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Outline

= Bayesian Networks

= Applications:
= Traffic Pattern Analysis
= Topic Model (Document Analysis)

= Directed Acyclic Graph

= Conditional Independence

= D-separation

= Bayesian Parameters

= Parameterized Conditional Distributions

= Multinomial, Dirichlet Distribution, Conjugate Prior
= Markov Blanket




Application: Traffic Pattern Analysis

=  Surveillance in crowded scenes




Graphical Inference Model
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Bayesian Networks

= Directed Acyclic Graph (DAG)

a

C

p(a, b, c) = p(cla, b)p(a, b) = p(c|a, b)p(bla)p(a)




Bayesian Networks
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General Factorization
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LDA Model (Topic Modelling

Topics
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LDA Model

Likelihood: p(w|z,0,0,a,B)

Posteriori: p(z,0,0|w,a, B)
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Notations

D: the number of documents.

N4: the number of words in d-th document.

K the number of topics.

a: Dirichlet prior on the per-document topic distributions.
B Dirichlet prior on the per-topic word distribution.

B4: topic distribution for d-th document.

¢y word distribution for topic k.

Zgi: the topic for the i-th word in d-th document.

wy;i: the specific word.

{wd1, Wz, -, WAN,

Mathematical description

Choose 84 ~ Dir(a).

Choose ¢;, ~ Dir(f).

Choose a topic z;; |84 ~ Multi(6,).
Choose a word wy; |y, zg; ~ Multi(¢p,,.).



Likelihood: p(w|z, 8,0, a,5)

Inference of LDA Model | Pposteriori: pz 6, 0w, a8

=  Maximum A posteriori Probability (MAP) given observation w, a, 5

$,0,2 = argmax p(e, 0, z|w,«, 3), Not Convex
0,z Closed-form solution is not available

= Bayesian Inference (Learning) Q
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Conditional Independence

= aisindependent of b given ¢

p(ald, c) = p(alc)

= Equivalently
p(a,blc) = p(alb,c)p(blc)
= plalc)p(blc)
= Notation

allb|c




Conditional Independence: Example 1

c p(a,b,c) = p(alc)p(blc)p(c)

Zpa| p(ble)p(
all b|0

U,V ,and c areindependent. a = U + ¢,b =V + c¢; a,bindependent?




Conditional Independence: Example 1

p(a, b, c) = p(alc)p(b|c)p(c)

p(a,b,c)
p(a, blc) 2(0)
= plale)p(ble)
a b
allblc

U,V ,and c areindependent. a = U + ¢,b =V + ¢,c =1; a,b independent?




Conditional Independence: Example 2

a c b
O—0O—=0
pla, b, c) = p(a)p(cla)p(blc)

p(a,b) = p(a) > p(cla)p(blc) = p(a)p(bla)

all b|0

p(b,cla) = p(cla)p(bla, c) = p(cla)p(blc)




Conditional Independence: Example 2

b c b

p(a,blc)

p(alc) =

p(cla)p(a)

p(c)




Conditional Independence: Example 3

pla, b, c) = pla)p(b)p(cla, b)
p(a,b) = pa)p(b)

a L bl

C
Note: this is the opposite of Example 1, with ¢ unobserved.

a and b are independent Bernoullirvs. ¢ =a +b




Conditional Independence: Example 3

a C — p(a, b, C)
bl p(c)
_ pla)p(b)p(cla, b)
p(c)
y all b|ec

Note: this is the opposite of Example 1, with C observed.

a and b are independent Bernoullirvs. ¢ = a + b




“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8 B F
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1 a
» GisdependenttoBandF
p(B=1) = 0.9
p(F=1) = 0.9 B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (O=empty, 1=full)
and hence G = Fuel Gauge Reading

p(F=0) = 0.1 (0O=empty, 1=full)
» Fisindependent to B




“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 0.9
and hence
p(F=0) = 0.1
SF—0G_0) — PE=0F=0p(F=0

p(G =0)

2

0.257

Probability of an empty tank increased by observing G = 0.




“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 0.9
and hence
p(F=0) = 0.1

p(G =0|B=0,F = 0)p(F =0)

o — B: o
PE=0G=05=0) = s (G =08 =0, F)p(F)

~ (0.111

Probability of an empty tank reduced by observing B = 0.
This referred to as “explaining away”.  » F is dependent to B given G




Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed

p(a; b; C, d) = [ ]
p(a,b) = 2.2;p(a,b,c,d) = p(a)p(b)2.2, | ]
=p(a)p(b)Z, | |24 | ]

= | |

2) d is observed

_pla,b,d)
) _ p(@)p(b)
~ e } =@ }

1 ]
= ) # p(a|d)p(b|d)




Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed

p(a,b,c,d) = [p(a)p(b)p(cla, b)p(d|c) ] “
p(a,b) = 2.Z4p(a,b,c,d) = p(@)p(b)2.Z4 [p(cla, b)p(d|c) ]
=p(@)p)Z. [p(cla,b) 1 Z4 [p(d]c) ]

=[p(a)p(b) ]

2) d is observed

p(a,bld) = pla,b,d) _ Zc{p(a,b, c, d)}

p(d) p(d)
_ o [ p@p®)p(cla,b)pldlc) | _ pla)p(b)

_ [p(a)p(b)p(dla, b) ]
= () # p(ald)p(b|d)




D-separation: Example
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D-separation

» A, B, and C are non-intersecting subsets of nodes in a
directed graph.
= A pathfrom A to B is blocked if it contains a node such
that either
= the arrows on the path meet either head-to-tail or tail-
to-tail at the node, and the node is in the set C, or
= the arrows meet head-to-head at the node, and
neither the node, nor any of its descendants, are in the
set C.
* If all paths from A to B are blocked, A is said to be d-
separated from B by C.
» |f Ais d-separated from B by C, the joint distribution over
all variables in the graph satisfies A 1. B | C




Exercise

When B is observed in the following Bayesian network, decide
whether every path from D to E is blocked (d-separated) or not
and determine the dependency between D and E.

119+

(a) (b) (c) (d) (e)




Exercise

a. path 1 (D<A—B—E)or (D — B — E): Since the connection in B is head to tail

and B is observed, the path 1 becomes | ].
b. path 2 (D — C « E) : Since the connection in Cis head to head and Cis not
observed, the path 2 becomes | ].

c. path 3 (D < A— E) : Since the connection in A is tail to tail and A is not observed,
the path 3 becomes | ].
d. path4 (D - B < A — E) : Since the connection in B is head to head and B is

observed, the path D —» B « A becomes | | by B. And since the
connection in A is tail to tail and Ais not observed, the pathB < A —> E
becomes | ]. Hence path 4 becomes | ].

e. Among the above 4 paths, there [exists or does not exist] at least one non-
blocking path and thus D and E are [ dependent or independent ] to each other.




Exercise

a. path 1 (D<A—B—E)or (D — B — E): Since the connection in B is head to tail
and B is observed, the path 1 becomes [ blocking ].

b. path 2 (D — C « E) : Since the connection in Cis head to head and Cis not
observed, the path 2 becomes [ blocking ].

c. path 3 (D < A— E) : Since the connection in A is tail to tail and A is not observed,
the path 3 becomes [ non-blocking ].

d. path4 (D - B < A — E) : Since the connection in B is head to head and B is
observed, the path D = B « A becomes [ non-blocking ] by B. And since the
connection in A is tail to tail and Ais not observed, the pathB < A —> E
becomes [ non-blocking ]. Hence path 4 becomes [ non-blocking | .

e. Among the above 4 paths, there [exists or does not exist] at least one non-
blocking path and thus D and E are [ dependent or independent ] to each other.




D-separation: I.1.D. Data




Discrete Variables, Multinomial

X1

p(xl; ""xKlnuli . uuK)_ [.ll 'uID(C'K
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Discrete Variables (1), Multinomial

= General joint distribution: K% — 1 parameters
X

il X2 K
(O)>—()  »axw=]] [
k=11=1

* |ndependent joint distribution: 2(K — 1) parameters

X1 X9
O O s [l [l
k=1

p(x1, X2 )=p(x1]|x2)p(x2)
K—-—1+K(K-1)
. p(x1, X2 )=p(x1)p(x2)
K—-1+K-1
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Discrete Variables, Dirichlet

= The posterior distributions are in the same family as
the prior probability distribution.

p(ulx) o< p(x|w)p(p)
= The prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for
the likelihood function.

= Dirichlet distribution is a conjugate (prior) distribution to
the multinomial distribution.

= Gaussian is a conjugate prior of Gaussian.

0.1
0.08
0.06
0.04

0.02



https://en.wikipedia.org/wiki/Posterior_probability
https://en.wikipedia.org/wiki/Prior_probability_distribution
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Conjugate_distribution

Discrete Variables, Dirichlet

= Posteriori: p(u|x, a) < p(x|wp(u|a)

= Mul(K, u): p(xq, ..., Xg |, --- ,uK)_x - xKl“fl ,..M;K
_ [(Tic,(ai—1))
m D|r(K’ (x): p(ul, ...,‘I.lKlal, e ) CZK)— H 3 }‘(al 5 ‘Llal ‘L[IC;K

* Parameters: a4, ..., ag > 0 (hyper-parameters)

= Support: fy, ..., g € (0,1) where Yo p; = 1

= Dir(K, c + a): p(ul|x, a) < p(x|wp(ula)
where ¢ = (¢4, ..., Cx) is number of occurrence

" Elug] =

Crtap

K 0.1
Zi:l(ci-l_ai) 0.08
0.06
0.04

0.02

1 2 3 4 5



Discrete Variables (2)

» General joint distribution over M variables: KM — 1 parameters

* M -node Markov chain: K — 1+ (M — 1)K(K — 1) parameters

p(x1,x)=p(x)p(x2|x)p(X3]|%2) 0. DD 12X —1)




Discrete Variables: Bayesian Parameters (1)

H1 H2 12371

O O

P ({%m, i }) =2 (X1 1) p (1) ] P Ko [ Xm—1, 1) 2 ()

m=2




Discrete Variables: Bayesian Parameters (2)

M1 K Shared prior

p{xm} s e, p) =p(x1 () p () [ p K Xm—1, 1) p (1)

m=2




Parameterized Conditional Distributions

If x1,...,2zpare discrete,
K-state variables,

ply = 1]z1,...,xpr)in
general has O(KM)
parameters because

p(xq, ..., x|y = 1) requires
KM — 1 parameters.

The parameterized form
M

ply =1z1,...,2m) =0 (’wo + szwz) = o(wW'x)
i=1
requires only M + 1 parameters (actually this can not model a probability
distribution).




The Markov Blanket

p(X1,...,Xpr)

/p(xl, X)) dx;
HP(Xk|Pak)
k

[ T pxelpa) dx
k

= 1—[ p(xk|pag)
kEMB

P(Xi|xgjziy) =

Any factor p(xy|pa;) that does not have any functional dependence
on x; can be taken outside the integral over x;, and will therefore cancel between
numerator and denominator.
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Application: Traffic Pattern Analysis

=  Surveillance in crowded scenes

38



Hidden Markov Model

X, Xy Xq X, X, ©®ecccceacccccss Xt
O O -memeee-- o

2 \\'l//
O REF T REF o S o

o & 9 > 9 ®
LN 4:0:&‘
S, GO 2SS S S o O roecccces O
; NN, o o 5
J T e | N R RS

p(x1, ., X7) = p(x)p(X2|%1) D(x3|%2) ov oo .o p(xr|x7-1)




Variational Auto-encoder (VAE)

Decoder

Reconstruction Loss

Loss = —logPg(x|z) + D, (q,(z1x)||Pg(2))

* z Variational Inference

Po(x|z): a multivariate Gaussian (real-valued data)

a Bernoulli (binary-valued data)
Encoder

X —»

40



Interim Summary

= Bayesian Networks

= Directed Acyclic Graph

= Conditional Independence

= D-separation

= Bayesian Parameters

= Parameterized Conditional Distributions

= Multinomial, Dirichlet Distribution, Conjugate Prior
= Markov Blanket

= Applications:
= Topic Model (Document Analysis, Traffic Pattern Analysis)
= Hidden Markov Model
= Generative Models




