Precision Metrology 24- Roughness Parameters for Surface

Cut-off length (λc), or Sampling length(Lc):

Sampling length of profile to eliminate longer spacing errors such as waviness and form error from the measured profile. Mechanical filter, electrical filter, mathematical filter can attenuate the raw data measured.

Evaluation length, or Traversing length (L):

The length for roughness evaluation, or the length to be traversed for roughness measurement, typically set to $5 \lambda c$.

The ISO 4288-1996 gives guidelines;

Recommended Cut-off (ISO 4288-1996)				
Periodic Profiles	Non-Periodic Profiles	Cut-off	Sampling Length/ Evaluation Length	
Spacing Distance RSm (mm)	Rz ($\mu \mathrm{m})$	Ra ($\mu \mathrm{m})$	$\lambda c(\mathrm{~mm})$	$\lambda c(\mathrm{~mm}) / \mathrm{L}$
$>0.013-0.04$	To0.1	To 0.02	0.08	$0.08 / 0.4$
$>0.04-0.13$	$>0.1-0.5$	$>0.02-0.1$	0.25	$0.25 / 1.25$
$>0.13-0.4$	$>0.5-10$	$>0.1-2$	0.8	$0.8 / 4$
$>0.4-1.3$	$>10-50$	$>2-10$	2.5	$2.5 / 12.5$
$>1.3-4.0$	>50	>10	8	$8 / 40$

Surface parameters [ISO 4287, KSB0161]

Amplitude parameters: Vertical characteristics of roughness profile

Spacing parameters: Spacing of irregularity of roughness profile along a line of test

Hybrid parameters: Hybrid of Amplitude parameters and Spacing parameters, and is important in a functional view point

1. Amplitude parameters

Rp: Maximum Peak of roughness profile Rv: Minimum Valley of roughness profile Rmax, Rt: Maximum Peak to Valley over the several cut-off lengths, that is $\mathrm{Rp}-\mathrm{Rv}$

Rz: Ten points Height of Irregularities
$=$ Avg. of 5 Heights of Peaks- Avg. of 5 Lowest Valleys
$=[R p 1+R p 2+R p 3+R p 4+R p 5] / 5-$
$[R v 1+R v 2+R v 3+R v 4+R v 5] / 5$

Source:www.olympus-ims.com

Ra: Average roughness

$\mathrm{Ra}=\frac{1}{\ell} \int_{0}^{\ell}|\mathrm{Z}(\mathrm{x})| \mathrm{dx}$

Source:www.olympus-ims.com
$R a=\int|Z(x)-\underline{Z}| d x / L$
where $\underline{Z}=\int Z(x) \mathrm{dx} / \mathrm{L}=\mathrm{CLA}$ (Centre Line Average)
In digital form; $R a=\left[\left|Z_{1}\right|+\left|Z_{2}\right|+\ldots+\left|Z_{n}\right|\right] / N$
For a sinusoidal profile with amplitude A,
$R \mathrm{a}=2 \mathrm{~A} / \pi \doteqdot 0.636 \mathrm{~A}$,
:The most popular parameters for surface roughness
together with Rmax;
Rmax $\equiv(4-7)$ Ra for normal machining,
Rmax $=(7-14)$ Ra for grinding and lapping
:Representative parameter for surface roughness, otherwise specified
:Peak, Valley are considered with the same significance, while the peak may be more significant for practical cases

Rq: $\mathrm{RMS}($ Root Mean Square) average roughness

$\mathrm{Rq}=\sqrt{\frac{1}{\ell} \int_{0}^{\ell} Z^{2}(\mathrm{x}) \mathrm{dx}}$

Source:www.olympus-ims.com
$R q=V \int[Z(x)-Z]^{2} d x / L \doteqdot V\left[Z_{1}{ }^{2}+Z_{2}{ }^{2}+\ldots X_{n}{ }^{2}\right] / N ;$
where \underline{Z} is the CLA
$R q=A / \sqrt{ } 2$ for a sinusoidal profile with amplitude A;

Rsk: Skewness

Rsk $=\frac{1}{\mathrm{Rq}^{3}}\left(\frac{1}{\ell} \int_{0}^{\ell} \mathrm{Z}^{3}(\mathrm{x}) \mathrm{dx}\right)$

Source:www.olympus-ims.com

$$
\begin{aligned}
& \operatorname{Rsk}=\int[\{Z(x)-Z\} / R q]^{3} d x / L \\
& =\left[Z_{1}{ }^{3}+Z_{2}{ }^{3}+\ldots+Z_{n}{ }^{3}\right] / R^{3} / N
\end{aligned}
$$

Typically, $-3 \leq R s k \leq 3$, and

Symmetric profile if Rsk=0

Less wear and better load capacity if Rsk<0

Rku: Kurtosis

Source:www.olympus-ims.com

$$
\begin{aligned}
& \text { Rku }=\int[\{Z(x)-Z\} / R q]^{4} d x / L \\
& =\left[Z_{1}{ }^{4}+Z_{2}{ }^{4}+\ldots+Z_{n}^{4}\right] / R^{4} / N
\end{aligned}
$$

Normal surface (Normal distribution) if Rku=3
Sharp surface if Rku>3
Dull surface if Rku<3

Bearing ratio, Material ratio, or Abbott Firestone Curve

:H vs Tp plot
Where, $T p=\left[b_{1}+b_{2}+. .+b_{n}\right] / L X 100$ (\%)
And b_{n} is the length of the n'th profile over the certain height, H

Straight line: Normal surface
Convex Curve: Less wear, Better load capacity
Concave Curve: More wear, Less load capacity
2. Spacing parameters

HSC: High Spot Count
Number of High Spots over the reference height during the evaluation length. Higher HSC surface with the same Ra give more dense profile.

PC: Peak Count

Number of Peaks and Valleys exceeding the bandwidth from the reference height.

Sm or RSm: Average spacing between profiles

Average spacing of profile irregularities over length L

$$
\mathrm{RSm}=\frac{1}{\mathrm{~m}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{X}_{\mathrm{si}}
$$

Source:www.olympus-ims.com

3. Hybrid Parameters

Source:www.olympus-ims.com

Lr: Ratio of profile length to the nominal length
$\operatorname{Lr}=\int \sqrt{ }\left[1+\{d z / d x\}^{2}\right] / L \leq 1.01$, typically
Application: painting, plating, coating

Average slope of profiles, Δa and Δq
$\Delta a=\int|d z / d x| d x / L \fallingdotseq \Sigma|\delta z / \delta x| / N$
$\Delta \mathrm{q}=\mathrm{V} \int(\mathrm{dz} / \mathrm{dx})^{2} \mathrm{dx} / \mathrm{L} \fallingdotseq V\left[\Sigma(\delta \mathrm{z} / \delta \mathrm{x})^{2} / \mathrm{N}\right]$
Generally, the average slope is less than 8 deg.
Application:
Mechanical->Good interfacial strength and Hertz stress with lower slope; Lower friction and adhesion with lower slope

Optical->Better reflectivity with lower slope
Average wavelength, $\lambda \mathrm{a}, \lambda \mathrm{q}$
$\lambda a=2 \pi R a / \Delta a$
$\lambda q=2 \pi R q / \Delta q$

Application: Larger wavelength profile will give less wear for the similar average roughness

Comparison with ∇ and Ra
$\nabla \nabla \nabla \nabla \Rightarrow 0.025-0.2 \mathrm{Ra}$
$\nabla \nabla \nabla \Rightarrow 0.4-1.6 \mathrm{Ra}$
$\nabla \nabla \Rightarrow 3.2-6.3 \mathrm{Ra}$
$\nabla \Rightarrow 12.5-25 \mathrm{Ra}$

3D Surface Parameters

:To define 3D roughness parameters in terms of ISO
25178, that is 3 D version of 2D parameters
Sp, Sv: Maximum peak, Valley over the surface
Sz, or Smax: Maximum peak to valley over the surface,
$S z=S p-S v$

Source:www.olympus-ims.com

Sa: Average 3D surface roughness

$$
\mathrm{Sa}=\frac{1}{\mathrm{~A}} \iint_{A}|\mathrm{Z}(\mathrm{x}, \mathrm{y})| \mathrm{dxdy}
$$

$S a=\iint|Z(x, y)-\underline{Z}| d x d y / A$,
where $\underline{Z}=\iint|Z(x, y)| d x d y / A=$ mean surface height

Sq:Average RMS 3D suface roughness

$$
\mathrm{Sq}=\sqrt{\frac{1}{\mathrm{~A}} \iint_{\mathrm{K}} \mathrm{Z}^{2}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}}
$$

Source:www.olympus-ims.com
$S q=\sqrt{ } \iint(Z(x, y)-Z)^{2} d x d y / A$
where $\underline{Z}=$ mean surface height

Similarly, other 3D parameters can be defined;
3D Skewness, Ssk $=\iint[Z(x, y)-Z]^{3} / S q^{3} d x d y / A$
3D Kurtosis, Sku $=\iint[Z(x, y)-Z]^{4} / S q^{4} d x d y / A$

