Bayesian Network

Jin Young Choi
Seoul National University

Outline

- Bayesian Networks
- Applications:
- Traffic Pattern Analysis
- Topic Model (Document Analysis)
- Directed Acyclic Graph
- Conditional Independence
- D-separation
- Bayesian Parameters
- Parameterized Conditional Distributions
- Multinomial, Dirichlet Distribution, Conjugate Prior
- Markov Blanket

Application: Traffic Pattern Analysis

- Surveillance in crowded scenes

Graphical Inference Model

Bayesian Networks

- Directed Acyclic Graph (DAG)

$$
\begin{gathered}
p(a, b, c)=p(c \mid a, b) p(a, b)=p(c \mid a, b) p(b \mid a) p(a) \\
p\left(x_{1}, \ldots, x_{K}\right)=p\left(x_{K} \mid x_{1}, \ldots, x_{K-1}\right) \ldots p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
\end{gathered}
$$

Bayesian Networks

LDA Model (Topic Modelling)

Documents
Topic proportions and assignments

LDA Model

Likelihood: $p(w \mid z, \theta, \emptyset, \alpha, \beta)$ Posteriori: $p(z, \theta, \varnothing \mid w, \alpha, \beta)$

$-\operatorname{Dir}(K, \alpha): p\left(\mu_{1}, \ldots, \mu_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\sum_{i=1}^{K}\left(\alpha_{i}\right)\right)}{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}\right)} \mu_{1}^{\alpha_{1}-1} \quad \ldots \mu_{K}^{\alpha_{K}-1}$
$\bullet \operatorname{Mul}(K, \mu): p\left(x_{1}, \ldots, x_{K} \mid \mu_{1}, \ldots, \mu_{K}\right)=\frac{n!}{x_{1}!\ldots x_{K}!} \mu_{1}^{x_{1}} \quad \ldots \mu_{K}^{x_{K}}$

Notations

D : the number of documents.
N_{d} : the number of words in d-th document.
K : the number of topics.
α : Dirichlet prior on the per-document topic distributions.
β : Dirichlet prior on the per-topic word distribution.
θ_{d} : topic distribution for d-th document.
ϕ_{k} : word distribution for topic k .
$z_{d i}$: the topic for the i-th word in d-th document.
$w_{d i}$: the specific word.

$$
\left\{w_{d 1}, w_{d 2}, \ldots, w_{d N_{d}}\right\}
$$

Mathematical description

Choose $\theta_{d} \sim \operatorname{Dir}(\alpha)$.
Choose $\phi_{k} \sim \operatorname{Dir}(\beta)$.
Choose a topic $z_{j i} \mid \theta_{d} \sim \operatorname{Multi}\left(\theta_{d}\right)$.
Choose a word $w_{j i} \mid \phi_{k}, z_{d i} \sim \operatorname{Multi}\left(\phi_{z_{d i}}\right)$.

Inference of LDA Model

- Maximum A posteriori Probability (MAP) given observation w, α, β

$$
\hat{\phi}, \hat{\theta}, \hat{z}=\underset{\phi, \theta, z}{\arg \max } p(\phi, \theta, z \mid w, \alpha, \beta)
$$

Not Convex

Closed-form solution is not available

- Bayesian Inference (Learning)

$$
\begin{aligned}
p(\phi, \theta, z \mid w, \alpha, \beta) & =\frac{p(\phi, \theta, z, w \mid \alpha, \beta)}{p(w \mid \alpha, \beta)} \\
& =\frac{p(\phi, \theta, z, w \mid \alpha, \beta)}{\int_{\phi} \int_{\theta} \sum_{z} p(\phi, \theta, z, w \mid \alpha, \beta) d \theta d \phi} .
\end{aligned}
$$

Likelihoods

$$
p(\phi, \theta, z, w \mid \alpha, \beta)=\left(\prod_{k=1}^{K} p\left(\phi_{k} \mid \beta\right)\right) \prod_{d=1}^{D} p\left(\theta_{d} \mid \alpha\right) \prod_{i=1}^{N_{d}} p\left(z_{d i} \mid \theta_{d}\right) p\left(w_{d i} \mid z_{d i}, \phi\right)
$$

Conditional Independence

- a is independent of b given c

$$
p(a \mid b, c)=p(a \mid c)
$$

- Equivalently

$$
\begin{aligned}
p(a, b \mid c) & =p(a \mid b, c) p(b \mid c) \\
& =p(a \mid c) p(b \mid c)
\end{aligned}
$$

- Notation

$$
a \Perp b \mid c
$$

Conditional Independence: Example 1

$$
\begin{gathered}
p(a, b, c)=p(a \mid c) p(b \mid c) p(c) \\
p(a, b)=\sum_{c} p(a \mid c) p(b \mid c) p(c) \\
a \not \Perp b \mid \emptyset
\end{gathered}
$$

U, V, and c are independent. $a=U+c, b=V+c ; a, b$ independent?

Conditional Independence: Example 1

$$
\begin{aligned}
& p(a, b, c)=p(a \mid c) p(b \mid c) p(c) \\
& p(a, b \mid c)=\frac{p(a, b, c)}{p(c)} \\
&=p(a \mid c) p(b \mid c) \\
& a \Perp b \mid c
\end{aligned}
$$

U, V, and c are independent. $a=U+c, b=V+c, c=1 ; a, b$ independent?

Conditional Independence: Example 2

$$
p(a, b, c)=p(a) p(c \mid a) p(b \mid c)
$$

$$
p(a, b)=p(a) \sum_{c} p(c \mid a) p(b \mid c)=p(a) p(b \mid a)
$$

$$
a \not \Perp b \mid \emptyset
$$

$$
p(b, c \mid a)=p(c \mid a) p(b \mid a, c)=p(c \mid a) p(b \mid c)
$$

Conditional Independence: Example 2

$$
a \Perp b \mid c
$$

Conditional Independence: Example 3

$$
\begin{gathered}
p(a, b, c)=p(a) p(b) p(c \mid a, b) \\
p(a, b)=p(a) p(b) \\
a \Perp b \mid \emptyset
\end{gathered}
$$

Note: this is the opposite of Example 1, with c unobserved. a and b are independent Bernoulli rvs. $c=a+b$

Conditional Independence: Example 3

$$
\begin{aligned}
& p(a, b \mid c)=\frac{p(a, b, c)}{p(c)} \\
&=\frac{p(a) p(b) p(c \mid a, b)}{p(c)} \\
& a \not \Perp b \mid c
\end{aligned}
$$

Note: this is the opposite of Example 1, with C observed.
a and b are independent Bernoulli rvs. $\quad c=a+b$

"Am I out of fuel?"

$$
\begin{aligned}
p(G=1 \mid B=1, F=1) & =0.8 \\
p(G=1 \mid B=1, F=0) & =0.2 \\
p(G=1 \mid B=0, F=1) & =0.2 \\
p(G=1 \mid B=0, F=0) & =0.1
\end{aligned}
$$

$>\mathrm{G}$ is dependent to B and F

$$
\begin{array}{rlr}
p(B=1)=0.9 & & \\
p(F=1)=0.9 & \mathrm{~B}=\text { Battery (0=flat, 1=fully charged) } \\
& \mathrm{F}=\text { Fuel Tank (0=empty, 1=full) } \\
\text { and hence } & \mathrm{G}= & \text { Fuel Gauge Reading } \\
p(F=0)=0.1 & & (0=\text { empty, 1=full) } \\
& >\mathrm{F} \text { is independent to } \mathrm{B} &
\end{array}
$$

"Am I out of fuel?"

$$
\begin{aligned}
& p(G=1 \mid B=1, F=1)=0.8 \\
& p(G=1 \mid B=1, F=0)=0.2 \\
& p(G=1 \mid B=0, F=1)=0.2 \\
& p(G=1 \mid B=0, F=0)=0.1 \\
& p(B=1)=0.9 \\
& p(F=1)=0.9 \\
& \quad \begin{array}{l}
\text { and hence }
\end{array} \\
& \begin{array}{ll}
p(F=0)=0.1 & \simeq \frac{p(G=0 \mid F=0) p(F=0)}{p(G=0)} \\
& \sim 0.257
\end{array}
\end{aligned}
$$

Probability of an empty tank increased by observing $G=0$.

"Am I out of fuel?"

$$
\begin{aligned}
& p(G=1 \mid B=1, F=1)=0.8 \\
& p(G=1 \mid B=1, F=0)=0.2 \\
& p(G=1 \mid B=0, F=1)=0.2 \\
& p(G=1 \mid B=0, F=0)=0.1 \\
& p(B=1)=0.9 \\
& p(F=1)=0.9 \\
& \quad \begin{array}{l}
\text { and hence } \\
p(F=0)=0.1
\end{array} \\
& \qquad p(F=0 \mid G=0, B=0)=\frac{p(G=0 \mid B=0, F=0) p(F=0)}{\sum_{F \in\{0,1\}} p(G=0 \mid B=0, F) p(F)} \\
&
\end{aligned}
$$

Probability of an empty tank reduced by observing $B=0$.
This referred to as "explaining away". $>F$ is dependent to B given G

Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are independent to each other.
2) When d is observed, show that a and b are dependent to each other.
3) Nothing observed

$$
\left.\left.\begin{array}{l}
p(a, b, c, d)=[\\
p(a, b)=\Sigma_{c} \Sigma_{d} p(a, b, c, d)=p(a) p(b) \Sigma_{c} \Sigma_{d} \mid \\
=p(a) p(b) \Sigma_{c} \mid \\
\quad=[
\end{array}\right] \Sigma_{d} \mid \quad\right] \quad \text {] } \quad \text { l }
$$

2) d is observed

$$
\begin{aligned}
& p(a, b \mid d)=\frac{p(a, b, d)}{p(d)}=\Sigma_{c}\{ \\
= & \Sigma_{c}\{ \\
= & \frac{[}{p(d)} \neq p(a \mid d) p(b \mid d)
\end{aligned}
$$

Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are independent to each other.
2) When d is observed, show that a and b are dependent to each other.
3) Nothing observed

$$
\begin{aligned}
& p(a, b, c, d)=[p(a) p(b) p(c \mid a, b) p(d \mid c)] \\
& p(a, b)=\Sigma_{c} \Sigma_{d} p(a, b, c, d)=p(a) p(b) \Sigma_{c} \Sigma_{d}[p(c \mid a, b) p(d \mid c)] \\
& =p(a) p(b) \Sigma_{c}[p(c \mid a, b)] \Sigma_{d}[p(d \mid c)] \\
& \quad=[p(a) p(b)]
\end{aligned}
$$

2) d is observed

$$
\begin{aligned}
& p(a, b \mid d)=\frac{p(a, b, d)}{p(d)}=\Sigma_{c}\left\{\frac{p(a, b, c, d)}{p(d)}\right\} \\
= & \Sigma_{c}\left\{\frac{p(a) p(b) p(c \mid a, b) p(d \mid c)}{p(d)}\right\}=\frac{p(a) p(b)}{p(d)} \Sigma_{c}\{p(c \mid a, b) p(d \mid c)\} \\
= & \frac{[p(a) p(b) p(d \mid a, b)]}{p(d)} \neq p(a \mid d) p(b \mid d)
\end{aligned}
$$

D-separation: Example

D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
- the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
- the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
- If all paths from A to B are blocked, A is said to be d separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \Perp B \mid C$

Exercise

When B is observed in the following Bayesian network, decide whether every path from D to E is blocked (d-separated) or not and determine the dependency between D and E.

(a)

(b)

(c)

(d)

(e)

Exercise

a. path $1(D \leftarrow A \rightarrow B \rightarrow E)$ or $(D \rightarrow B \rightarrow E)$: Since the connection in B is head to tail and B is observed, the path 1 becomes [].
b. path $2(D \rightarrow C \leftarrow E)$: Since the connection in C is head to head and C is not observed, the path 2 becomes [].
c. path $3(D \leftarrow A \rightarrow E)$: Since the connection in A is tail to tail and A is not observed, the path 3 becomes [
].
d. path $4(D \rightarrow B \leftarrow A \rightarrow E)$: Since the connection in B is head to head and B is observed, the path $D \rightarrow B \leftarrow A$ becomes [by B. And since the connection in A is tail to tail and A is not observed, the path $B \leftarrow A \rightarrow E$ becomes [
]. Hence path 4 becomes [
e. Among the above 4 paths, there [exists or does not exist] at least one nonblocking path and thus D and E are [dependent or independent] to each other.

Exercise

a. path $1(D \leftarrow A \rightarrow B \rightarrow E)$ or $(D \rightarrow B \rightarrow E)$: Since the connection in B is head to tail and B is observed, the path 1 becomes [blocking].
b. path $2(D \rightarrow C \leftarrow E)$: Since the connection in C is head to head and C is not observed, the path 2 becomes [blocking].
c. path $3(D \leftarrow A \rightarrow E)$: Since the connection in A is tail to tail and A is not observed, the path 3 becomes [non-blocking].
d. path $4(D \rightarrow B \leftarrow A \rightarrow E)$: Since the connection in B is head to head and B is observed, the path $D \rightarrow B \leftarrow A$ becomes [non-blocking] by B. And since the connection in A is tail to tail and A is not observed, the path $B \leftarrow A \rightarrow E$ becomes [non-blocking]. Hence path 4 becomes [non-blocking].
e. Among the above 4 paths, there [exists or does not exist] at least one nonblocking path and thus D and E are [dependent or independent] to each other.

D-separation: I.I.D. Data

$$
\begin{gathered}
p(\mathcal{D} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right) \\
p(\mathcal{D})=\int_{-\infty}^{\infty} p(\mathcal{D} \mid \mu) p(\mu) \mathrm{d} \mu \neq \prod_{n=1}^{N} p\left(x_{n}\right)
\end{gathered}
$$

Discrete Variables, Multinomial

$$
p\left(x_{1}, \ldots, x_{K} \mid \mu_{1}, \ldots, \mu_{K}\right)=\frac{n!}{x_{1}!\ldots x_{K}!} \mu_{1}^{x_{1}} \quad \ldots \mu_{K}^{x_{K}}
$$

$$
p\left(x_{11}, \ldots, x_{1 K}, x_{21}, \ldots, x_{2 K} \mid \mu_{11}, \ldots, \mu_{K K}\right)=
$$

$$
\frac{n!}{x_{11}!\ldots x_{1 K}!} \frac{n!}{x_{21}!\ldots x_{2 K}!} \mu_{11}^{x_{11} x_{21}} \quad \ldots \mu_{K K}^{x_{1 K} x_{2 K}}
$$

Discrete Variables (1), Multinomial

- General joint distribution: $K^{2}-1$ parameters

$$
p\left(\mathbf{x}_{1}, \mathbf{x}_{2} \mid \boldsymbol{\mu}\right)=\prod_{k=1}^{K} \prod_{l=1}^{K} \mu_{k l}^{x_{1 k} x_{2 l}}
$$

- Independent joint distribution: $2(K-1)$ parameters

$$
\begin{gathered}
\hat{p}\left(\mathbf{x}_{1}, \mathbf{x}_{2} \mid \boldsymbol{\mu}\right)=\prod_{k=1}^{K} \mu_{1 k}^{x_{1 k}} \prod_{l=1}^{K} \mu_{2 l}^{x_{2 l}} \\
p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \\
K-1+K(K-1) \\
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \\
K-1+K-1
\end{gathered}
$$

Discrete Variables, Dirichlet

- The posterior distributions are in the same family as the prior probability distribution.

$$
p(\mu \mid x) \propto p(x \mid \mu) p(\mu)
$$

- The prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function.
- Dirichlet distribution is a conjugate (prior) distribution to the multinomial distribution.
- Gaussian is a conjugate prior of Gaussian.

Discrete Variables, Dirichlet

- Posteriori: $p(\mu \mid x, \alpha) \propto p(x \mid \mu) p(\mu \mid \alpha)$
- $\operatorname{Mul}(K, \mu): p\left(x_{1}, \ldots, x_{K} \mid \mu_{1}, \ldots, \mu_{K}\right)=\frac{n!}{x_{1}!\ldots x_{K}!} \mu_{1}^{x_{1}} \quad \ldots \mu_{K}^{x_{K}}$
- $\operatorname{Dir}(K, \alpha): p\left(\mu_{1}, \ldots, \mu_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\sum_{i=1}^{K}\left(\alpha_{i}-1\right)\right)}{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}-1\right)} \mu_{1}^{\alpha_{1}} \quad \ldots \mu_{K}^{\alpha_{K}}$
- Parameters: $\alpha_{1}, \ldots, \alpha_{K}>0$ (hyper-parameters)
- Support: $\mu_{1}, \ldots, \mu_{K} \in(0,1)$ where $\sum_{i=1}^{K} \mu_{i}=1$
- $\operatorname{Dir}(K, \mathrm{c}+\alpha): p(\mu \mid x, \alpha) \propto p(x \mid \mu) p(\mu \mid \alpha)$
where $c=\left(c_{1}, \ldots, c_{K}\right)$ is number of occurrence
- $E\left[\mu_{k}\right]=\frac{c_{k}+\alpha_{k}}{\sum_{i=1}^{K}\left(c_{i}+\alpha_{i}\right)}$

Discrete Variables (2)

- General joint distribution over M variables: $K^{M}-1$ parameters
- M-node Markov chain: $K-1+(M-1) K(K-1)$ parameters

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{M} \mid x_{M-1}\right)
$$

Discrete Variables: Bayesian Parameters (1)

$p\left(\left\{\mathbf{x}_{m}, \boldsymbol{\mu}_{m}\right\}\right)=p\left(\mathbf{x}_{1} \mid \boldsymbol{\mu}_{1}\right) p\left(\boldsymbol{\mu}_{1}\right) \prod_{m=2}^{M} p\left(\mathbf{x}_{m} \mid \mathbf{x}_{m-1}, \boldsymbol{\mu}_{m}\right) p\left(\boldsymbol{\mu}_{m}\right)$
$p\left(\boldsymbol{\mu}_{m}\right)=\operatorname{Dir}\left(\boldsymbol{\mu}_{m} \mid \boldsymbol{\alpha}_{m}\right)$

Discrete Variables: Bayesian Parameters (2)

Parameterized Conditional Distributions

If x_{1}, \ldots, x_{M} are discrete, K -state variables, $p\left(y=1 \mid x_{1}, \ldots, x_{M}\right)$ in general has $O\left(K^{M}\right)$ parameters because $p\left(x_{1}, \ldots, x_{M} \mid y=1\right)$ requires $K^{M}-1$ parameters.

The parameterized form

$$
p\left(y=1 \mid x_{1}, \ldots, x_{M}\right)=\sigma\left(w_{0}+\sum_{i=1}^{M} w_{i} x_{i}\right)=\sigma\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)
$$

requires only $\mathrm{M}+1$ parameters (actually this can not model a probability distribution).

The Markov Blanket

$$
\begin{aligned}
p\left(\mathbf{x}_{i} \mid \mathbf{x}_{\{j \neq i\}}\right) & =\frac{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right)}{\int p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right) \mathrm{d} \mathbf{x}_{i}} \\
& =\frac{\prod_{k} p\left(\mathbf{x}_{k} \mid \mathrm{pa}_{k}\right)}{\int \prod_{k} p\left(\mathbf{x}_{k} \mid \mathrm{pa}_{k}\right) \mathrm{d} \mathbf{x}_{i}} \\
& =\prod_{k \in M B} p\left(x_{k} \mid p a_{k}\right)
\end{aligned}
$$

Any factor $p\left(x_{k} \mid p a_{k}\right)$ that does not have any functional dependence on x_{i} can be taken outside the integral over x_{i}, and will therefore cancel between numerator and denominator.

LDA Model (Topic Modelling)

Documents
Topic proportions and assignments

Application: Traffic Pattern Analysis

- Surveillance in crowded scenes

Hidden Markov Model

$p\left(x_{1}, \ldots, x_{T}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots \ldots \ldots p\left(x_{T} \mid x_{T-1}\right)$

Variational Auto-encoder (VAE)

Reconstruction Loss

$$
\text { Loss }=-\log P_{\theta}(x \mid z)+D_{K L}\left(q_{\varphi}(z \mid x) \| P_{\theta}(z)\right)
$$

Variational Inference
$\boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z})$: a multivariate Gaussian (real-valued data)
 a Bernoulli (binary-valued data)

Interim Summary

- Bayesian Networks
- Directed Acyclic Graph
- Conditional Independence
- D-separation
- Bayesian Parameters
- Parameterized Conditional Distributions
- Multinomial, Dirichlet Distribution, Conjugate Prior
- Markov Blanket
- Applications:
- Topic Model (Document Analysis, Traffic Pattern Analysis)
- Hidden Markov Model
- Generative Models

