision Surface A \
® : O

% o
®

o
s °
o

o

o

’O
°*\
o
o
=
D
(@)
-
v

Learning Strategy

= Nonlinear Learning Approach

Learning of nonlinear kernel parameters

Steepest descent method (error backpropagation Learning)
Approximated newton method

Genetic algorithm, simulated annealing

Slow learning speed

Local minima

= Linear learning approach

Convex optimization (least squares, support vector machine)
Fast learning speed, mathematically sound

Kernel determination problems

Generalization problems: high dimensional feature space

Statistical Nature of Learning

= The generalized linear discriminant function
(General Learning Model) 9(X,6) = Wt(P(X, V), 0" = [Wt Vt]

= Observations (i.i.d. examples) 3 ={(Xi , di)}:il

* For binary classification d =1 VX € o,
i ’ l ’
di — _11 \v/X| < a)Z’

= Multi-class classification di =1, Vx; € w;
d] = O, VX] & Wi
= Multi-label classification: [0 101 101 10]
= Ex) portrait with attributes (Bald, Mustache, Gold hair, Blue eye,etc.)

Statistical Nature of Learning

= Loss Function
L(d, g(x,0)) = (d —g(x,8))*(or Entropy, KLD)
= —dlog g(x,0)

= Risk Functional (Expectation Value of) (or Total Loss)

R(@) =] L(d,g(x0)dp(x,d)

where p(x,d) is joint PDF for X & d, but unknown.

= Empirical Risk Functional

Ry (0) =7 L(d,,9(x,0)

i=1

Statistical Nature of Learning

= Definition(Convergence in Probability):

Sequence of random variables 6,0,,6,,...,0,, is said to converge in
probability to ¢4, ,i.e.,
0, —— 0.,
if forany § >0,
p(|6y —6.>0)—>0 a N — .

= Definition(Strict Consistency):
Let ©®(c)={F|R(O) =>c},

inf R_(0)—— inf R(0), as N >

0e0(c) °MP 0<0(c)

The empirical risk function is said to be strictly consistent.

o Vapnik, Vladimir (2000). The nature of statistical learning theory. Springer.

Empirical Risk Minimization

Empirical Risk Minimization
O.np =2r9 ;nin Remp (6)

Original Risk Minimization
6, =argmin R(O)
0

Meaning

R(@) is probability of optimal decision error
R..,p () is probability of training error

The difference between R(®) andR
the complexity of a classifier.

emp

(6) depends #of samples and

10

Polynomial Curve Fitting

0 1

ylr,w :w0+w1:c+w2:c2+...+waM: wix?
J

Sum-of-Squares Error Function

t Pln

Ot" Order Polynomial

15t Order Polynomial

39 Order Polynomial

9t Order Polynomial

Over-fitting

—©— Training
—O— Test

Root-Mean-Square (RMS) Error: Erns = /2E(w*)/N

Data Set Size: N =100

9th Order Polynomial

Structural Risk Minimization

VC(Vapnik-Chervonenkis)-dimension:

Maximum number of points that can be labeled in all possible way

VC dimension of linear classifiers in N dimensions

is h=N+1 (= #of weights, n,,), cf.) MLP: O(n,,?)
N N o O @ @
@) O O @
O I @) o O @| 0O N (0]
O I @) O (@)

= Measure of Complexity of a classifier

= Minimizing VC dim. == Minimizing Complexity

19

Structural Risk Minimization

Generalization Ability

BUR(G,) ~Ro (0o > £) < (ZGTNj exp(6?N) =

= N: Training sample size
= h:VC-dimension
= e: Natural logarithm

Generalization bound: p(|R — Remp| < e) >1—-«a
R(0,)—& <R, (0,,) <R(6,)+e, with p=l-«

Confidential interval

g(N,h,a)=\/|: (In 2:' +1j—%lna

20

Vapnik, Vladimir (2000). The nature of statistical learning theory. Springer.

Structural Risk Minimization

= For fixed training samples N

hight
error x\\\ Expected Risk —
DN T
— P Complexity
B Training Error
low .- B -~ '
small Complexity of Function Set high

21

Structural Risk Minimization

For fixed training samples N

hight
.| How can we find the appropriate complexity ?
error llx“\ Expected Risk R
\\E'R'_'l ___-—----"".'__’__:__j___.___j-_-_-'_'_'"__"_._C-:.)_r;'lplexity
,-I'..-
1
i
=1
-
' ! - Training Error
low |~ ! B] '
small Complexity of Function Set high

22

Structural Risk Minimization

= For fixed training samples N

hight
.| How can we find the appropriate complexity ?
Structural Risk Minimization
(O Nermp) = 2IQ Tin Remp (65 1)
! I". 9'
error \‘n\ Expected Risk —
(. T Complexity
|
,-I
i |
|
-
I -
|
' ! - Training Error
low .- ! - - '
small Complexity of Function Set high

23

Structural Risk Minimization

= For fixed training samples N

hight
How can we find the appropriate complexity ?
Structural Risk Minimization
(O N) = argerhnin Remp (65 1)
error '-Rl Exped¢ted Risk I
LN A
— v omplexity
| N SVM
| .
i Pruning
N N
1 Training Error Regularization
low| ! EREREEEE TR Drop out
small Complexity of Function Set high Use of pre-
trained Net

24

Interim Summary

= Learning rules and models : Parametric Optimization

Statistical nature of learning
inf R_(0)—— inf R(0), as N >

9e0(c) °MP 0<0(c)

= Empirical risk minimization
1 N
E(H) = EZ (d| _ g(Xi’e))2 = I:Qemp (9)

i=1
Structural risk minimization

DU R(E,) ~ Ry (G > €) < (ZETNj exp(sN) =

Learning Rules

= Gradient descent method: Error backpropagation method
" Gauss newton method

= Levenberg—Marquardt method

= Newton (-Raphson) method

= Support Vector Machine

= Parametric PDF estimation: MLE, MAP, Bayesian Learning

= Non-parametric estimation: EM, MCMC

Boltzman Machine: MAP, Boltzman distribution, MLP, unsupervised L.

Bayesian Learning: MCMC, Variational Inference

Learning Models and Rules (11}

Jin Young Choi
Seoul National University

Outline

Gradient descent method

" Error backpropagation method
" Gauss newton method
= |evenberg—Marquardt method

= Newton (-Raphson) method

Empirical Risk Minimization

= Empirical Risk Functional

E(0) =%; (d, - 9(%.0)* =R, (6)

E(@) =pilng;(W)
E@) = Xi[pilngq;(W) + (1 — p;) In(1 — q;(W))]

= Learning Goal Find & =argmin E(6)
0
= Convexity

= Generally, E(8) is not convex.
= For linear case, E(6) is convex.

Gradient Descent Methods

= Gradient Descent Update Rule (Steepest Descent for G=I)
O(k +1) = O(k) —n(K)GVE(O(K)), G>0

VE(Q)dj{ﬁE(H)’aE(Q)’ 8E(0)}

00, ' 00, 00

3 & — N (enoxv)

Learning Rule

Backpropagation

Feedforward Neural Networks

by (bias)

@wxz a

Fixed input x; = +1 ©

5z
g5
R
10
8¢
&

Output

Inputs

Summing
Jjunction

Synaptic
weights
(including bias)

X

2
ge
TH

oy

AN
QN
O

o
cyﬂ%

f

N

ﬂwﬁo«“ v
!
asised
NVARAANA
YA %&Z

Wi
A\

0
X
N

%

W

Backpropagation Learning Rule

= Empirical Risk Function: O

E,(w) = Z (t —0,)°

keoutputs

Ew) = 51t — 0 w) |
= Gradient descent for output layer:
O,
6ij

Awy; = -1

= Chain rule:
6Ed 6Ed anetk 6Ed
owy anetk OWy ~ Onety

h;

Backpropagation Learning Rule

* Tolearn the regression problem, the linear activation function was used and
the sum-of-squares error function was used as the loss function. Let's define

. 1 L
the loss function as E(w) = 5||0(x, w) — t ||?. At this time, the k-th value

of o(x, w) is defined by 0, = net, = wlh = 2.j Wijhj. Then find ar(?ftk'
Sol.)
Since E(w) = 1/, Y (nety, — t)%, a:ftk =nety, —t, =0, —t; = —(ty —0p) =
— 5.
J0E, 0Eq Onet, 0Eq4 L
J

aij B anetk aWkJ B Bnetk

JE,
Aij = "N = 775kh]

aij

Backpropagation Learning Rule

* For multi-label classification (ex, output: 0110100), sigmoid activation
function is used and the loss is defined by the cross entropy loss function:
E(w) = — YX[t)log o, (x,w) + (1 — tk)log(l — 04 (x, W))] , Where

1 : O
0, = o(nety) = Tio-nety Then find

onety
Sol.)
. do
Since ane’;k = a(netk)(l — a(netk)) = 0, (1 —o0y),
OE 1 dog _ _ -1 Jdog
dnety o k oy Onety, (1 tk) 1—o0y Onety,
1 -1
— —tko—ok(l —o0,)— (1 - tk)l_—ok(l — 0y)
k Ok
= —tx(1 —0r) + (1 = tp)og = 0 =t = —(tx — 0) = =6y
aEd aEd anetk OEd aEd

h] AWk] = "N aWk]

oWy j ~ Onety, oWy j ~ Onety,

Backpropagation Learning Rule

* For multi-class classification (ex, [0 0 0 1 0 0]), the softmax activation

function is used and the loss is defined by the cross entropy loss
enetk

function: E(w) = — Y t;log(o;(x,w)), where oy (x,w) = S

. e
’ OE
onety’

The target value t; € {0, 1} is labelled by 1 hot vector. Then find

Sol.)

K K
0E, 0 eneti i, et et
] <_Z Filoe Zje"etf)> " Onet, (_Z[t"log(e)~ tilog Zje R

dnet, Onety :
i
__9 _ZK t.net; — t;log(Y net; = —t, +) t-ﬂ
= anetk(i [tinet; — t;log j€ D) = —t i lzj et
netk
= —ty + e 2 ti = O — tg = —(tx — 0) = =5,
Zje J
0E 0E; Onet 0E oE
d = d k = d h] AWk] = N d = T]gkh]
aij anetk aWk] anetk aWk]

Backpropagation Learning Rule

Ok

= Empirical Risk Function:

Regression: L, linear | — K
Ed (W) 01001101: cross-entropy, sigmoid
00001000: cross-entropy, soft-max

= Gradient descent for hidden layer:
OE,
aWji

AWji = —

= Chain rule:

aEd 0Ed anetj _ aEd

— — X;
aWji Onetj aW]l anetj

Backpropagation Learning Rule

= Chain rule:
6, _ OB, , Ok, _ s
OW; onet, dnety

O, 5 OE, onet oh,

onet; . ompus ONEL, Oh; onet;

Z 5 8netk 8hj
keoutputs ‘ ahj ﬁnetj

oh,
" 2O e,
J

k eoutputs

-~ Z -5,W, f (net;) = -5 5j:f'(netj) Z S W

keoutputs keoutputs

AW;; =110, X,

Backpropagation Learning Rule

7751 hll 1’
S = f (et) > §w"
kel+1layer
0E
S = — =ty —
f dnety, e

Regression: L, linear
01001101: cross-entropy, sigmoid
00001000: cross-entropy, soft-max

Matrix Form (Backward. EBP)

AW = n5lhl‘1T n pAWl(old)
Sl= Diag[f’(netl)]WHchYl+1

Matrix Form (Forward)

hl = x
hl+1

Diag[f]°W*t1h!

Two Layer Convolutional Neural Network

32x32x32
Convolutional 16x16x64

layer 1 Convolutional
/ layer 2

-
- ﬁl‘k -‘“--'-‘
. e -
1= e B 7
- ==
=-".r -]
- £
-
-
- /

: Poolin Fully-
[1,;? oé;n layer connected
Input layer i §6 - — layer
32x32x3 o

Relu function

Gradient Descent Methods

A Sectional View of the Conlours
n Direction d

14

Gradient Descent Methods

= Optimal Learning Rate
* Necessary Condition

V'E(6

next

VTE(0

now

)VE(8,,)=0,

now
~7VE (enow))VE (enow) 0
= Learning Rate Search Methods
e |Initial Bracketing
* Line Searching
* Secant Method (Approximate Newton Method)
* Bisection Method

e Golden section search method

15

16

Newton(-Raphson) Method

Principle: The descent direction is determined by using the
second derivatives of the objective function f(0) if available

If the starting position 0__ . is sufficient close to a local

now

minimum, the objective function f (0) can be approximated by
a quadratic form:

E(e) E(now) + AT (6 now) T (H now) H (9 now)

where H=V?E(A= VE(

HOW) I”IOW)

Newton(-Raphson) Method

E(@)=E@,)+A" (0-0

now now

now now

)+%(9—9 Y HO—-0)

where H=V°E(0), A =VE(6).

17

17

Newton (-Raphson) Method

= Since the equation defines a quadratic function
* its minimum can be determined by differentiating & setting to 0.

E(0) = E(@,) + A" (0- Orou) +5 = Oron) H(O=0,,,)

A+ H(next nOW) O
enext — enow o H_lA

cf)

O(k +1) = O(k) — n(kE(é’(k)), G>0

Gauss Newton Method

= Keyidea: Not to use Hassian matrix, we use
linearized approximation of learning model.

= E(0) =>lld — g(x,0)II2

g(x, 9) ~ g(x, gnow) +]T(9 _ Hnow)»

where | = dg(x'e)/d9|

0=0now

- E(H) = % ”d o g(x: enow) _]T(H _ Hnow)llz

19

Gauss Newton Method

= Since the function is quadratic for 6,

= |ts minimum can be determined by differentiating &
setting to O.

" E(0) =5 lld = g(x, now) = J7(0 = Onow)I?

= VE(0) = —J(d — g(x,0now) =J"(6 = Onow)) = 0
= Update Rule
" Hnext = Hnow + (]]T)_lj(d _ g(x' HTLOW))
" Onext = Onow — U]T)_lvE(Hnow)
[VE (now) = —J(d = g(x, Opon))]
cf)

o(k +1) = (k) —n(K)GVE(@(K)), G>0

20

RNN: Recurrent Neural Networks

Recurrent Neural Networks

s;: State of RNN after time t

X¢: Input to RNN at time t

y¢. Output of RNN at time t

W, U, V. parameter matrices, o(-) : non-linear activation function

YVt

ﬂ(Z) (1) (1) St = O'(Wﬁt_l'l' Uxt)

Se—1 =P = s; 2y =V -5
1}

Xt

More expressive cells: GRU(Gated Recurrent Unit), LSTM(Long-
Short-Term Memory), etc.

21

RNN: Recurrent Neural Networks

RNN for Sequence Generation

= (Q: How to use RNN to generate sequences?

= Al Letxip 1 =Y

= Q: How to initialize sy, x;? When to stop generation?
= A Use start/end of sequence token (SOS, EOS)

}i{ ““““) ¥ yr = EOS
RNN | RNN RNN
so = SOS=p[1 |= o1 == 52 - ST-1=

1) 5 1t 1t

X1 = SOS s T X2=YV1 X3 = Y2

22

RNN: Recurrent Neural Networks

Training RNN
= We observe a sequence y* of edges [1,0,...]
» Principle: Teacher Forcing -- Replace input and output by the real

seguence

Compute yi = |1

loss .,

*—
0 y3 = | 1

0.4 ‘ y3 = |07
1

Y1 = |02

RNN RNN RNN

So = SO5 =N cell mdind o |ndh
‘t t t

x, = S0S R e I X3=|0

ﬂ1#

23

RNN: Recurrent Neural Networks

Training RNN
= Loss L: Binary cross entropy
= Minimize:

L= —z_[yi* logy; + (1 —y;)log(1 — y;)]
l

= |fy; =1, we minimize —log y;, making y; higher to approach 1

= |f y; = 0, we minimize —log(1 —y;), making y; lower to approach O

= vy, is computed by RNN, this loss will adjust RNN parameters
accordingly, using back propagation!

Compute i = [1] 0] %=
°“‘1-- ‘yz-- ‘ys=n

50 = 505 »m» 1-) Rc':',',\' = 5, »m» S5

x1 = 50S %2';’- x3 [o]

24

Interim Summary

gnext — gnow — 77kG VE(QnOW) Gradient Descent
0..=060.-nl/(J)IVE@.,,) Gauss Newton
enext = gnow — 1] (5' +JJ t)_LVE(enOW) Levenberg

Hnext = gnow — 1] (gDiag (‘JJ [) +JJ [)_ VE(‘gnow) Levenberg—Marquardt
Hnext — gnow — 1 H _1‘VE (Hnow)

Newton (-Raphson)

25

Interim Summary

AWIji — 7751! hil_l' Error Backpropagation Rule (Gradient Descent)
| ' I I+1, . 1+1
s ="f(net,) > &w
kel+1layer
OE,
i = — =t — 0
f onet, © K
Matrix Form (Backward. EBP) Matrix Form (Forward)
AW! = n&thl=1" 4 pAWCelD) o — o

0 = Diag[f’(al)]wl+1T5l+1 h'*1= Diag[f1°W'*1h!

