Precision Metrology 12-Straightness Measurement

Straightness Error Measurement
Straightness error:
:Deviation from the ideal reference straight line
$:-0.02$ Straightness Tolerance (ISO)
Incremental angular measuring devices are very useful such as Precision Level, Autocollimator, Laser Interferometer with angular optics

L : Step length

Feature to measure
$Y_{i}=Y_{i-1}+L \cdot \sin \theta_{i} \quad i=1,2,3 \ldots$
$\fallingdotseq \mathrm{Y}_{\mathrm{i}-1}+\mathrm{L} \cdot \theta_{\mathrm{i}}$ for θ in [urad]
$=Y_{i-1}+4.8 \cdot L \cdot \theta_{i}$ for θ in $[\mathrm{sec}]$

Thus, with $Y_{0}=0$
$Y_{i}=\Sigma L \cdot \theta_{i}$ for $\theta[u r a d], Y_{i}=4.8 \cdot \Sigma L \cdot \theta_{i}$ for $\theta[\mathrm{sec}]$
where $i=1,2,3 \ldots N, N=$ number of steps; $L=0.1 \mathrm{~m}$
Straightness Error based on the End Points Fit

i	Xi	θ_{i}	$4.8 \mathrm{~L} \theta_{i}$	Y_{i}	δ_{i}
0	0	--	0	$\underline{0}$	0
1	0.1	3	1.44	1.44	-1.2
2	0.2	5	2.4	3.84	$\underline{-1.44}$
3	0.3	7	3.36	7.2	-0.72
4	0.4	8	3.84	11.04	0.48
5	0.5	10	4.8	15.84	2.64
6	0.6	9	4.32	20.16	4.32
7	0.7	6	2.88	23.04	$\underline{4.56}$
8	0.8	5	2.4	25.44	4.32
9	0.9	3	1.44	$\underline{26.88}$	3.12
10	1.0	-1	-0.48	26.4	0

For straightness error calculation, the ideal reference straight line is to be evaluated.

3 criteria for reference straight line

1. End points fit
:The reference line is determined by the two end points Given $\left(X_{i}, Y_{i}\right)$

End points fit

For measured $\left(X_{i}, Y_{i}\right)$ data;
Slope, $a=\left(Y_{n}-Y_{0}\right) / n L=(26.4-0) / 10(0.1)=26.4 u m / m$
Offset, $b=Y_{0}=0$
Thus the reference line, $Y=a X+b=26.4 X$
Straightness deviation, δ_{i}, for $\mathrm{i}=0,1,2 . . \mathrm{n}$
$\delta_{i}=Y_{i^{-}}\left(a X_{i}+b\right) / \sqrt{ } 1+a^{2} \fallingdotseq Y_{i^{-}}\left(a X_{i}+b\right)(\because a \ll 1)$

The straightness error is the difference between the maximum and minimum deviation.

Straightness error $=\max \delta_{i}-\min \delta_{i}$
$=4.56-(-1.44)=6.0[u m]$

2. Least squares fit

:The reference line is determined such that the sum of squares of deviations from the line is minimum.

Least Squares fit

For measured $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$ data,
a, b : unknowns to be determined
Straightness deviation $\delta_{i}=Y_{i}-a X_{i}-b$

$$
\mathrm{E}=\Sigma \delta_{i}^{2}=\Sigma\left(Y_{i}-a X_{i}-b\right)^{2} \text { be minimum }
$$

$$
\begin{aligned}
& \partial E / \partial a=2 \Sigma\left(Y_{i}-a X_{i}-b\right)\left(-X_{i}\right)=0 \\
& \therefore a \Sigma X_{i}^{2}+b \Sigma X_{i}=\Sigma Y_{i} X_{i} \\
& \partial E / \partial b=2 \Sigma\left(Y_{i}-a X_{i}-b\right)(-1)=0 \\
& \therefore a \Sigma X_{i}+b N=\Sigma Y_{i}
\end{aligned}
$$

Thus,

$$
\text { Slope }=a=\left(N \Sigma X_{i} Y_{i}-\Sigma X_{i} \Sigma Y_{i}\right) /\left(N \Sigma X_{i}^{2}-\left(\Sigma X_{i}\right)^{2}\right)
$$

$$
=[11(114.576)-(5.5)(161.28)] /\left[11(3.85)-5.5^{2}\right]
$$

$$
=373.296 / 12.1=30.8509
$$

$$
\text { Offset }=b=\left(\Sigma X_{i}^{2} \Sigma Y_{i}-\Sigma X_{i} Y_{i} \Sigma X_{i}\right) /\left(N \Sigma X_{i}^{2}-\left(\Sigma X_{i}\right)^{2}\right)
$$

$$
=[(3.85)(161.28)-(114.576)(5.5)] / 12.1
$$

$$
=-9.24 / 12.1=-0.7636
$$

$$
\delta_{i}=Y_{i}-a X_{i}-b=Y_{i}-30.8509 X_{i}+0.7636
$$

Straightness error $=\max \delta_{i}-\min \delta_{i}$
$=2.4131-(-3.6873)=6.100$ (um)

Straightness Error based on the Least Squares Fit

i	X_{i}	Y_{i}	$\mathrm{X}_{\mathrm{i}}{ }^{2}$	$\mathrm{Y}_{\mathrm{i}}{ }^{2}$	$\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$	δ_{i}
0	0	$\underline{0}$	0	0	0	0.7636

$\begin{array}{lllllll}1 & 0.1 & 1.44 & 0.01 & 2.0736 & 0.144 & -0.8815\end{array}$
$\begin{array}{lllllll}2 & 0.2 & 3.84 & 0.04 & 14.7456 & 0.768 & -1.5666\end{array}$
$\begin{array}{lllllll}3 & 0.3 & 7.2 & 0.09 & 51.84 & 2.16 & -1.2917\end{array}$
$\begin{array}{lllllll}4 & 0.4 & 11.04 & 0.16 & 121.8816 & 4.416 & -0.5368\end{array}$
$\begin{array}{lllllll}5 & 0.5 & 15.84 & 0.25 & 250.9056 & 7.92 & 1.1782\end{array}$
$\begin{array}{lllllll}6 & 0.6 & 20.16 & 0.36 & 406.4256 & 12.096 & \underline{2.4131}\end{array}$
$\begin{array}{lllllll}7 & 0.7 & 23.04 & 0.49 & 530.8416 & 16.128 & 2.2080\end{array}$
$\begin{array}{lllllll}8 & 0.8 & 25.44 & 0.64 & 647.1936 & 20.352 & 1.5229\end{array}$
$\begin{array}{llllllll}9 & 0.9 & \underline{26.88} & 0.81 & 722.5344 & 24.192 & -0.1222\end{array}$
$\begin{array}{lllllll}10 & 1.0 & 26.4 & 1.0 & 696.96 & 26.4 & \underline{-3.6873}\end{array}$
$\begin{array}{llllll}\sum & 5.5 & 161.28 & 3.85 & 3445.4016 & 114.576\end{array}$

3. Minimum Zone Fit or Minimum Separation Fit

:The parallel straight lines containing the measured data to give minimum distance, t

$$
\mathrm{Y}=\mathrm{aX}+\mathrm{b}_{\mathrm{H}}
$$

Two parallel lines containing the measured data, and the minimum distance $t=b_{H}-b_{L}$ (that is, minimum separation, or minimum zone).

By the 1-2 criterion of ETT, or intuition,
$a=$ slope joining the $\left(X_{2}, Y_{2}\right)$ to the end $\operatorname{point}\left(X_{10}, Y_{10}\right)$ $=(26.4-3.84) / 8(0.1)=28.2[\mathrm{um} / \mathrm{m}]$

Low offset occurs when passing through ($\mathrm{X}_{2}, \mathrm{Y}_{2}$)
Low offset, $b_{L}=Y_{2}-a X_{2}=3.84-28.2(0.2)=-1.8$ [um]
High offset occurs when passing through (X_{7}, Y_{7})
High offset, $\mathrm{b}_{\mathrm{H}}=\mathrm{Y}_{7}-\mathrm{aX}_{7}=23.04-28.2(0.7)=3.3[\mathrm{um}]$

Straightness deviation, $\delta_{i}=Y_{i}-\left(a X_{i}+b_{L}\right)$
Straightness Error based on the Minimum Zone Fit
$\begin{array}{lllll}\text { i } & X_{i} & Y_{i} & a X_{i}+b_{L} & \delta_{i}\end{array}$
$\begin{array}{lllll}0 & 0 & \underline{0} & 0 & 1.8\end{array}$
$\begin{array}{lllll}1 & 0.1 & 1.44 & 1.02 & 0.42\end{array}$
$\begin{array}{lllll}2 & 0.2 & 3.84 & 3.84 & \underline{0} \\ 3 & 0.3 & 7.2 & 0.09 & 0.54\end{array}$
$\begin{array}{lllll}4 & 0.4 & 11.04 & 9.48 & 1.56\end{array}$
$\begin{array}{lllll}5 & 0.5 & 15.84 & 12.3 & 3.54\end{array}$
$\begin{array}{lllll}6 & 0.6 & 20.16 & 15.12 & 5.04\end{array}$
$\begin{array}{lllll}7 & 0.7 & 23.04 & 17.94 & \underline{5.1}\end{array}$
$\begin{array}{lllll}8 & 0.8 & 25.44 & 20.76 & 4.68\end{array}$
$\begin{array}{lllll}9 & 0.9 & 26.88 & 23.58 & 3.3\end{array}$
$\begin{array}{lllll}10 & 1.0 & 26.4 & 26.4 & \underline{0}\end{array}$
The minimum zone straightness error=5.1[um]
(Discuss 6.0um vs 6.1um vs 5.1um)

Minimum Zone Evaluation
(1)'Enclose and Tilt' technique: Graphical and geometrical solution for the minimum zone, using the intuitive '2-1' or '1-2' criterion for the minimum separation, developed by Pahk,H.

The application of a micro computer to the on-line calibration of the flatness of engineering surfaces, BURDEKIN,M.\& PAHK,H., Proceedings of Institution of Mechanical Engineers,1989, Vol. 203 B,127-137
(2)Linear Programming method: Simplex search based optimization algorithm

General LP formulation by simplex search

MIN (or MAX) CX
Subject to AX $\leq(\geq)$ B
Where \mathbf{C} is constant vector, \mathbf{X} is unknown vector

To find the two parallel straight lines that give the minimum distance ->

Minimize $b_{H}-b_{L} \quad$; Object Function
Subject to
$a X_{i}+b_{H} \leq Y_{i}(i=0,1,2 \ldots N) \quad ;$ Constraints
$a X_{i}+b_{L} \geq Y_{i}(i=0,1,2, \ldots N) \quad ;$ Constraints

Let $\mathbf{C}=[0,1,-1], \mathbf{X}=\left[a, b_{H}, b_{L}\right]^{\top}$
Minimize $\mathbf{C X}=[0,1,-1]\left[a, b_{H}, b_{L}\right]^{\top}=b_{H}-b_{L}$
such that $\mathbf{A X} \geq(\leq) \mathbf{B}$

No. of Variables $=3$
No. of Constraints $=2(N+1)$
No. of ' \leq ' Constraints $=\mathrm{N}+1$
No. of ' \geq ' Constraints $=N+1$
No. of ' $=$ ' Constraints $=0$

Solution is ;
$a=28.2, b_{H}=3.3, b_{L}=-1.8$
and the minimum distance, $t=b_{H}-b_{L}=5.1$

HW8) Evaluate the straightness error for the data given in the lecture in terms of the end points fit, the least squares fit, and the minimum zone fit.

