Precision Metrolgy 15: Flatness Calculation

Thus all the height data are determined, and the height measurement procedures are completed.

The measured height data are;

The flatness is the deviation from the ideal reference plane, and there are 3 reference surfaces; 3 points surface, least squares surface, and the minimum zone surface.
(1)3 points surface

Based on the 3 points, the reference plane can be calculated. The 3 points are preferred as the points on
the edge to cover the whole measurement datum.
The reference plane, $Z=a X+b Y+C$
The 3 points are chosen as $\mathrm{O}, \mathrm{A}, \mathrm{C}$ points;
Slope $a=(2.625-0) / 0.3=8.75$ [urad]
Slope $b=(7.25-2.625) / 0.3=15.417$ [urad]
Offset $\mathrm{C}=0$ [um]
Flatness deviation, $\mathrm{h}^{*}=\mathrm{h}-(\mathrm{aX}+\mathrm{bY}+\mathrm{C})$
And Flatness error $=\max h^{*}-\min h^{*}$

\therefore Flatness error $=0-(-2.112)=2.112 \mathrm{um}$ in terms of 3 points surface
(2)Least Squares surface

The perpendicular distance, d, from the surface $Z=a X+b Y+c$ to the point $P_{i}\left(X_{i}, Y_{i}, Z_{i}\right)$ is;

$$
\begin{aligned}
\mathrm{Di} & \left.=\mid a X_{i}+b Y_{i}+C-Z_{i}\right) \mid / \sqrt{ }\left(1+a^{2}+b^{2}\right) \\
& \left.\fallingdotseq \mid a X_{i}+b Y_{i}+C-Z_{i}\right) \mid(\because a, b \ll 1)
\end{aligned}
$$

The sum of squares of distance, J , is
$J=\Sigma\left(a X_{i}+b Y_{i}+C-Z_{i}\right)^{2}$ be minimum

$$
\partial J / \partial a=2 \Sigma\left(a X_{i}+b Y_{i}+C-Z_{i}\right)\left(X_{i}\right)=0
$$

$$
\therefore a \Sigma X_{i}^{2}+b \Sigma X_{i} Y_{i}+C \Sigma X_{i}=\Sigma Z_{i} X_{i}
$$

$$
\partial J / \partial b=2 \Sigma\left(a X_{i}+b Y_{i}+C-Z_{i}\right)\left(Y_{i}\right)=0
$$

$$
\therefore a \Sigma X_{i} Y_{i}+b \Sigma Y_{i}^{2}+C \Sigma Y_{i}=\Sigma Z_{i} Y_{i}
$$

$$
\partial J / \partial C=2 \Sigma(a X i+b Y i+C-Z i)(1)=0
$$

$$
\therefore \mathrm{a} \Sigma \mathrm{X}_{i}+\mathrm{b} \Sigma \mathrm{Y}_{\mathrm{i}}+C \Sigma=\Sigma Z_{i}
$$

Three unknows, a,b,c can be calculated by the Gauss Elimination method or other numerical equation solver.

Slope $a=12.02$ urad, Slope $b=11.68$ urad

Offset C=0 (assigned)
Flatness deviation, $h^{*}=h-(a X+b Y+C)$
Flatness error $=\max h^{*}-\min h^{*}$

Flatness error $=0.14-(-1.963)=2.103$
in terms of the least squares plane
(3)Minimum Zone Surface
:To find the two parallel planes that gives the minimum distance between the two

Linear Programming such as Simplex Search
$\operatorname{Min} \mathrm{C}_{2}-\mathrm{C}_{1}$
such that $\mathrm{C}_{1} \leq \mathrm{Z}_{\mathrm{i}}-\mathrm{aX} \mathrm{X}_{\mathrm{i}}-\mathrm{bY} \mathrm{Y}_{\mathrm{i}} \leq \mathrm{C}_{2}$, that is,
$a X_{i}+b Y_{i}+C_{1} \leq Z_{i}$
$a X_{i}+b Y_{i}+C_{2} \geq Z_{i}$

Let $\mathbf{C}=\left[a, b, C_{2}, C_{1}\right], \mathbf{X}=[0,0,1,-1]^{\top}$
Min CX
s.t. $\mathbf{A}_{1} \mathbf{X} \leq \boldsymbol{B}, \mathbf{A}_{2} \mathbf{X} \geq \mathbf{B}$
$\mathbf{A}_{1}=\left[\begin{array}{lllll}X_{1} & Y_{1} & 0 & 1 \\ X_{2} & Y_{2} & 0 & 1\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}Z_{1} \\ \ldots \\ X_{N}\end{array} \mathrm{Z}_{\mathrm{N}}\right.$.
$\mathbf{A}_{2}=\left[\begin{array}{llll}X_{1} & Y_{1} & 1 & 0\end{array}\right.$
$X_{2} Y_{2} 10$
$X_{N} Y_{N} 10$

Alternative geometric solution Enclose Tilt Technique* gives, the surface passing $O A B$ gives the minimum zone surface.

For flatness; 3-1 or 2-2 criterion
For straightness; 2-1 criterion

Thus $a=(7.25-2.875) / 0.3=14.583$ [urad]
$\mathrm{B}=(2.875-0) / 0.3=9.583$ [urad]
$C=0$
Thus the flatness deviation is
$h^{*}=h-(a X+b Y+C)$
Flatness error $=\max h^{*}-\min h^{*}$

Thus Flatness error= $0.0-(-2.055)=2.055$ in terms of the minimum zone surface

*The application of a micro-computer to the on-line calibration of the flatness of engineering surfaces, BURDEKIN,M.\& PAHK,H., Proceedings of Institution of Mechanical Engineers,1989, Vol. 203 B,127-137

Table Grade

:To grade the surface table according to the Flatness error and the Size

Permitted tolerance, t_{0}, for Grade 0 table
$\mathrm{t}_{0}=2.5(1+\mathrm{d} / 1000)$
where $d=$ nominal length of the diagonal in mm rounded up-to the nearest 100 mm
t is rounded up-to the nearest 0.5 um
Each succeeding grade has the double t of preceding grade, i.e. $t_{1}=2 t_{0}, t_{2}=2 t_{1}, t_{3}=2 t_{2}$

Ex) 1000 mm by 1000 mm granite surface plate $d=1000 \mathrm{~V} 2 \fallingdotseq 1400$
$\mathrm{t}_{0}=2.5(1+1400 / 1000)=6.0[\mathrm{um}]$ for Grade0,
$t_{1}=12[u m]$ for Grade $1, t_{2}=24[u m]$ for Grade 2, etc.

HW)Given flatness measurement data, write a computer code for the 3 points surface, least squares surface, and the minimum zone surface.

