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Application: Traffic Pattern Analysis
 Surveillance in crowded scenes



Graphical Inference Model



Bayesian Networks

 Directed Acyclic Graph (DAG)



Bayesian Networks

General Factorization



LDA Model (Topic Modelling)



LDA Model

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 𝑝(𝑤|𝑧, 𝜃, ∅, 𝛼, 𝛽)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖: 𝑝(𝑧, 𝜃, ∅|𝑤, 𝛼, 𝛽)

Dir(K, α): 𝑝(𝜇1, … , 𝜇𝐾|𝛼1, … , 𝛼𝐾)=
Γ(σ𝑖=1

𝐾 (𝛼𝑖))

ς𝑖=1
𝐾 Γ(𝛼𝑖)

𝜇1
𝛼1−1 …𝜇𝐾

𝛼𝐾−1

Mul(K, 𝜇): 𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)=
𝑛!

𝑥1!…𝑥𝐾!
𝜇1
𝑥1 …𝜇𝐾

𝑥𝐾



Inference of LDA Model

 Maximum A posteriori Probability (MAP) given observation 𝑤, 𝛼, 𝛽

 Bayesian Inference (Learning)

Not Convex
Closed-form solution is not available

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 𝑝(𝑤|𝑧, 𝜃, ∅, 𝛼, 𝛽)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖: 𝑝(𝑧, 𝜃, ∅|𝑤, 𝛼, 𝛽)

Likelihoods



Conditional Independence

 𝑎 is independent of 𝑏 given 𝑐

 Equivalently

 Notation



Conditional Independence: Example 1

𝑈, 𝑉 , and 𝑐 are independent. 𝑎 = 𝑈 + 𝑐, 𝑏 = 𝑉 + 𝑐 ; 𝑎, 𝑏 independent?



Conditional Independence: Example 1

𝑈, 𝑉 , and 𝑐 are independent. 𝑎 = 𝑈 + 𝑐, 𝑏 = 𝑉 + 𝑐, 𝑐 = 1; 𝑎, 𝑏 independent?



Conditional Independence: Example 2

𝑝 𝑏, 𝑐 𝑎 = 𝑝 𝑐 𝑎 𝑝 𝑏 𝑎, 𝑐 = 𝑝 𝑐 𝑎 𝑝 𝑏 𝑐



Conditional Independence: Example 2

𝑝 𝑎 𝑐 =
𝑝 𝑐 𝑎 𝑝(𝑎)

𝑝(𝑐)



Conditional Independence: Example 3

Note: this is the opposite of Example 1, with 𝑐 unobserved.

𝑎 and 𝑏 are independent Bernoulli rvs. 𝑐 = 𝑎 + 𝑏



Conditional Independence: Example 3

Note: this is the opposite of Example 1, with c observed.

𝑎 and 𝑏 are independent Bernoulli rvs. 𝑐 = 𝑎 + 𝑏



“Am I out of fuel?”

B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (0=empty, 1=full)
G = Fuel Gauge Reading

(0=empty, 1=full)

and hence

 F is independent to B

 G is dependent to B and F



“Am I out of fuel?”

Probability of an empty tank increased by observing 𝐺 = 0. 

and hence



“Am I out of fuel?”

Probability of an empty tank reduced by observing 𝐵 = 0. 
This referred to as “explaining away”.  𝐹 is dependent to 𝐵 given 𝐺

and hence



Exercise
Answer the following questions for the right-hand Bayesian network.
1) When any random variables are not observed, show that 𝑎 and 𝑏 are 

independent to each other.
2) When 𝑑 is observed, show that 𝑎 and 𝑏 are dependent to each other. 

1) Nothing observed

𝑝 𝑎, 𝑏, 𝑐, 𝑑 = [ 𝑝 𝑎 𝑝 𝑏 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐 ]

𝑝 𝑎, 𝑏 = 𝛴𝑐𝛴𝑑𝑝 𝑎, 𝑏, 𝑐, 𝑑 = 𝑝 𝑎 𝑝 𝑏 𝛴𝑐𝛴𝑑 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐

= 𝑝 𝑎 𝑝 𝑏 𝛴𝑐 𝑝 𝑐 𝑎, 𝑏 𝛴𝑑 [ 𝑝 𝑑 𝑐 ]

= [ 𝑝 𝑎 𝑝 𝑏 ]

2) d is observed

𝑝 𝑎, 𝑏 𝑑 =
𝑝 𝑎, 𝑏, 𝑑

𝑝 𝑑
= 𝛴𝑐

𝑝 𝑎, 𝑏, 𝑐, 𝑑

𝑝 𝑑

= 𝛴𝑐
𝑝 𝑎 𝑝 𝑏 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐

𝑝 𝑑
=
𝑝 𝑎 𝑝 𝑏

𝑝 𝑑
𝛴𝑐 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐

=
[ 𝑝 𝑎 𝑝 𝑏 𝑝 𝑑 𝑎, 𝑏 ]

𝑝 𝑑
≠ 𝑝 𝑎|𝑑 𝑝(𝑏|𝑑)



Exercise

1) Nothing observed

𝑝 𝑎, 𝑏, 𝑐, 𝑑 = [ 𝑝 𝑎 𝑝 𝑏 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐 ]

𝑝 𝑎, 𝑏 = 𝛴𝑐𝛴𝑑𝑝 𝑎, 𝑏, 𝑐, 𝑑 = 𝑝 𝑎 𝑝 𝑏 𝛴𝑐𝛴𝑑 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐

= 𝑝 𝑎 𝑝 𝑏 𝛴𝑐 𝑝 𝑐 𝑎, 𝑏 𝛴𝑑 [ 𝑝 𝑑 𝑐 ]

= [ 𝑝 𝑎 𝑝 𝑏 ]

2) d is observed

𝑝 𝑎, 𝑏 𝑑 =
𝑝 𝑎, 𝑏, 𝑑

𝑝 𝑑
= 𝛴𝑐

𝑝 𝑎, 𝑏, 𝑐, 𝑑

𝑝 𝑑

= 𝛴𝑐
𝑝 𝑎 𝑝 𝑏 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐

𝑝 𝑑
=
𝑝 𝑎 𝑝 𝑏

𝑝 𝑑
𝛴𝑐 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑐

=
[ 𝑝 𝑎 𝑝 𝑏 𝑝 𝑑 𝑎, 𝑏 ]

𝑝 𝑑
≠ 𝑝 𝑎|𝑑 𝑝(𝑏|𝑑)

Answer the following questions for the right-hand Bayesian network.
1) When any random variables are not observed, show that 𝑎 and 𝑏 are 

independent to each other.
2) When 𝑑 is observed, show that 𝑎 and 𝑏 are dependent to each other. 



D-separation: Example

𝐴

𝐴

𝐴

𝐵

𝐵

𝐵

𝐶

𝐶

𝐶



D-separation
 𝐴, 𝐵, and 𝐶 are non-intersecting subsets of nodes in a 

directed graph.
 A path from 𝐴 to 𝐵 is blocked if it contains a node such 

that either
 the arrows on the path meet either head-to-tail or tail-

to-tail at the node, and the node is in the set 𝐶, or
 the arrows meet head-to-head at the node, and 

neither the node, nor any of its descendants, are in the 
set 𝐶.

 If all paths from 𝐴 to 𝐵 are blocked, 𝐴 is said to be 𝑑-
separated from 𝐵 by 𝐶. 

 If 𝐴 is 𝑑-separated from 𝐵 by 𝐶, the joint distribution over 
all variables in the graph satisfies                       .



Exercise
When 𝐵 is observed in the following Bayesian network, decide 
whether every path from 𝐷 to 𝐸 is blocked (𝑑-separated) or not
and determine the dependency between 𝐷 and 𝐸.

(a)                       (b)                      (c)                     (d)                   (e) 



Exercise

a. path 1 (D←A→B→E) or (D → B → E) : Since the connection in B is head to tail 
and B is observed,  the path 1 becomes [ blocking ]. 

b. path 2 (D → C ← E) : Since the connection in C is head to head and C is not 
observed,  the path 2 becomes [ blocking ]. 

c. path 3 (D ← A→ E) : Since the connection in A is tail to tail and A is not observed,  
the path 3 becomes [ non-blocking ].  

d. path 4 (D → B ← A → E) : Since the connection in B is head to head and B is 
observed,  the path D → B ← A becomes [  non-blocking ] by B. And since the 
connection in A is tail to tail and A is not observed, the path B ← A → E 
becomes [ non-blocking ].  Hence path 4 becomes [ non-blocking ] . 

e. Among the above 4 paths, there [exists  or does not exist] at least one non-
blocking path and thus D and E are [ dependent or independent ] to each other.



Exercise

a. path 1 (D←A→B→E) or (D → B → E) : Since the connection in B is head to tail 
and B is observed,  the path 1 becomes [ blocking ]. 

b. path 2 (D → C ← E) : Since the connection in C is head to head and C is not 
observed,  the path 2 becomes [ blocking ]. 

c. path 3 (D ← A→ E) : Since the connection in A is tail to tail and A is not observed,  
the path 3 becomes [ non-blocking ].  

d. path 4 (D → B ← A → E) : Since the connection in B is head to head and B is 
observed,  the path D → B ← A becomes [  non-blocking ] by B. And since the 
connection in A is tail to tail and A is not observed, the path B ← A → E 
becomes [ non-blocking ].  Hence path 4 becomes [ non-blocking ] . 

e. Among the above 4 paths, there [exists  or does not exist] at least one non-
blocking path and thus D and E are [ dependent or independent ] to each other.



D-separation: I.I.D. Data



Discrete Variables, Multinomial

𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)=
𝑛!

𝑥1!…𝑥𝐾!
𝜇1
𝑥1 …𝜇𝐾

𝑥𝐾

𝑝(𝑥11, … , 𝑥1𝐾 , 𝑥21, … , 𝑥2𝐾|𝜇11, … , 𝜇𝐾𝐾)=
𝑛!

𝑥11!…𝑥1𝐾!

𝑛!

𝑥21!…𝑥2𝐾!
𝜇11
𝑥11𝑥21 …𝜇𝐾𝐾

𝑥1𝐾𝑥2𝐾

1

2

3

4

5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5



Discrete Variables (1), Multinomial
 General joint distribution: 𝐾2 − 1 parameters

 Independent joint distribution: 2(𝐾 − 1) parameters

𝑝(𝑥1, 𝑥2 )=𝑝(𝑥1|𝑥2)𝑝(𝑥2)

𝐾 − 1 + 𝐾(𝐾 − 1)

𝑝(𝑥1, 𝑥2 )=𝑝(𝑥1)𝑝(𝑥2)

𝐾 − 1 + 𝐾 − 1
1

2

3

4

5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5



Discrete Variables, Dirichlet

 The posterior distributions are in the same family as 
the prior probability distribution.

𝑝(𝜇|𝑥) ∝ 𝑝 𝑥 𝜇 𝑝(𝜇)

 The prior and posterior are then called conjugate 
distributions, and the prior is called a conjugate prior for 
the likelihood function.

 Dirichlet distribution is a conjugate (prior) distribution to 
the multinomial distribution. 

 Gaussian is a conjugate prior of Gaussian.

1

3

5

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5

https://en.wikipedia.org/wiki/Posterior_probability
https://en.wikipedia.org/wiki/Prior_probability_distribution
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Conjugate_distribution


Discrete Variables, Dirichlet
 Posteriori: 𝑝(𝜇|𝑥, 𝛼) ∝ 𝑝 𝑥 𝜇 𝑝(𝜇|𝛼)

 Mul(K, 𝜇): 𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)=
𝑛!

𝑥1!…𝑥𝐾!
𝜇1
𝑥1 …𝜇𝐾

𝑥𝐾

 Dir(K, α): 𝑝(𝜇1, … , 𝜇𝐾|𝛼1, … , 𝛼𝐾)=
Γ(σ𝑖=1

𝐾 (𝛼𝑖−1))

ς𝑖=1
𝐾 Γ(𝛼𝑖−1)

𝜇1
𝛼1 …𝜇𝐾

𝛼𝐾

 Parameters:  𝛼1, … , 𝛼𝐾 > 0 (hyper-parameters)

 Support: 𝜇1, … , 𝜇𝐾 ∈ (0,1) where σ𝑖=1
𝐾 𝜇𝑖 = 1

 Dir(K, c + α): 𝑝(𝜇|𝑥, 𝛼) ∝ 𝑝 𝑥 𝜇 𝑝(𝜇|𝛼)

where 𝑐 = (𝑐1, … , 𝑐𝐾) is number of occurrences

 𝐸[𝜇𝑘] =
𝑐𝑘+𝛼𝑘

σ𝑖=1
𝐾 (𝑐𝑖+𝛼𝑖)

1

3

5

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5



Discrete Variables (2)

 General joint distribution over 𝑀 variables:  𝐾𝑀 − 1 parameters

 𝑀 -node Markov chain: 𝐾 − 1 + 𝑀 − 1 𝐾(𝐾 − 1) parameters

𝑝(𝑥1, 𝑥2 )=𝑝 𝑥1 𝑝 𝑥2|𝑥1 𝑝 𝑥3|𝑥2 …. 𝑝 𝑥𝑀|𝑥𝑀−1



Discrete Variables: Bayesian Parameters (1)



Discrete Variables: Bayesian Parameters (2)

Shared prior



Parameterized Conditional Distributions

If                       are discrete,  
K-state variables, 

in 
general has O(K M) 
parameters because 
𝑝 𝑥1, … , 𝑥𝑀 𝑦 = 1 requires 
𝐾𝑀 − 1 parameters.

The parameterized form

requires only M + 1 parameters (actually this can not model a probability 
distribution).



The Markov Blanket

Any factor 𝑝(𝑥𝑘|𝑝𝑎𝑘) that does not have any functional dependence
on 𝑥𝑖 can be taken outside the integral over 𝑥𝑖, and will therefore cancel between
numerator and denominator.

𝑥𝑖

=ෑ
𝑘∈𝑀𝐵

𝑝(𝑥𝑘|𝑝𝑎𝑘)



LDA Model (Topic Modelling)
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Application: Traffic Pattern Analysis
 Surveillance in crowded scenes



Hidden Markov Model

𝑝 𝑥1, … , 𝑥𝑇 = 𝑝 𝑥1 𝑝(𝑥2|𝑥1) 𝑝 𝑥3 𝑥2 ………𝑝(𝑥𝑇|𝑥𝑇−1)
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Variational Auto-encoder (VAE)

Encoder

Decoder

x

x

z

𝑳𝒐𝒔𝒔 = −𝒍𝒐𝒈𝑷𝜽 𝒙 𝒛 + 𝑫𝑲𝑳(𝒒𝝋 𝒛 𝒙 ||𝑷𝜽(𝒛))

Reconstruction Loss

𝒑𝜽 𝒙 𝒛 : a multivariate Gaussian (real-valued data)

𝒑𝜽 𝒙 𝒛 : a Bernoulli (binary-valued data) 

Variational Inference



Interim Summary
 Bayesian Networks

 Directed Acyclic Graph

 Conditional Independence

 D-separation

 Bayesian Parameters

 Parameterized Conditional Distributions

 Multinomial, Dirichlet Distribution, Conjugate Prior

 Markov Blanket

 Applications:
 Topic Model (Document Analysis, Traffic Pattern Analysis)

 Hidden Markov Model

 Generative Models


