Precision Metrology 16 -Roundness Measurement

Roundness: Deviation from ideal reference circle

- -True circle? True round?
- -About 70% of all engineering components have axis of rotation
- -No round parts having truly round profile

Causes of Non-roundness or out of roundness or roundness error

<u>Machining(Milling/Turning/Grinding)</u>: Spindle error, Tool wear, Chatter, Defects in bearing, Elastic deformation of workpiece, Chucking

<u>Centreless grinding</u>: Lobed circle pattern in ball grinding

<u>Drawing/Extrusion</u>: Wear in Die/Mold, Defects in Surface

Roundness Measurement

(1) Diametre measurement (two points method)

cylinder/bore gauge

Diametre measurement vs Radius measurement

Ex) Lobed circle

Causes: Jaws chucking, or centerless grinding

:.Lobed circle (especially odd-numbered) cannot be measured

(2) 3 Points method

 $H_2=r_2+r_2/\sin\theta$: measured at 2 position

 $H_1=r_1+r_1/\sin\theta$: measured at 1 position

Height difference=
$$H_2$$
- H_1 = $(r_2$ - $r_1)$ + $(r_2$ - $r_1)$ /sin θ = $(r_2$ - $r_1)[1+1/sin θ]> $(r_2$ - $r_1)$$

∴Data distortion or magnification for lobed circle Cylinder Gauge

Bore Gauge

(3) Radius measurement method LVDT, Dial Gauge, Cap Sensor

(4) CMM (Coordinate Measuring Machine)

To: Measure (Xi, Yi) along the Circle

Roundness Calculation

:Deviation from the ideal reference circle

Four Reference Circles:

They are Minimum Circumscribed Circle or Centre (MCC); Maximum Inscribed Circle or Centre (MIC); Least Squares Circle or Centre (LSC); Minimum Zone Circle or Centre (MZC);

(1) Maximum Inscribed Circle or Centre(MIC)

:Largest possible inscribing circle, clue to the Shaft diameter to fit in Hole, or Plug Gauge Centre

Equation of Circle: $(X-a)^2+(Y-b)^2=R^2$

(a,b): Centre, R: Radius

a, b, R can be calculated by finding P_1, P_2, P_3 ; Roundness deviation= R_i - $R=\sqrt{[(X_i-a)^2+(Y_i-b)^2]}$ -RRoundness error =max R_i - min R_i P_1, P_2, P_3 can be found by an iterative procedure.

(2)Minimum Circumscribed Circle or Centre(MCC) :Smallest possible circumscribing circle, clue to Hole diametre to fit in Shaft, or Ring Gauge Centre

(a,b): Centre, R: Radius

a,b,R can be calculated by finding P₁,P₂,P₃;

Roundness deviation

$$\delta R_i = R_i - R = \sqrt{[(X_i - a)^2 + (Y_i - b)^2] - R}$$

Roundness error

=max δR_i - min δR_i =max R_i - min R_i

 P_1, P_2, P_3 can be found by an iterative procedure.

(3)Least Squares Circle or Centre (LSC)

:Least squares based best fit circle or centre

(a,b): Centre, R: Radius

$$I = \sum (R_i - R)^2 = \sum [\sqrt{(X_i - a)^2 + (Y_i - b)^2 - R}]^2$$
 be minimum

But this is nonlinear formulation!

Thus $(R_i^2-R^2)^2$ can be used instead of $(R_i-R)^2$

$$J = \sum (R_i^2 - R^2)^2 = \sum [(X_i - a)^2 + (Y_i - b)^2 - R^2]^2$$
 minimum

$$J = \sum (X_i^2 + Y_i^2 - 2aX_i - 2bY_i + a^2 + b^2 - R^2)^2$$

Let A=-2a, B=-2b,
$$C=a^2+b^2-R^2$$

$$J = \sum (X_i^2 + Y_i^2 + AX_i + BY_i + C)^2 \text{ minimum}$$

$$\partial J/\partial A = 2\sum (X_i^2 + Y_i^2 + AX_i + BY_i + C)X_i = 0$$

$$\partial J/\partial B = 2\sum (X_i^2 + Y_i^2 + AX_i + BY_i + C)Y_i = 0$$

$$\partial J/\partial C = 2\sum (X_i^2 + Y_i^2 + AX_i + BY_i + C) = 0$$

∴ A,B,C can be solved; a, b, R can be solved.

Roundness deviation,

$$\delta R_i = R_i - R = \sqrt{((X_i - a)^2 + (Y_i - b)^2)} - R$$

Roundness error

=max δR_i - min δR_i =max R_i - min R_i

(4)Minimum Zone Circle or Centre (MZC)
:Two concentric circles that give minimum radial separation, or MRS circle/centre

(a,b): Centre;

R₂:Maximum radius, R₁:Minimum radius

R₂-R₁: Radial separation

Min $R_2^2 - R_1^2$

s.t. $R_1^2 \le (X_i - a)^2 + (Y_i - b)^2 \le R_2^2$

$$C_2=R_2^2-(a^2+b^2)$$
, $C_1=R_1^2-(a^2+b^2)$, then becomes

Min
$$C_2$$
- C_1

s.t.

$$AX_{i}+BY_{i}+C_{2}\geq X_{i}^{2}+Y_{i}^{2}$$

$$AX_i + BY_i + C_1 \le X_i^2 + Y_i^2$$

Linear Programming with Simplex Search

Min CX

St
$$A_1X \geq B$$
, $A_2X \leq B$

Where

$$\mathbf{A}_{2} = \begin{bmatrix} X_{1} & Y_{1} & 0 & 1 \\ X_{2} & Y_{2} & 0 & 1 \\ & & & \\ X_{N} & Y_{N} & 0 & 1 \end{bmatrix}$$

Thus A,B,C_2,C_1 can be solved; a,b,R_2,R_1 solved Roundness deviation, δRi

$$\delta R_i = R_i - R_1 = \sqrt{((X_i - a)^2 + (Y_i - b)^2)} - R1$$

Roundness error=max δR_i - min δR_i

=max R_i - min R_i