Precision Metrology 3

Error propagation (cont'd)

Worst case, most extreme case, or most conservative case of error propagation:

Random error,

RA

 $= |\mathsf{R}X \cdot \partial \mathsf{F}/\partial X| + |\mathsf{R}Y \cdot \partial \mathsf{F}/\partial Y| + 2\rho_{xy} |\partial \mathsf{F}/\partial X \cdot \partial \mathsf{F}/\partial Y \cdot \sqrt{\mathsf{R}X} \sqrt{\mathsf{R}Y}|$

RX, RY are the random error of X,Y.

Example:

Perimeter $X = (1+0.01\pm0.005)m$, $Y = (1+0.01\pm0.005)m$

A = F(X,Y) = XY

What about for Area ΔA ? RA?

Assume X,Y are independent, or 10% dependent.

Systematic part upto 2nd order:

 $\partial F/\partial X = Y$, $\partial F/\partial Y = X$, $\partial^2 F/\partial X^2 = 0$, $\partial^2 F/\partial Y^2 = 0$, $\partial^2 F/\partial X \partial Y = 1$

For Systematic Part, ΔA

 $= \Delta X \cdot \partial F / \partial X + \Delta Y \cdot \partial F / \partial Y +$

 $+\Delta X^{2} \cdot \partial^{2} F / \partial X^{2} + \Delta Y^{2} \cdot \partial^{2} F / \partial Y^{2} + 2\rho_{xy} \Delta X \Delta Y \cdot \partial^{2} F / \partial X \partial Y$

=(0.01)(1)+(0.01)(1)+2(0.1)(0.01)(0.01)(1)

=0.0202 (10% dependent), and 0.02 (independent)

For Random part, RA

 $\sigma^2{}_{\text{F}}$

 $= \sigma_{x}^{2} (\partial F/\partial X)^{2} + \sigma_{y}^{2} (\partial F/\partial Y)^{2} + 2\rho_{xy} \sigma_{x} \sigma_{y} (\partial F/\partial X) (\partial F/\partial Y)$

 $= (0.005/3)^2(1) + (0.005/3)^2(1) + 2(0.1)(0.005/3)(0.005/3)(1)$

=(2.2) (0.005/3)² (if 10% dependent), and

 $=(2) (0.005/3)^{2}$ (if independent)

Thus, RA= $3\sigma_F$

 $=(0.005)\sqrt{2.2}$ (if 10% dependent), and

= $(0.005)\sqrt{2}$ (if independent)

Therefore, A_T, area after error propagation, is A_T=1+0.0202±(0.005) $\sqrt{2.2}$ (if 10% dependent), and A_T=1+0.02±(0.005) $\sqrt{2}$ (if independent)

Worst case random error propagation is $RA = |RX \cdot \partial F / \partial X| + |RY \cdot \partial F / \partial Y| + 2\rho_{xy} |\partial F / \partial X \cdot \partial F / \partial Y \cdot \sqrt{RX} \sqrt{RY}|$ = (0.005)(1) + (0.005)(1) + 2(0.1)(1)(1)(0.005) = (2.2)(0.005) (if 10% dependent), and = (2)(0.005) (if independent) HW2) A function of planar machine error is, $F(X,Y,T)=100X^2+10Xsin(2\pi X/5)+50XY+24TX^2$ (unit: um)

Point (X,Y,T) of Interest = (1m,1m,1K)Systematic error (ΔX , ΔY , ΔT)=(0.1m, 0.1m, 0.1K)Random error (RX, RY, RT)=(0.02m, 0.02m, 0.05K), or That is,

 $X = (1 + 0.1 \pm 0.02)m$, $Y = (1 + 0.1 \pm 0.02)m$, $T = (1 + 0.1 \pm 0.05)K$

0) Evaluate the planar error at nominal position.

1) Derive the systematic error at nominal position.

- 2) Evaluate the systematic error at nominal position.
- 3) Derive the random error at nominal position.
- 4) Evaluate the random error at nominal position.

(assuming X,Y,T are independent)

Some useful statistical tests for metrology

"Small Sampling Theory" for small samples under n<30

1. Population Mean from Sample Mean

: to be estimated from Sample mean and Sample std (by W.S.Gosset, pseudonym 'Student')

For n Measurement Data: X₁,X₂,X₃...X_n

Sample Mean, $X = \Sigma X_i/n$

Sample standard deviation, $s_{n-1} = \sqrt{\Sigma(X_i - \underline{X})^2/n-1}$

Population Mean, µ, can be estimated with probability

Probability of μ to lie in the interval,

Prob $\left[\frac{X-t}{s}\sqrt{n-1} \le \mu \le X+t}{s}\sqrt{n-1}\right] = 1-\alpha$

where α is the significance level,

t is $t_{1-\alpha/2, n-1}$,

from the table of Student-t-distribution

Ex) Estimate the Population Mean, μ , for sample measurement: n=10, X=14.7, s_{n-1}=0.1

Probability 99%-> α =0.01,

 $t_{1-\alpha/2,n-1} = t_{0.995,9} = 3.25$

(from the Student-t-distribution table)

Therefore Population mean lie in the interval,

 \underline{X} -3.25·s_{n-1}/ $\sqrt{9} \le \mu \le \underline{X}$ +3.25·s_{n-1}/ $\sqrt{9}$

 $\therefore 14.59 \le \mu \le 14.81$

2. Population Std from Sample Std

:To estimate Population Std, σ , from the Sample Std, s Population Std, σ , can be estimated with the Probability σ lies in the interval at the probability of Prob [$s\sqrt{n-1}/\chi_{1-\alpha/2, n-1} \le \sigma \le s\sqrt{n-1}/\chi_{\alpha/2, n-1}$] = $1-\alpha$ where χ is from the Chi-square distribution table. Ex) Estimate Population Std from the Sample Std 10 samples: n=10, X=14.7, s_{n-1}=0.1, probability=99% $\alpha = 0.01, \chi_{1-\alpha/2, n-1} = \chi_{0.995, 9} = \sqrt{23.6} = 4.858,$ $\chi_{\alpha/2, n-1} = \chi_{0.005, 9} = \sqrt{1.73} = 1.315$ $s\sqrt{n-1/\chi_{1-\alpha/2, n-1}} = 0.1\sqrt{9/4.858} = 0.0617$ $s\sqrt{n-1/\chi_{\alpha/2, n-1}} = 0.1\sqrt{9/1.315} = 0.2281$

 $\therefore 0.0617 \le \sigma \le 0.2281$

3. Goodness of Fit

 $@(1-\alpha)$ Probability

 χ^2 from Table, $\alpha/2$ and (n-1) dof O_i is observed (measured), and E_i is expectation (fitted) If $\chi^2 \ge \Sigma(O_i - E_i)^2 / E_i$; Accepted If $\chi^2 \le \Sigma(O_i - E_i)^2 / E_i$; Rejected

4. Test for Variance

:To test whether "Similar data" or "considerably Different data", using the F disdribution (named after R.A.Fisher) based on the variance.

Two samples: Similar? Or Different considerably?

 n_1 , X_1 , s_1 from populations having variance, σ^2_1

 n_2 , X_2 , s_2 from populations having variance, σ^2_2

At $(1-\alpha)$ probability

$$F_{n1-1, n2-1, 1-\alpha} \equiv \{n_1 s_1^2 / (n_1 - 1)\sigma_1^2\} / \{n_2 s_2^2 / (n_2 - 1)\sigma_2^2\}$$

={
$$n_1s_1^2/(n_1-1)$$
}/{ $n_2s_2^2/(n_2-1)$ }

(: $\sigma^2_1 = \sigma^2_2 = \sigma^2$ from the same population)

$$\Rightarrow$$
 s_1^2/s_2^2

(:: $n_1/(n_1-1) = n_2/(n_2-1)$, if n_1 , n_2 are sufficiently large, or $n_1=n_2$)

where the numerator is larger than the denominator

If F < s_1^2/s_2^2 , then Differ considerably (<u>not from the same population</u>) If F $\ge s_1^2/s_2^2$, then Similar data (<u>from the same population</u>)

Ex) Two samples; Sample1: 14.9;14.6;14.8;14.6;14.9 Sample2: 14.5;14.5;14.3;14.7;14.6 $n_1=5, X_1=14.76, s_1=\sqrt{\Sigma(X_i-X_1)^2/n_1-1}=0.1346$ $n_2=5, X_2=14.58, s_2=\sqrt{\Sigma(X_i-X_2)^2/n_2-1}=0.0836$ Probability=1- α =99% $\therefore \alpha$ =0.001 (1) Population Mean

 $t_{1-\alpha/2, n1-1} = t_{0.995,4} = 4.60 = t_{1-\alpha/2, n2-1}$

 $ts_1/\sqrt{n}=4.60(0.1346)/\sqrt{5}=1.384;$

 $14.76\text{-}1.384 \leq \mu_1 \leq 14.76\text{+}1.384$

 $\therefore 13.376 \le \mu_1 \le 16.144$

ts₂/√n=4.60(0.0836)√5=0.860; 14.58-0.860 ≤ μ_2 ≤ 14.58+0.860 ∴13.720 ≤ μ_2 ≤ 15.440

(2) Population Std;
$$\sigma_1$$
, σ_2
 $\chi^2_{1-\alpha/2, n1-1} = \chi^2_{0.995,4} = 14.9 = \chi^2_{1-\alpha/2, n2-1}$
 $\chi^2_{\alpha/2, n1-1} = \chi^2_{0.005,4} = 0.207 = \chi^2_{\alpha/2, n2-1}$
 $\therefore \chi_{1-\alpha/2, n-1} = \sqrt{14.9} = 3.860, \chi_{\alpha/2, n-1} = \sqrt{0.207} = 0.455$

$$\sqrt{(n_1 - 1)s_1} \chi_{1 - \alpha/2, n - 1} = 2(0.1346)/3.860 = 0.0697$$

$$\sqrt{(n_1 - 1)s_1} \chi_{\alpha/2, n - 1} = 2(0.1346)/0.455 = 0.5916$$

$$\therefore 0.0697 \le \sigma_1 \le 0.5916$$

$$\sqrt{(n_2 - 1)s_2} \chi_{1 - \alpha/2, n - 1} = 2(0.0836)/3.860 = 0.0433$$

$$\sqrt{(n_2 - 1)s_2} \chi_{\alpha/2, n - 1} = 2(0.0836)/0.455 = 0.3674$$

$$\therefore 0.0433 \le \sigma_2 \le 0.3674$$

(3) F test for Similarity

$$F_{n1-1,n2-1,1-\alpha} = F_{4,4,0.99} = 16.0$$

 $s_1^2/s_2^2 = (0.1346/0.0836)^2 = 2.592 \le F_{4,4,0.99}$

\therefore Two samples are the Similar data

(from the same population)

HW3) Make every two sets of sample measurement for your dedicated application. The sample sizes are minimum 20 at two different time schedules. Estimate and discuss for the followings at 99% probability.

- 1) Population Mean
- 2) Population Std
- 3) Similarity Test

Appendix III

Percentile Values (t_p) for Student's t Distribution with ν Degrees of Freedom (shaded area = p)

ν	t.995	t.99	t.975	t.95	t.90	t.80	t.75	t.70	t.60	t.55
1	63.66	31.82	12.71	6.31	3.08	1.376	1.000	.727	.325	.158
2	9.92	6.96	4.30	2.92	1.89	1.061	.816	.617	.289	.142
3	5.84	4.54	3.18	2.35	1.64	.978	.765	.584	.277	.137
4	4.60	3.75	2.78	2.13	1.53	.941	.741	.569	.271	.134
5	4.03	3.36	2.57	2.02	1.48	.920	.727	.559	.267	.132
6	3.71	3.14	2.45	1.94	1.44	.906	.718	.553	.265	.131
7	3.50	3.00	2.36	1.90	1.42	.896	.711	.549	.263	.130
8	3.36	2.90	2.31	1.86	1.40	.889	.706	.546	.262	.130
9	3.25	2.82	2.26	1.83	1.38	.883	.703	.543	.261	.129
10	3.17	2.76	2.23	1.81	1.37	.879	.700	.542	.260	.129
11	3.11	2.72	2.20	1.80	1.36	.876	.697	.540	.260	.129
12	3.06	2.68	2.18	1.78	1.36	.873	.695	.539	.259	.128
13	3.01	2.65	2.16	1.77	1.35	.870	.694	.538	.259	.128
14	2.98	2.62	2.14	1.76	1.34	.868	.692	.537	.258	.128
15	2.95	2.60	2.13	1.75	1.34	.866	.691	.536	.258	.12
16	2.92	2.58	2.12	1.75	1.34	.865	.690	.535	.258	.12
17	2.90	2.57	2.11	1.74	1.33	.863	.689	.534	.257	.12
18	2.88	2.55	2.10	1.73	1.33	.862	.688	.534	.257	.12
19	2.86	2.54	2.09	1.73	1.33	.861	.688	.533	.257	.12
20	2.84	2.53	2.09	1.72	1.32	.860	.687	.533	.257	.12
21	2.83	2.52	2.08	1.72	1.32	.859	.686	.532	.257	.12
22	2.82	2.51	2.07	1.72	1.32	.858	.686	.532	.256	.12
23	2.81	2.50	2.07	1.71	1.32	.858	.685	.532	.256	.12
24	2.80	2.49	2.06	1.71	1.32	.857	.685	.531	.256	.12
25	2.79	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.12
26	2.78	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.12
27	2.77	2.47	2.05	1.70	1.31	.855	.684	.531	.256	.12
28	2.76	2.47	2.05	1.70	1.31	.855	.683	.530	.256	.12
29	2.76	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.12
30	2.75	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.12
40	2.70	2.42	2.02	1.68	1.30	.851	.681	.529	.255	.12
60	2.66	2.39	2.00	1.67	1.30	.848	.679	.527	.254	.12
120	2.62	2.36	1.98	1.66	1.29	.845	.677	.526	.254	.12
~	2.58	2.33	1.96	1 645	1 28	842	.674	.524	.253	.12

Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (5th edition), Table III, Oliver and Boyd Ltd., Edinburgh, by permission of the authors and publishers.

488

Appendix IV

Percentile Values (χ_p^2) for the Chi-Square Distribution with ν Degrees of Freedom (shaded area = p)

P	x ² .995	x ² .99	$\chi^{2}_{.975}$	$\chi^{2}_{.95}$	x ² .90	$\chi^{2}_{.75}$	$\chi^{2}_{.50}$	$\chi^{2}_{.25}$	x ² .10	$\chi^{2}_{.05}$	$\chi^{2}_{.025}$	$\chi^{2}_{.01}$	$\chi^{2}_{.005}$
i	7.88	6.63	5.02	3.84	2.71	1.32	.455	.102	.0158	.0039	.0010	.0002	.0000
2	10.6	9.21	7.38	5.99	4.61	2.77	1.39	.575	.211	.103	.0506	.0201	.0100
3	12.8	11.3	9.35	7.81	6.25	4.11	2.37	1.21	.584	.352	.216	.115	.072
4	14.9	13.3	11.1	9.49	7.78	5.39	3.36	1.92	1.06	.711	.484	.297	.207
5	16.7	15.1	12.8	11.1	9.24	6.63	4.35	2.67	1.61	1.15	.831	.554	.412
6	18.5	16.8	14.4	12.6	10.6	7.84	5.35	3.45	2.20	1.64	1.24	.872	.676
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	4.25	2.83	2.17	1.69	1.24	.989
8	22.0	20.1	17.5	15.5	13.4	10.2	7.34	5.07	3.49	2.73	2.18	1.65	1.34
9	23.6	21.7	19.0	16.9	14.7	11.4	8.34	5.90	4.17	3.33	2.70	2.09	1.73
10	25.2	23.2	20.5	18.3	16.0	12.5	9.34	6.74	4.87	3.94	3.25	2.56	2.16
11	26.8	24.7	21.9	19.7	17.3	13.7	10.3	7.58	5.58	4.57	3.82	3.05	2.60
12	28.3	26.2	23.3	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	3.57	3.07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.1	13.3	10.2	7.79	6.57	5.63	4.66	4.07
15	32.8	30.6	27.5	25.0	22.3	18.2	14.3	11.0	8.55	7.26	6.26	5.23	4.60
16	34.3	32.0	28.8	26.3	23.5	19.4	15.3	11.9	9.31	7.96	6.91	5.81	5.14
17	35.7	33.4	30.2	27.6	24.8	20.5	16.3	12.8	10.1	8.67	7.56	6.41	5.70
18	37.2	34.8	31.5	28.9	26.0	21.6	17.3	13.7	10.9	9.39	8.23	7.01	6.26
19	38.6	36.2	32.9	30.1	27.2	22.7	18.3	14.6	11.7	10.1	8.91	7.63	6.84
20	40.0	37.6	34.2	31.4	28.4	23.8	19.3	15.5	12.4	10.9	9.59	8.26	7.43
21	41.4	38.9	35.5	32.7	29.6	24.9	20.3	16.3	13.2	11.6	10.3	8.90	8.03
22	42.8	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12.3	11.0	9.54	8.64
23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.6	43.0	39.4	36.4	33.2	28.2	23.3	19.0	15.7	13.8	12.4	10.9	9.89
25	46.9	44.3	40.6	37.7	34.4	29.3	24.3	19.9	16.5	14.6	13.1	11.5	10.5
26	48.3	45.6	41.9	38.9	35.6	30.4	25.3	20.8	17.3	15.4	13.8	12.2	11.2
27	49.6	47.0	43.2	40.1	36.7	31.5	26.3	21.7	18.1	16.2	14.6	12.9	11.8
28	51.0	48.3	44.5	41.3	37.9	32.6	27.3	22.7	18.9	16.9	15.3	13.6	12.5
29	52.3	49.6	45.7	42.6	39.1	33.7	28.3	23.6	19.8	17.7	16.0	14.3	13.1
30	53.7	50.9	47.0	43.8	40.3	34.8	29.3	24.5	20.6	18.5	16.8	15.0	13.8
40	66.8	63.7	59.3	55.8	51.8	45.6	39.3	33.7	29.1	26.5	24.4	22.2	20.7
50	79.5	76.2	71.4	67.5	63.2	56.3	49.3	42.9	37.7	34.8	32.4	29.7	28.0
60	92.0	88.4	83.3	79.1	74.4	67.0	59.3	52.3	46.5	43.2	40.5	37.5	35.5
70	104.9	100.4	95.0	90.5	85.5	77 6	69.3	61.7	55.3	51.7	48.8	45.4	43.3
0	116.9	119.9	106.6	101.9	96.6	88 1	79.3	71.1	64.3	60.4	57.2	53.5	51.2
0	199.9	19/ 1	118 1	113 1	107.6	98.6	89.3	80.6	73.3	69.1	65.6	61.8	59.2
100	140.2	135.8	129.6	124.3	118.5	109.1	99.3	90.1	82.4	77.9	74.2	70.1	67.3

Source: Catherine M. Thompson, Table of percentage points of the χ^2 distribution, Biometrika, Vol. 32 (1941), by permission of the author and publisher.

489

Appendix V

95th Percentile Values for the *F* Distribution (ν₁ degrees of freedom in numerator) (ν₂ degrees of freedom in denominator)

N #:	1	-	1	1	-	-	-	1	1	1	-	-	-	-					_
v2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	80
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18.5	.19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5,72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

490

Appendix VI

99th Percentile Values for the F Distribution (ν_1 degrees of freedom in numerator) (ν_2 degrees of freedom in denominator)

v1 v2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	8
1	4052	5000	5403	5625	5764	5859	5928	5981	6023	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4	26.3	26.2	26.1
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.2	14.0	13.9	13.8	13.7	13.7	13.6	13.5
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	2.96	2.82	2.66	2.58	2.50	2.42	2.33	2,23	2.10
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.90	2.75	2.60	2.52	2.44	2.30	2.20	2.11	2.00
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.20	2.14	2.05
30	7.56	0.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.70	2.00	2.41	2.00	2.00	2.21	1.92	1.80
40	7.31	0.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.00	2.02	2.31	2.49	2.20	1.94	1.84	1.72	1.60
190	1.08	4.98	4.13	3.00	3.34	3.12	2.90	2.82	2.12	2.03	2.00	2.00	2.20	1.12	1.00	1.04	1.64	1.53	1.38
120	0.80	4.19	3.95	0.48	3.17	2.96	2.19	2.00	2.00	2.41	2.04	2.19	1.03	1.30	1.00	1.10	1.00	1.00	1.00
~	6.63	4.61	3.18	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.18	2.04	1.00	1.19	1.10	1.00	1.41	1.04	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 180, by permission.