Introduction to Photonics

Relativistic Optics (2)

Yoonchan Jeong

School of Electrical Engineering, Seoul National University

Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

Email: yoonchan@snu.ac.kr

Length Contraction

Lorentz transform and inverse Lorentz transform:

$$x'_0 = \gamma(x_0 - \beta x_1) \qquad x_0 = \gamma(x'_0 + \beta x'_1)$$

$$x'_1 = \gamma(x_1 - \beta x_0) \qquad x_1 = \gamma(x'_1 + \beta x'_0)$$

$$x'_2 = x_2 \qquad x_2 = x'_2$$

$$x'_3 = x_3 \qquad x_3 = x'_3$$
Length measured in K at $t = 0$
easured in K' at $t' = 0$:
$$x_1 = \gamma(x'_1 + \beta x'_0) \rightarrow x_1 = \gamma x'_1 \rightarrow L' = \frac{L}{\gamma} \leftarrow \text{Length contraction}$$

Length measured in K' at t' = 0:

$$x_1 = \gamma(x_1' + \beta x_0') \rightarrow x_1 = \gamma x_1' \rightarrow L' = \frac{L}{\gamma} \leftarrow \text{Length contraction}$$

Event in K' at t = 0:

$$x'_0 = -\gamma \beta x_1 \\ x'_1 = \gamma x_1$$
 \rightarrow Object that started from location γx_1 and at time $-\gamma \beta x_1$

Distance to the object at time $x_0' = 0$:

$$L' = \gamma x_1 - \frac{v}{c}(\gamma \beta x_1) = \gamma x_1 (1 - \beta^2) = \frac{x_1}{\gamma} = \frac{L}{\gamma} \leftarrow \text{Length contraction}$$

Relativity of Simultaneity

Simultaneous events with reference to the railway embankment:

→ Two simultaneous strokes of lighting A and B

→ Are these two events also simultaneous relatively to the train?

Reference to the railway embankment:

$$ct_{B} + vt_{B} = x_{1} \rightarrow t_{B} = \frac{x_{1}}{c + v} = \frac{x_{1}}{c} \frac{1}{1 + \beta}$$

$$ct_{A} - vt_{A} = x_{1} \rightarrow t_{A} = \frac{x_{1}}{c - v} = \frac{x_{1}}{c} \frac{1}{1 - \beta}$$
Distance in K'
Time delay in K'

Reference to the train:

$$t'_{B} = \frac{t_{B}}{\gamma} = \frac{x_{1}}{\gamma c} \frac{1}{1+\beta} = \frac{\gamma x_{1}}{c} (1-\beta) = \frac{\gamma x_{1}}{c} - \frac{\gamma \beta x_{1}}{c} \leftarrow \text{"Earlier event"}$$

$$t'_{A} = \frac{t_{A}}{\gamma} = \frac{x_{1}}{\gamma c} \frac{1}{1-\beta} = \frac{\gamma x_{1}}{c} (1+\beta) = \frac{\gamma x_{1}}{c} + \frac{\gamma \beta x_{1}}{c}$$

3

Twin Paradox?

Time dilation or length contraction for the space traveller:

Time measured by *B*:

$$T_B = 2 \times \frac{20}{0.8} = 50 \text{ yrs}$$

Time measured by A:

$$L' = \frac{L}{\gamma} = L\sqrt{1 - \beta^2} = 20 \times 0.6 = 12 \, ly$$
$$T_A = 2 \times \frac{12}{0.8} = 30 \, yrs$$

What if A thinks that the earth and star are in motion?

Is this symmetric? \rightarrow General theory of relativity

Special and General Principle of Relativity

Relative motion:

A. Einstein, Relativity: The Special and General Theory, Crown Publishers, 193

- (a) The carriage is in motion relative to the embankment:
 - → The embankment as reference-body
- (b) The embankment is in motion relative to the carriage:
 - \rightarrow The carriage as reference-body

Which is correct? \rightarrow Only "experience" can decide!

Special theory of relativity: \rightarrow Only applicable to a uniform motion

For a non-uniform motion: Linked to acceleration

→ General theory of relativity

Gravitational Field

"If we pick up an apple and then let it go, why does it fall to the ground?"

 \rightarrow "Because it is attracted by earth: Newton's law of universal gravitation."

$$F = G \frac{m_1 m_2}{r^2}$$

Coulomb's law:

$$F = k \frac{q_1 q_2}{r^2} \leftarrow \text{Electric "field" involved}$$

Einstein's thought: Why not "gravitational field"?

Newton's law of motion:

$$(Force) = (intertial mass) \times (acceleration)$$

Under gravitational field:

 $(Force) = (gravitational mass) \times (intensity of the gravitational field)$

$$\rightarrow (acceleration) = \frac{(gravitational mass)}{(inertial mass)} \times (intensity of the gravitational field)$$

Equivalence Principle

Imagine a chest with an observer inside that is being pulled upwards:

→ Without external gravitation

- → The acceleration of the object towards the floor of the chest is always of the same magnitude, whatever kind of body the person may happen to use for the experiment.
- \rightarrow Light bends toward the direction of the gravitational field.

General Principle of Relativity

Deflection of light in gravitational field:

→ Measured during the solar eclipse of 29th May, 1919

Time dilation by gravitational field:

 \rightarrow Time is slowed down in gravitational field.

Rotating body of reference:

- \rightarrow Non-Euclidean geometry: \rightarrow Curved
- \rightarrow Finite and yet unbounded universe: \rightarrow In doubt \leftarrow Hubble's law