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457.643 Structural Random Vibrations 
In-Class Material: Class 01 

 
0.  Introduction 
 

 
The response and evolution (𝒳𝒳(𝑥𝑥, 𝑡𝑡)) of mechanical, biological, and other systems subjected 
to an input 𝒴𝒴(𝑥𝑥, 𝑡𝑡) can be characterized by equations of the form 
 
𝒟𝒟[𝒳𝒳(𝑥𝑥, 𝑡𝑡)] = 𝒴𝒴(𝑥𝑥, 𝑡𝑡), 𝑡𝑡 ≥ 0, 𝑥𝑥 ∈ 𝐷𝐷 ⊂ ℛ𝑑𝑑 
 
where 

𝒟𝒟: algebraic, integral, or differential operator with random or deterministic coefficients 
𝒴𝒴(𝑥𝑥, 𝑡𝑡): random or deterministic input function 
𝒳𝒳(𝑥𝑥, 𝑡𝑡): random or deterministic output (response) function  

 
There are four classes of problems: 
 

1. Deterministic systems and input (457.516 Dynamics of Structures) 
2. Deterministic systems and stochastic input (457.643 Structural Random Vibrations) 
3. Stochastic systems and deterministic input (457.646 Topics in Structural Reliability) 
4. Stochastic systems and input 

 
For example, consider an SDOF linear oscillator subject to earthquake ground motion: 
 
E.O.M.: 
 
Some results of “random vibration analysis”: 
 

• Mean and variance of 𝑋𝑋(t): 
• Instantaneous failure probability: 
• First-passage failure probability: 

 
See “Syllabus and Course Outline” handout for course objectives and contents. 
 

Grigoriu, M. (2004) Research Perspective in Stochastic Mechanics. Engineering Design Reliability Handbook, 
edited by E. Nikolaidis, D.M. Ghiocel, and S. Singhal, CRC Press, Boca Raton, FL., Chap. 6 
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I. Basic Elements 
 
   Review on basic theories of probability 

 
Self-review of “II. Basic Theory of Probability and Statistics” part of the course “457.646 Topics 
in Structural Reliability” is required. 
 
Additional basic topics to review for this course: 
  
   Characteristic function (L&S Chapter 3) 
 
Alternative (complete/incomplete) description of random variable 𝑋𝑋 
 
𝑀𝑀𝑋𝑋(𝜃𝜃) ≡ E𝑋𝑋[exp(𝑖𝑖𝜃𝜃𝑋𝑋)] =  ∫                                       𝑑𝑑𝑥𝑥            _____________ transform of ______ 
 
Therefore, 
 
𝑓𝑓𝑋𝑋(𝑥𝑥) =           

 ∫                                       𝑑𝑑𝜃𝜃    ________   _________ transform of ______ 

 
※ See Appendix B of L&S for a brief review of Fourier transform (if necessary) 
 
Note: 

1) 𝑀𝑀𝑋𝑋(𝜃𝜃) always exists because the condition for the existence of a Fourier transform is 
∫ |𝑓𝑓𝑋𝑋(𝑥𝑥)|𝑑𝑑𝑥𝑥∞
−∞ < ∞ (“absolutely integrable”), and we know that ∫ |𝑓𝑓𝑋𝑋(𝑥𝑥)|𝑑𝑑𝑥𝑥∞

−∞ =      . 

2) Why use 𝑀𝑀𝑋𝑋(𝜃𝜃)? 
 Useful for analytical development or proof (will be shown later in the course) 
 Especially useful for generating ___________ 

 
  M________ generating property of characteristic function 
 
Remember  𝑀𝑀𝑋𝑋(𝜃𝜃) = E𝑋𝑋[exp(𝑖𝑖𝜃𝜃𝑋𝑋)] = ∫ exp(𝑖𝑖𝜃𝜃𝑋𝑋)𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥∞

−∞  

 
𝑑𝑑𝑗𝑗

𝑑𝑑𝜃𝜃𝑗𝑗
𝑀𝑀𝑋𝑋(𝜃𝜃) = 𝑖𝑖𝑗𝑗E𝑋𝑋[𝑋𝑋𝑗𝑗 exp(𝑖𝑖𝜃𝜃𝑋𝑋)] 

𝑑𝑑𝑗𝑗

𝑑𝑑𝜃𝜃𝑗𝑗
𝑀𝑀𝑋𝑋(𝜃𝜃)�

𝜃𝜃=0
= 𝑖𝑖𝑗𝑗E𝑋𝑋[𝑋𝑋𝑗𝑗] 

 
Therefore, 
1
𝑖𝑖𝑗𝑗
𝑑𝑑𝑗𝑗

𝑑𝑑𝜃𝜃𝑗𝑗
𝑀𝑀𝑋𝑋(𝜃𝜃)�

𝜃𝜃=0
= E𝑋𝑋�𝑋𝑋𝑗𝑗� = �                       

𝑓𝑓𝑋𝑋(𝑥𝑥) 

𝑀𝑀𝑋𝑋(𝜃𝜃) 

E[𝑋𝑋𝑗𝑗] 
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※ McLauren series of 𝑀𝑀𝑋𝑋(𝜃𝜃)  
 

𝑀𝑀𝑋𝑋(𝜃𝜃) = �
𝑑𝑑𝑘𝑘𝑀𝑀𝑋𝑋(𝜃𝜃)
𝑑𝑑𝜃𝜃𝑘𝑘

�
𝜃𝜃=0

∞

𝑘𝑘=0

𝜃𝜃𝑘𝑘

𝑘𝑘!
 

= �𝑖𝑖𝑘𝑘E𝑋𝑋[𝑋𝑋𝑘𝑘]
∞

𝑘𝑘=0

𝜃𝜃𝑘𝑘

𝑘𝑘!
  

= �
(𝑖𝑖𝜃𝜃)𝑘𝑘

𝑘𝑘!
E𝑋𝑋[𝑋𝑋𝑘𝑘]

∞

𝑘𝑘=0

 

 
 Could approximate the characteristic function using low-order moments? 

 
※ “Moment generating function” E𝑋𝑋[exp(−𝑟𝑟𝑋𝑋)] = 
 

 L_______ transform 
 Moment generating equation more simple (because real-valued) 
 May not exist mathematically for some probability density function (p. 86 L&S) 

 

 
Example 
 
1) Derive the characteristic function of  𝑋𝑋~𝑁𝑁(µ,σ2) 

2) Generate the first and second moment of 𝑋𝑋 using the characteristic function to confirm. 
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   Log-characteristic function 
 
𝐿𝐿X(𝜃𝜃) ≡ ln𝑀𝑀𝑋𝑋(𝜃𝜃) 
 
nth order cumulant function  κ𝑛𝑛(𝑋𝑋) ≡ 1

𝑖𝑖𝑛𝑛
𝑑𝑑𝑛𝑛𝐿𝐿𝑋𝑋(𝜃𝜃)
𝑑𝑑𝜃𝜃𝑛𝑛

�
𝜃𝜃=0

 
 

• κ1(𝑋𝑋) = 1
𝑖𝑖
𝑑𝑑𝐿𝐿𝑋𝑋(𝜃𝜃)
𝑑𝑑𝜃𝜃

�
𝜃𝜃=0

= 
• κ2(𝑋𝑋) = E𝑋𝑋[(𝑋𝑋 − µ)2] = 
• κ3(𝑋𝑋) = E𝑋𝑋[(𝑋𝑋 − µ)3] = 
• κ4(𝑋𝑋) = E𝑋𝑋[(𝑋𝑋 − µ)4] − 3σ4 = 

 
For Gaussian, κ3(𝑋𝑋) =       and κ4(𝑋𝑋) =        . For 𝑛𝑛 ≥ 3, κ𝑛𝑛(𝑋𝑋) =       because 
 

 Cumulants are useful since they are related to “c_______” moments 
 Another merit: κ𝑛𝑛(𝑋𝑋) ≅ 0 for higher order, so easier to approximate PDF (through log-

characteristic function) 
 

𝐿𝐿𝑋𝑋(θ) = �
(𝑖𝑖𝜃𝜃)𝑛𝑛

𝑛𝑛!
𝜅𝜅𝑛𝑛(𝑋𝑋)

∞

𝑛𝑛=0

 

 
Note: κ0(𝑋𝑋) = 0 (check by yourself) 

 
   Importance of moment analysis (L&S 3.8) 
 
“In many random variable problems (and in much of the analysis of stochastic processes), one 
performs detailed analysis of only the first and second moments of the various quantities, with 
occasional consideration of skewness and/or kurtosis. One reason for this is surely the fact 
that analysis of mean, variance, or mean squared value is generally much easier than analysis 
of probability distributions. Furthermore, in many problems, one has some idea of the shape of 
the probability density functions, so knowledge of moment information may allow evaluation of 
the parameters in that shape, thereby giving an estimate of the complete probability 
distribution. If the shape has only two parameters to be chosen, in particular, then knowledge 
of mean and variance will generally suffice for this procedure. In addition to these pragmatic 
reasons, though, the results in Eqs. 3.31, 3.32, 3.35, and 3.36 (i.e. McLauren series expansion 

of characteristic function and log-characteristic functions) give a 
theoretical justification for focusing attention on the low-order 
moments. Specifically, mean, variance, skewness, kurtosis, and 
so forth, in that order, are the first items in an infinite sequence of 
information that would give a complete description of the problem. 
In most situations, it is impossible to achieve the complete 
description, but it is certainly logical for us to focus our attention 
on the first items in the sequence.” 
… 
 
For example, if one assumes a random quantity follows a Pearson 
distribution, the type is determined by the square of the skewness 
(β1 in the left figure) and the kurtosis (β2). The first four moments 
completely describe the parameters of the distribution. 
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457.643 Structural Random Vibrations 
In-Class Material: Class 02 

 
I. Basic Elements (Contd.) 
 
  Joint characteristic function 
 
Alternative to ______ PDF 
 
𝑀𝑀𝑿𝑿(𝜽𝜽) ≡ E𝑿𝑿{exp[𝑖𝑖(𝜃𝜃1𝑋𝑋1 + 𝜃𝜃2𝑋𝑋2 + ⋯+ 𝜃𝜃𝑛𝑛𝑋𝑋𝑛𝑛)]} =  ∫⋯∫ exp[𝑖𝑖(𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛)]𝑓𝑓𝑿𝑿(𝒙𝒙)𝑑𝑑𝒙𝒙             
 
 m____variate F______ transform of _____ PDF 
 
Therefore, 
 

𝑓𝑓𝑿𝑿(𝒙𝒙) = 1
(            )𝑛𝑛 ∫⋯∫ exp[−𝑖𝑖(𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛)]                 𝑑𝑑𝜽𝜽   

 
One can show 
 

1
𝑖𝑖𝑚𝑚1+⋯+𝑚𝑚𝑛𝑛

𝜕𝜕𝑚𝑚1+⋯+𝑚𝑚𝑛𝑛

𝜕𝜕𝜃𝜃1
𝑚𝑚1 ⋯𝜃𝜃𝑛𝑛

𝑚𝑚𝑛𝑛�
𝜽𝜽=𝟎𝟎

= E�𝑋𝑋1
𝑚𝑚1𝑋𝑋2

𝑚𝑚2 ⋯𝑋𝑋𝑛𝑛
𝑚𝑚𝑛𝑛� 

 
Some observations: 

1) Consistency rule: 𝑀𝑀𝑿𝑿(𝜃𝜃1,⋯ ,𝜃𝜃𝑘𝑘 , 0,⋯ ,0) = 
2) For statistically independent random variables, 𝑀𝑀𝑿𝑿(𝜽𝜽) = 

 
  Joint log characteristic function 
 
Remember  𝑀𝑀𝑋𝑋(𝜃𝜃) = E𝑋𝑋[exp(𝑖𝑖𝜃𝜃𝑋𝑋)] = ∫ exp(𝑖𝑖𝜃𝜃𝑋𝑋)𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥∞

−∞  

 
𝐿𝐿𝑿𝑿(𝜽𝜽) = 

𝜅𝜅(𝑿𝑿) =
1
𝑖𝑖𝑛𝑛
𝜕𝜕𝑛𝑛𝐿𝐿𝑿𝑿(𝜽𝜽)
𝜕𝜕𝜃𝜃1⋯𝜃𝜃𝑛𝑛

�
𝜽𝜽=𝟎𝟎

 

 
• 𝜅𝜅(𝑋𝑋𝑖𝑖) = 
• κ�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 
• κ�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘� = 
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  Multivariate normal (Gaussian) distribution 
 
Joint PDF: 

𝑓𝑓𝑿𝑿(𝒙𝒙) =
1

(2𝜋𝜋)𝑛𝑛/2�|det𝚺𝚺|
exp �−

1
2

(𝒙𝒙 −𝑴𝑴)T𝚺𝚺−1(𝒙𝒙 −𝑴𝑴)� 

 
 completely determined by _____ and ______ order moments 
 denoted by 𝑿𝑿~𝑁𝑁(𝑴𝑴,𝜮𝜮) 

  
e.g. 𝑛𝑛 = 1, 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2) 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
1

√2𝜋𝜋𝜎𝜎
exp �−

1
2
�
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
2
� 

 
Can show 

M𝐗𝐗(𝜽𝜽) = exp �𝑖𝑖𝑴𝑴T𝜽𝜽 −
1
2
𝜽𝜽T𝚺𝚺𝜽𝜽� 

LX(𝜽𝜽) = 
 

 _________ function of 𝜽𝜽 
 Higher order (𝑛𝑛 ≥   ) cumulants are zero 

Example: κ(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗) for bivariate normal random variables 
 

 

Example: PDF or characteristic function of 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛  
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II. Introduction to Random Process 
 
II-1. Random Process 
 
  Definitions 
 
Random (stochastic) process {𝑋𝑋(𝑡𝑡)} or 𝑋𝑋(𝑡𝑡) 
 
e.g. earthquake ground motion 

 
 
 
 
 

Definition 1: Random process is an 

“e_______” (collection) of possible 

 t____ h______ {𝑥𝑥1(𝑡𝑡),𝑥𝑥2(𝑡𝑡), … } 

 
 
 
 
 
 
 
 
 

Definition 2: “Continuously indexed” r_______ v________, a family of random variables 
{𝑋𝑋(0), …𝑋𝑋(𝑡𝑡𝑘𝑘), …𝑋𝑋(𝑡𝑡𝑚𝑚), … } 
 
Note: the concept of random process can be generalized  
 

1) Random field 𝑋𝑋(𝑡𝑡,𝑢𝑢, 𝑣𝑣) e.g. wind pressure at location (𝑢𝑢, 𝑣𝑣) of the roof at time 𝑡𝑡 
2) Vector random process:  

𝐗𝐗(𝑡𝑡) = �

𝑋𝑋1(𝑡𝑡)
𝑋𝑋2(𝑡𝑡)
⋮

𝑋𝑋𝑛𝑛(𝑡𝑡)

�   e.g. 𝐗𝐗g(𝑡𝑡) = �
𝑥𝑥𝑔𝑔(𝑡𝑡)
�̇�𝑥𝑔𝑔(𝑡𝑡)
�̈�𝑥𝑔𝑔(𝑡𝑡)

� 

3) Vector random field:  

𝐗𝐗(𝑡𝑡,𝑢𝑢, 𝑣𝑣) = �

𝑋𝑋1(𝑡𝑡, 𝑢𝑢, 𝑣𝑣)
𝑋𝑋2(𝑡𝑡,𝑢𝑢, 𝑣𝑣)

⋮
𝑋𝑋𝑛𝑛(𝑡𝑡,𝑢𝑢, 𝑣𝑣)

� 
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  “Average” of random process 
 
(a) “Ensemble” average: average over the ensemble 
 

E[𝑋𝑋(𝑡𝑡)] = lim
𝑛𝑛→∞

       +     + ⋯+       
𝑛𝑛

= �                       𝑑𝑑𝑥𝑥
∞

−∞
 

 
(b) “Temporal” average (for a specific time history) 
 

〈𝑋𝑋(𝑡𝑡)〉 =
       

  
� 𝑥𝑥(𝑡𝑡)𝑑𝑑𝑡𝑡

   

   
 

 Temporal average is a r_____ v______  
 
  Specification of a random process 
 
(a) By probabilistic distribution function 

 𝑓𝑓𝑋𝑋(𝑡𝑡)(𝑥𝑥, 𝑡𝑡): 1st order “m_________” PDF 

 𝑓𝑓𝑋𝑋(𝑡𝑡1)𝑋𝑋(𝑡𝑡2)(𝑥𝑥1, 𝑡𝑡1;𝑥𝑥2, 𝑡𝑡2): 2nd order joint PDF 

 ⋮ 
 𝑓𝑓𝑋𝑋(𝑡𝑡1)⋯𝑋𝑋(𝑡𝑡𝑛𝑛)(𝑥𝑥1, 𝑡𝑡1;⋯ ;𝑥𝑥𝑛𝑛, 𝑡𝑡𝑛𝑛): nth order joint PDF 

Theoretically, one needs the ____th order joint PDF for complete description of a r.p. 
 
(b) By characteristic function 

 𝑀𝑀𝑋𝑋(𝑡𝑡)(𝜃𝜃, 𝑡𝑡): 1st order characteristic function 

 ⋮ 
 𝑀𝑀𝑋𝑋(𝑡𝑡1)⋯𝑋𝑋(𝑡𝑡𝑛𝑛)(𝜃𝜃1, 𝑡𝑡1;⋯ ;𝜃𝜃𝑛𝑛, 𝑡𝑡𝑛𝑛): nth order joint characteristic function 

 
(c) By moment functions (i.e. partial descriptors) 
 most common (because of lack of i________) 
 E[𝑋𝑋(t)] = 𝜇𝜇𝑋𝑋(𝑡𝑡) or 𝜇𝜇(𝑡𝑡): _______ function 
 E[𝑋𝑋(𝑡𝑡1)𝑋𝑋(𝑡𝑡2)] = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) or 𝜙𝜙(𝑡𝑡1, 𝑡𝑡2): auto ___________ function 
 E{[𝑋𝑋(𝑡𝑡1) − 𝜇𝜇(𝑡𝑡1)][𝑋𝑋(𝑡𝑡2) − 𝜇𝜇(𝑡𝑡2)]}: auto _____________ function 

 
(d) By a function of random variables 

 𝑋𝑋(𝑡𝑡) = 𝐴𝐴𝑡𝑡 + 𝐵𝐵 
 𝑋𝑋(𝑡𝑡) = ∑ 𝐴𝐴𝑖𝑖cos (𝜔𝜔𝑖𝑖𝑡𝑡 + Θ𝑖𝑖)𝑛𝑛

𝑖𝑖=1  
 
(e) Others: log-characteristic function, cumulants, ARMA, etc. 
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457.643 Structural Random Vibrations 
In-Class Material: Class 03 

 
  Central limit theorem (I. Basic Elements) 
 
Consider 𝑍𝑍 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 where 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 are statistically independent, identically 
distributed (SIID) random variables. Try 

𝑍𝑍′ =
1
√𝑛𝑛

��
𝑋𝑋𝑖𝑖 − 𝜇𝜇
𝜎𝜎

�
𝑛𝑛

𝑖𝑖=1

 

where 𝜇𝜇 and 𝜎𝜎 respectively denote the common mean and standard deviation of 𝑋𝑋𝑖𝑖 ’s. 
 
Let 𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖−𝜇𝜇

𝜎𝜎
 Then, Z′ = 1

√𝑛𝑛
∑ 𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=0  

 
The characteristic function of 𝑍𝑍′ is then derived as 

MZ
′ (𝜃𝜃) = E[exp(𝑖𝑖𝜃𝜃𝑍𝑍′)] = E�exp �

i𝜃𝜃
√𝑛𝑛

�𝑌𝑌𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�� = E �� exp �
i𝜃𝜃𝑌𝑌𝑗𝑗
√𝑛𝑛

�
𝑛𝑛

𝑗𝑗=1

� 

= �E �exp �
i𝜃𝜃𝑌𝑌𝑗𝑗
√𝑛𝑛

��
𝑛𝑛

𝑗𝑗=1

= �𝑀𝑀𝑌𝑌𝑗𝑗 �
𝜃𝜃
√𝑛𝑛

�
𝑛𝑛

𝑗𝑗=1

= �𝑀𝑀𝑌𝑌 �
𝜃𝜃
√𝑛𝑛

��
𝑛𝑛

 

 
 
Let us consider the characteristic function of 𝑌𝑌. Note that its mean is zero and standard 
deviation is one. From the moment generating property of the characteristic function, 
 
𝑑𝑑𝑀𝑀𝑌𝑌(𝜃𝜃)
𝑑𝑑𝜃𝜃

�
𝜃𝜃=0

= iE[𝑌𝑌] = 0 

𝑑𝑑2𝑀𝑀𝑌𝑌(𝜃𝜃)
𝑑𝑑𝜃𝜃2

�
𝜃𝜃=0

= i2E[𝑌𝑌2] = −(𝜎𝜎𝑌𝑌2 + 𝜇𝜇𝑌𝑌2) = −1 

 
Therefore, the characteristic function 𝑀𝑀𝑌𝑌(𝜃𝜃) can be constructed by a Taylor series: 
 

𝑀𝑀𝑌𝑌(𝜃𝜃) = 1 −
𝜃𝜃2

2
+ 𝑜𝑜(𝜃𝜃2) 

𝑀𝑀𝑌𝑌 �
𝜃𝜃
√𝑛𝑛

� = 1 −
𝜃𝜃2

2𝑛𝑛
+ 𝑜𝑜 �

𝜃𝜃2

𝑛𝑛 �
 

𝑀𝑀𝑍𝑍′(𝜃𝜃) = �1 −
𝜃𝜃2

2𝑛𝑛
+ 𝑜𝑜 �

𝜃𝜃2

𝑛𝑛 �
�
𝑛𝑛

 

From lim
n→∞

�1 + 𝑥𝑥
𝑛𝑛
�
𝑛𝑛

= 𝑒𝑒𝑥𝑥 

lim
n→∞

𝑀𝑀𝑍𝑍′(𝜃𝜃) = exp �−
𝜃𝜃2

2 �
 

 
The end result is the characteristic function of the standard normal distribution. Thus, we 
hereby prove that 𝑍𝑍′ asymptotically follows the standard normal distribution as 𝑛𝑛 → ∞. Since 𝑍𝑍 
is a linear function of 𝑍𝑍′, 𝑍𝑍 also asymptotically follows a normal distribution. 

statistically independent  Identically distributed 
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II-1. Random Process 
 
  First & second order moment functions 
 
E[𝑋𝑋(t)] = 𝜇𝜇𝑋𝑋(𝑡𝑡) or 𝜇𝜇(t): Mean function 

E[𝑋𝑋(𝑡𝑡1)𝑋𝑋(𝑡𝑡2)] = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) or 𝜙𝜙(𝑡𝑡1, 𝑡𝑡2): Auto-correlation function 

⋮ 
E{[𝑋𝑋(𝑡𝑡1)− 𝜇𝜇(𝑡𝑡1)][𝑋𝑋(𝑡𝑡2)− 𝜇𝜇(𝑡𝑡2)]} = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) − 𝜇𝜇(𝑡𝑡1)𝜇𝜇(𝑡𝑡2) 
= κXX(𝑡𝑡1, 𝑡𝑡2) : Auto-covariance function 
 
𝜎𝜎𝑋𝑋(𝑡𝑡) = √                    : Standard deviation function 
 
ρ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) =        

                  
 : Auto-correlation-coefficient function 

 

 
Example: 77 force time histories during “digging” tasks and their moment functions 

 
Note: 
 
If 𝜇𝜇𝑋𝑋(𝑡𝑡) = 0 (zero-mean process),  
 
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)                       𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) 
 
One can transform a random process to a zero-mean process by 
 
𝑌𝑌(𝑡𝑡) = 𝑋𝑋(𝑡𝑡) − 
 
Why? 
 
  

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15

20
Dig Zone

Time (secs)

Fo
rc

e
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 For a complex-valued random process, 
 
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = E[𝑋𝑋(𝑡𝑡1)𝑋𝑋∗(𝑡𝑡2)] 
 
κXX(𝑡𝑡1, 𝑡𝑡2) = E[(𝑋𝑋(𝑡𝑡1) − 𝜇𝜇(𝑡𝑡1))(𝑋𝑋∗(𝑡𝑡2) − 𝜇𝜇∗(𝑡𝑡2)] 
 
Note that 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑡𝑡) and 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑡𝑡) are always ______-valued. 
 
 
 More than one random process involved 
 
𝜙𝜙𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) = E[𝑋𝑋(𝑡𝑡1)𝑌𝑌∗(𝑡𝑡2)] :  ______ correlation function 
 
𝜅𝜅𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) = E[�𝑋𝑋(𝑡𝑡1) − 𝜇𝜇(𝑡𝑡1)��𝑋𝑋∗(𝑡𝑡2) − 𝜇𝜇∗(𝑡𝑡2)�] : ______ covariance function 
 
𝜌𝜌𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) =       

                                      
  : _______ correlation coefficient function 

 
 
 Importance of 1st and 2nd order moment functions 
 

1) Most of the time, 1st and 2nd order moment functions are all one can get from data 

2) For Gaussian, 1st and 2nd order moment functions are all you need for a complete 

description. 

3) Using Chebyshev bounds, one can get upper bound estimate on the probability 

using moments 

P(|𝑍𝑍| > 𝑏𝑏) ≤
E[|𝑍𝑍|𝑐𝑐]

bc
 

e.g. 𝑐𝑐 = 2, 𝑍𝑍 = 𝑋𝑋 − 𝜇𝜇𝑋𝑋 

P(|𝑋𝑋 − 𝜇𝜇𝑋𝑋| > 𝑏𝑏) ≤
𝐸𝐸[|𝑋𝑋 − 𝜇𝜇𝑋𝑋|2]

𝑏𝑏2
=

        
        

 

 
  Five important properties of 𝜙𝜙𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) and 𝜅𝜅𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) 
 

1) “Hermitian” (“Symmetric” for a real random process) 
 
𝜙𝜙𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) = 
 
𝜅𝜅𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2) = 
 
 

2) Boundedness 
 
Schwarz inequality |E[𝑋𝑋𝑌𝑌]| ≤ �E[𝑋𝑋2]E[𝑌𝑌2] 
 
Thus, |𝜙𝜙𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2)| ≤ �𝜙𝜙𝑋𝑋𝑋𝑋(   ,   )𝜙𝜙𝑌𝑌𝑌𝑌(   ,    ) 
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Also, |𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)| ≤ �𝜙𝜙𝑋𝑋𝑋𝑋(   ,   )𝜙𝜙𝑋𝑋𝑋𝑋(   ,    ) 
 
Similarly, |𝜅𝜅𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2)| ≤ �𝜅𝜅𝑋𝑋𝑋𝑋(   ,   )𝜅𝜅𝑌𝑌𝑌𝑌(   ,    ) = �σ𝑋𝑋2(    )𝜎𝜎𝑌𝑌2(    ) 
 
Note: 
 
If E[𝑋𝑋2(𝑡𝑡)] is bounded (< ∞) for ∀𝑡𝑡, 
 
|       𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠)| < ∞ 
 
If σ𝑋𝑋2(𝑡𝑡) is bounded (< ∞) for ∀𝑡𝑡, 
 
|      𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠)| < ∞ 
 
 
𝑋𝑋(𝑡𝑡) is a “_______ ________” random process 
 
if  _________ is always finite 
 
(Check L&S p.121. Later we will confirm that this means PSD exists) 
 

3) Non-negative Definiteness 
 
For an arbitrary function ℎ(𝑡𝑡), 
 

��𝜙𝜙𝑋𝑋𝑋𝑋�𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗�ℎ(𝑡𝑡𝑖𝑖)ℎ∗�𝑡𝑡𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

n

i=1

≥        

 
Proof: 
 
(LHS) = {ℎ(𝑡𝑡1) ⋯ℎ(𝑡𝑡𝑛𝑛)}�𝜙𝜙𝑋𝑋𝑋𝑋�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗��𝑛𝑛×𝑛𝑛

{ℎ∗(𝑡𝑡1) ⋯ℎ∗(𝑡𝑡𝑛𝑛)}T 
= 𝐡𝐡TE[𝑿𝑿𝑿𝑿T]𝐡𝐡∗ 
= E[𝐡𝐡T𝑿𝑿𝑿𝑿T𝐡𝐡∗] 
= E[𝑌𝑌𝑌𝑌∗] 
= E[           ]        0 

 
Why Important? 
 
Fourier transform of non-negative definite function is ____________ 
(Lin 1967, p.42 – Bochner’s theorem)  

 
Note:  
𝜙𝜙𝑋𝑋𝑌𝑌(𝑡𝑡1, 𝑡𝑡2):  NOT non-negative definite 
 
∵ 𝐸𝐸[XY] can be _________ 
∴ Cross PSD can be __________ 

Lin, Y.K. (1967) Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY. 
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457.643 Structural Random Vibrations 
In-Class Material: Class 04 

 
II-1. Random Process (contd.) 
 
  Five important properties of 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) and 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) (contd.) 
 

4) For a process containing no periodic 
components, 
 
________ diminishes as |𝑡𝑡1 − 𝑡𝑡2| → ∞ 
 

lim
|𝑡𝑡1−𝑡𝑡2|→∞

𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 
 

lim
|𝑡𝑡1−𝑡𝑡2|→∞

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 
 
 

5) Continuity property 
 
𝜙𝜙𝑋𝑋𝑋𝑋(∙,∙) (or 𝜅𝜅𝑋𝑋𝑋𝑋(∙,∙)) must be continuous at (𝑡𝑡1, 𝑡𝑡2) if 
𝜙𝜙𝑋𝑋𝑋𝑋(∙,∙) and 𝜙𝜙𝑋𝑋𝑋𝑋(∙,∙) are continuous at (  ,  ) and 
(  ,  ) respectively.  
 
i.e. 
 
lim
𝜖𝜖1→0
𝜖𝜖2→0

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡2 + 𝜖𝜖2) =   

 
if 
 
lim
𝜖𝜖1→0
𝜖𝜖2→0

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡1 + 𝜖𝜖2) =               and 

lim
𝜖𝜖1→0
𝜖𝜖2→0

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡2 + 𝜖𝜖1, 𝑡𝑡2 + 𝜖𝜖2) = 

 
 
Therefore, if 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) and 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) are 
continuous at all points on the diagonal 𝑡𝑡1 = 𝑡𝑡2, 
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) is continuous at all points in the 2D 
domain (𝑡𝑡1, 𝑡𝑡2) 
 
Special case: 𝑌𝑌 → 𝑋𝑋 
 
𝜙𝜙𝑋𝑋𝑋𝑋(∙,∙) (or 𝜅𝜅𝑋𝑋𝑋𝑋(∙,∙)) must be continuous at (𝑡𝑡1, 𝑡𝑡2) if 𝜙𝜙𝑋𝑋𝑋𝑋(∙,∙) is continuous at (  ,  ) and 
(  ,  ). 
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※ Proof of “Continuity Property” 
 
Consider 
 

 

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡2 + 𝜖𝜖2) − 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = E[𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1)𝑌𝑌(𝑡𝑡2 + 𝜖𝜖2)] − E[𝑋𝑋(𝑡𝑡1)𝑌𝑌(𝑡𝑡2)] 

= E[{𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1) − 𝑋𝑋(𝑡𝑡1)}{𝑌𝑌(𝑡𝑡2 + 𝜖𝜖2) − 𝑌𝑌(𝑡𝑡2)}] 

+E[{𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1) − 𝑋𝑋(𝑡𝑡1)}𝑌𝑌(𝑡𝑡2)] 

+E[𝑋𝑋(𝑡𝑡1){𝑌𝑌(𝑡𝑡2 + 𝜖𝜖2) − 𝑌𝑌(𝑡𝑡2)}] 

 

(1) 

 
Applying Schwarz’s inequality to the first of the three expectations in Eq. (1), one can 

get 

 
|𝐸𝐸[{𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1) − 𝑋𝑋(𝑡𝑡1)}{𝑌𝑌(𝑡𝑡2 + 𝜖𝜖2) − 𝑌𝑌(𝑡𝑡2)}]|

≤ �𝐸𝐸[{𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1) − 𝑋𝑋(𝑡𝑡1)}2]𝐸𝐸[{𝑌𝑌(𝑡𝑡2 + 𝜖𝜖2) − 𝑌𝑌(𝑡𝑡2)}2] 

 

The first term in the square root is expanded to 

 

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡1 + 𝜖𝜖1) − 2𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡1) + 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡1) 

 

This converges to zero if 

 

lim
𝜖𝜖1→0
𝜖𝜖2→0

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡1 + 𝜖𝜖2) = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) 

 

Therefore, the first expectation in Eq. (1) converges to zero. 

 
Similarly, the other two expectations in Eq. (1) converge to zero if 
 
lim
𝜖𝜖1→0
𝜖𝜖2→0

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + 𝜖𝜖1, 𝑡𝑡1 + 𝜖𝜖2) = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡1)  

 
and 
 
lim
𝜖𝜖1→0
𝜖𝜖2→0

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡2 + 𝜖𝜖1, 𝑡𝑡2 + 𝜖𝜖2) = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡2, 𝑡𝑡2) 
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Example 
 
𝑋𝑋(𝑡𝑡) = 𝐴𝐴cos𝜔𝜔𝑡𝑡 + 𝐵𝐵sin𝜔𝜔𝑡𝑡 
 
Given: E[𝐴𝐴] = E[𝐵𝐵] = 0, E[𝐴𝐴2] = E[𝐵𝐵2] = 𝜎𝜎2, E[𝐴𝐴𝐵𝐵] = 𝜌𝜌𝜎𝜎2 
 
1) E[𝑋𝑋(t)] 

2) 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) and κXX(𝑡𝑡1, 𝑡𝑡2) 

Does 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) diminish as |𝑡𝑡1 − 𝑡𝑡2| → ∞? Why or Why not? 

3) σ𝑋𝑋2 (𝑡𝑡) 

4) 𝜌𝜌𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)  
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Correlation Coefficient Functions 
 
Case I: 𝜌𝜌 = 0 
 

 
 
 
Case II: 𝜌𝜌 = 0.8 
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  Stationary process (cf. Homogeneous random field) 
 
A R.P. is stationary if its ____________ description is invariant to a __________ in the 
parameter (time/space) 
 
(Strictly Stationary) 
 
𝑓𝑓𝑋𝑋⋯𝑋𝑋(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛; 𝑡𝑡1,⋯ , 𝑡𝑡𝑛𝑛) = 𝑓𝑓𝑋𝑋⋯𝑋𝑋(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛; 𝑡𝑡1 + ℎ,⋯ , 𝑡𝑡𝑛𝑛 + ℎ) 
 
(1st Order Stationary) 
 
𝑓𝑓𝑋𝑋(𝑥𝑥; 𝑡𝑡) = 𝑓𝑓𝑋𝑋(𝑥𝑥; 𝑡𝑡 + ℎ) = 
 
Therefore, 𝜇𝜇𝑋𝑋(𝑡𝑡) =       , σX(𝑡𝑡) =      ,⋯ 
 
(2nd Order Stationary) 
 
𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥1, 𝑥𝑥2; 𝑡𝑡1, 𝑡𝑡2) = 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥1, 𝑥𝑥2;           ,           )

= 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥1, 𝑥𝑥2;             ) 

 
Therefore,  
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1 + ℎ, 𝑡𝑡2 + ℎ)   ∀(𝑡𝑡1, 𝑡𝑡2) 

                      = 𝑅𝑅XX(𝜏𝜏)  where τ = 

 

𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1 + ℎ, 𝑡𝑡2 + ℎ)   ∀(𝑡𝑡1, 𝑡𝑡2) 

                      = 𝛤𝛤XX(𝜏𝜏)   

 
“Weakly Stationary” or “Stationary in a Wide Sense” (Lin 1967) 
 
When a random process satisfies 
 

• 𝜇𝜇𝑋𝑋(𝑡𝑡) = 

• 𝜎𝜎𝑋𝑋(𝑡𝑡) = 

• 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 

 
Various Concepts of “Stationarity” in L&S 
 

 Mean-value stationary 
 Second-moment stationary 
 j-th moment stationary 
 j-th order stationary 
 Strictly stationary 

 
When (       ) and (        ) conditions above are satisfied, the random process is considered 
_______  ________ 
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457.643 Structural Random Vibrations 
In-Class Material: Class 05 

 
II-1. Random Process (contd.) 
 
 Properties of 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) and Γ𝑋𝑋𝑋𝑋(𝜏𝜏) 

(i.e. Properties of second motion functions of _________ process) 

 
1) Hermitian (Symmetric) 

 
𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = 𝑅𝑅𝑋𝑋𝑋𝑋∗ (−𝜏𝜏) 
 
𝛤𝛤𝑋𝑋𝑋𝑋(𝜏𝜏) = 𝛤𝛤𝑋𝑋𝑋𝑋∗ (−𝜏𝜏) 
 
Real part, Re[𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)]:  ______ function 

Imaginary part, Im[𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)]:  ______ function 

 

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = 
 
Γ𝑋𝑋𝑋𝑋(𝜏𝜏) = 
 
 
 

2) Boundedness 
 
|𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)| ≤ �𝑅𝑅𝑋𝑋𝑋𝑋(   )𝑅𝑅𝑋𝑋𝑋𝑋(   ) 
 
|𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)| ≤ �𝑅𝑅𝑋𝑋𝑋𝑋(   )𝑅𝑅𝑋𝑋𝑋𝑋(   ) = 𝑅𝑅𝑋𝑋𝑋𝑋(  ) = E[          ] 
 
 
Similarly,  
 
|Γ𝑋𝑋𝑋𝑋(𝜏𝜏)| ≤ �Γ𝑋𝑋𝑋𝑋(  )Γ𝑋𝑋𝑋𝑋(   ) = 
 
|Γ𝑋𝑋𝑋𝑋(𝜏𝜏)| ≤ 
 

3) Non-negative Definiteness 
 
��𝑅𝑅𝑋𝑋𝑋𝑋�𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�ℎ(𝑡𝑡𝑖𝑖)ℎ∗�𝑡𝑡𝑗𝑗� ≥ 0

𝑗𝑗𝑖𝑖

 

 
As the number of discretized points → ∞, the double summation becomes 
 

� � 𝑅𝑅𝑋𝑋𝑋𝑋(𝑡𝑡1 − 𝑡𝑡2)ℎ(𝑡𝑡1)ℎ∗(𝑡𝑡2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2 ≥ 0
∞

−∞

∞

−∞
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Substituting 𝑡𝑡1 = 𝑡𝑡2 + 𝜏𝜏, the integral becomes 
 

� � 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)ℎ(𝑡𝑡2 + 𝜏𝜏)ℎ∗(𝑡𝑡2)
∞

−∞

∞

−∞
𝑑𝑑𝜏𝜏𝑑𝑑𝑡𝑡2 = � 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)𝐻𝐻(𝜏𝜏)𝑑𝑑𝜏𝜏

∞

−∞
≥ 0 

 
 

4) Continuity 
 
𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) must be continuous at all 𝜏𝜏 
 
if 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) is continuous at 𝜏𝜏 = 
 
 

5) 𝜅𝜅𝑋𝑋𝑋𝑋(𝜏𝜏) diminishes for r.p with no periodic 

components as |𝜏𝜏| → 

 
lim

|𝜏𝜏|→∞
Γ𝑋𝑋𝑋𝑋(𝜏𝜏) = 

 
lim

|𝜏𝜏|→∞
R𝑋𝑋𝑋𝑋(𝜏𝜏)= 

 

 
Example 
 
𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)

 
=
  �

1 − |𝜏𝜏|
𝑎𝑎

0 ≤ |𝜏𝜏| ≤ 𝑘𝑘𝑘𝑘
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

           0 < 𝑘𝑘 < 1, 𝑘𝑘 > 0 

 
Check if the auto-correlation model is valid in terms 

of the important properties.  
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 Poisson process 
 

i) Example to demonstrate/review important concepts of random processes 

ii) Introduction to an important class of random processes 

 
 
𝑁𝑁(𝑡𝑡): Number of ___________ in (0, 𝑡𝑡] 
 

 
 C_________ index parameter 

 D_______-valued process 

 Inherently stationary/non-stationary  

       process  

 Examples: 

 
 
 

 
 Basic assumptions of Poisson random process 
 
 

1) There exists m_____ o_______ rate (or intensity function), defined as 
 
 

lim
Δ𝑡𝑡→0

Average No. of Occurrences in (𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) 
Δ𝑡𝑡

=                  
 
 

 
Example 
 
Recall 𝑋𝑋(𝑡𝑡) = 𝐴𝐴cos𝜔𝜔𝑡𝑡 + 𝐵𝐵sin𝜔𝜔𝑡𝑡 in an earlier example. 
 
We derived  𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝜎𝜎2[cos𝜔𝜔(𝑡𝑡1 − 𝑡𝑡2) + 𝜌𝜌sin𝜔𝜔(𝑡𝑡1 + 𝑡𝑡2)] and 𝜇𝜇𝑋𝑋(𝑡𝑡) = 0 

 

1) Condition(s) to make 𝑋𝑋(𝑡𝑡) a weakly stationary process: 

 

2) Suppose 𝜌𝜌 = 0, and 𝐴𝐴 and 𝐵𝐵 are jointly Gaussian. Then, the process 𝑋𝑋(𝑡𝑡) is _________ 

    ___________ ___________ process 
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2) “Probability of two or more occurrences in Δ𝑡𝑡” ≪  
 
Therefore, 
 
Average No. of Ocurrences in (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡) 
= 𝜈𝜈(𝑡𝑡) ⋅          

= �𝑛𝑛 ⋅ 𝑃𝑃�𝑛𝑛 occurrences in (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡)�
∞

𝑛𝑛=0

 

= 1 ⋅ 𝑃𝑃�1 occurrence in (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡)�+ 2 ⋅ 𝑃𝑃�2 occurrences in (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡)� + ⋯ 
≅                                                                                                             
 
 

3) No. of occurrences in two non-overlapping intervals are ____________ 
______________ 

 
 
 Probability functions and partial descriptors of Poisson process 
 
 

1) Probability mass function (PMF) of 𝑁𝑁(𝑡𝑡) 

 

𝑃𝑃𝑁𝑁(𝑡𝑡)(𝑛𝑛; 𝑡𝑡) ≡ 𝑃𝑃(𝑁𝑁(𝑡𝑡) =     ) 

= 𝑃𝑃𝑛𝑛(𝑡𝑡) 

= 𝑃𝑃𝑛𝑛(𝑡𝑡 − Δ𝑡𝑡) ⋅ (1 − 𝜈𝜈 ⋅ Δ𝑡𝑡) + 𝑃𝑃𝑛𝑛−1(𝑡𝑡 − Δ𝑡𝑡) ⋅ 𝜈𝜈 ⋅ Δ𝑡𝑡 

    “scenario 1”                    “scenario 2” 

 

Thus, 
𝑃𝑃𝑛𝑛(𝑡𝑡) − 𝑃𝑃𝑛𝑛(𝑡𝑡 − Δ𝑡𝑡)

Δ𝑡𝑡
+ 𝜈𝜈 ⋅ 𝑃𝑃𝑛𝑛(𝑡𝑡 − Δ𝑡𝑡) = 𝜈𝜈 ⋅ 𝑃𝑃𝑛𝑛−1(𝑡𝑡 − Δ𝑡𝑡) 

 

As 𝛥𝛥𝑡𝑡 → 0, we get a recursive ODE: 
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑃𝑃𝑛𝑛(𝑡𝑡) + 𝜈𝜈(𝑡𝑡) ⋅ 𝑃𝑃𝑛𝑛(𝑡𝑡) = 𝜈𝜈(𝑡𝑡) ⋅ 𝑃𝑃𝑛𝑛−1(𝑡𝑡) 

 

Solution: 𝑃𝑃𝑛𝑛(𝑡𝑡) ⋅ exp �� 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
� = � 𝜈𝜈(𝑡𝑡) ⋅ 𝑃𝑃𝑛𝑛−1(𝑡𝑡) ⋅ exp �� 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡

0
� 𝑑𝑑𝑡𝑡

𝑡𝑡

0
+ 𝐶𝐶𝑛𝑛 

                                       = 𝑚𝑚(𝑡𝑡) 
i) 𝑛𝑛 = 0 

𝑃𝑃0(𝑡𝑡) ⋅ 𝑒𝑒𝑚𝑚(𝑡𝑡) = � 𝜈𝜈(𝑡𝑡)𝑃𝑃−1(𝑡𝑡)𝑒𝑒𝑚𝑚(𝑡𝑡)
𝑡𝑡

0
𝑑𝑑𝑡𝑡 + 𝐶𝐶0 
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𝑃𝑃0(𝑡𝑡) = 𝐶𝐶0 ⋅ 𝑒𝑒−𝑚𝑚(𝑡𝑡) 

Initial condition 𝑃𝑃0(0) = 1. Therefore, 𝐶𝐶0 =  

𝑃𝑃0(𝑡𝑡) =               

 

ii) 𝑛𝑛 = 1 

𝑃𝑃1(𝑡𝑡) ⋅ 𝑒𝑒𝑚𝑚(𝑡𝑡) = � 𝜈𝜈(𝑡𝑡)𝑃𝑃0(𝑡𝑡)𝑒𝑒𝑚𝑚(𝑡𝑡)
𝑡𝑡

0
𝑑𝑑𝑡𝑡 + 𝐶𝐶1 

= 

Initial condition 𝑃𝑃1(0) =       . Therefore, 𝐶𝐶1 = 

𝑃𝑃1(𝑡𝑡) = 

 

Solving recursively, one can get 

𝑃𝑃𝑛𝑛(𝑡𝑡) = 𝑃𝑃𝑁𝑁(𝑛𝑛; 𝑡𝑡) =
[𝑚𝑚(𝑡𝑡)]𝑛𝑛exp [−𝑚𝑚(𝑡𝑡)]

𝑛𝑛!
,   𝑛𝑛 = 0,1,2,⋯ 

 

PMF of Poisson process 𝑁𝑁(𝑡𝑡) (“Poisson distribution” PMF) 
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457.643 Structural Random Vibrations 
In-Class Material: Class 06 

 
II-1. Random Process (contd.) 
 
 Probability functions and partial descriptors of Poisson process (contd.) 
 

2) “Homogeneous” Poisson process (HPP)  

Definition: 𝜈𝜈(𝑡𝑡) = 

∴ 𝑚𝑚(𝑡𝑡) = � 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑡𝑡 =
𝑡𝑡

0
 

 
PMF of HPP: 

𝑝𝑝𝑁𝑁(𝑡𝑡) =
[      ]𝑛𝑛 exp(−         )

𝑛𝑛!
 

 

3) First-order characteristic function 

 

𝑀𝑀𝑁𝑁(𝜃𝜃, 𝑡𝑡) = E�exp�i𝜃𝜃𝜃𝜃(𝑡𝑡)�� 

= � exp(i𝜃𝜃𝑛𝑛) ⋅
[         ]𝑛𝑛 ⋅ exp[          ]

𝑛𝑛!

∞

n=0

 

= exp[          ]�
[                          ]𝑛𝑛

𝑛𝑛!

∞

n=0

 

= exp[            ] ⋅ exp[                         ] 

= exp [−𝑚𝑚(𝑡𝑡) ⋅ (1 − exp (i𝜃𝜃))] 

 
4) Mean 

 

E[𝜃𝜃(𝑡𝑡)] =
1
𝑖𝑖
⋅
𝑑𝑑𝑀𝑀
𝑑𝑑𝜃𝜃 �𝜃𝜃=0

 

 
𝑑𝑑𝑀𝑀
𝑑𝑑𝜃𝜃

= 
 
 

E[𝜃𝜃(𝑡𝑡)] = 𝜇𝜇𝑁𝑁(𝑡𝑡) = 𝑚𝑚(𝑡𝑡) = � 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
 

 

Continuous change of _______ 
over time duration length t 

Note: exp(x) = ∑ 𝑥𝑥𝑛𝑛

𝑛𝑛!
∞
n=0  
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5) Standard deviation 
 

E[𝜃𝜃2(𝑡𝑡)] =
1
𝑖𝑖2
⋅
𝑑𝑑2𝑀𝑀
𝑑𝑑𝜃𝜃2

�
𝜃𝜃=0

 

= 𝑚𝑚(𝑡𝑡) + 𝑚𝑚2(𝑡𝑡) 
 
∴   𝑉𝑉𝑉𝑉𝑉𝑉[𝜃𝜃(𝑡𝑡)] = 
 
∴ 𝜎𝜎𝑁𝑁(𝑡𝑡) = √             = √                            
 

6) Mean and standard deviation for HPP 
 
E[𝜃𝜃(𝑡𝑡)] = 
 
E[𝜃𝜃2(𝑡𝑡)] = 
 
𝜎𝜎𝑁𝑁(𝑡𝑡) = 
 
Question: Is HPP a stationary process?  
 

7) 2nd order joint PMF 
 
𝑃𝑃𝑁𝑁𝑁𝑁(𝑛𝑛1,𝑛𝑛2; 𝑡𝑡1, 𝑡𝑡2) = 𝑃𝑃(                                                ) 
 
= 𝑃𝑃(                                                           ) 
 
= 𝑃𝑃(𝜃𝜃(𝑡𝑡2) = 𝑛𝑛2) × 
 

=
[𝑚𝑚(𝑡𝑡2)]𝑛𝑛2 ⋅ exp[−𝑚𝑚(𝑡𝑡2)]

𝑛𝑛2!

×
[                      ]𝑛𝑛1−𝑛𝑛2 ⋅ exp[                     ]

(𝑛𝑛1 − 𝑛𝑛2)!              
  

=
[𝑚𝑚(𝑡𝑡2)]𝑛𝑛2 ⋅ [𝑚𝑚(𝑡𝑡1)−𝑚𝑚(𝑡𝑡2)]𝑛𝑛1−𝑛𝑛2 ⋅ exp[−𝑚𝑚(𝑡𝑡1)]

𝑛𝑛2! (𝑛𝑛1 − 𝑛𝑛2)!
 

 
 

8) Joint characteristic function 

 
𝑀𝑀𝑁𝑁𝑁𝑁(𝜃𝜃1,𝜃𝜃2; 𝑡𝑡1, 𝑡𝑡2) = E�exp�i�𝜃𝜃2𝜃𝜃(𝑡𝑡2) + 𝜃𝜃1𝜃𝜃(𝑡𝑡1)��� 
 
= E�exp[i(𝜃𝜃1 + 𝜃𝜃2)𝜃𝜃(𝑡𝑡2)] ⋅ exp�i𝜃𝜃1�𝜃𝜃(𝑡𝑡1)−𝜃𝜃(𝑡𝑡2)��� 
 
= E{exp[i(𝜃𝜃1 + 𝜃𝜃2)𝜃𝜃(𝑡𝑡2)]} ⋅ E�exp�i𝜃𝜃1�𝜃𝜃(𝑡𝑡1) −𝜃𝜃(𝑡𝑡2)��� 
 
= exp�−𝑚𝑚(𝑡𝑡2) ⋅ �1 − exp�𝑖𝑖(𝜃𝜃1 + 𝜃𝜃2)��� 
× exp�−�𝑚𝑚(𝑡𝑡1) −𝑚𝑚(𝑡𝑡2)� ⋅ �1 − exp�𝑖𝑖(𝜃𝜃1)��� 
 
= exp�−𝑚𝑚(𝑡𝑡2)�1− exp�i(𝜃𝜃1 + 𝜃𝜃2)�� − (𝑚𝑚(𝑡𝑡1)−𝑚𝑚(𝑡𝑡2))(1− exp (i𝜃𝜃1))� 

Note: Set 𝑡𝑡1 > 𝑡𝑡2 and 𝑛𝑛1 ≥ 𝑛𝑛2 
The derivation depends on this 
convention 

 This is not the same as the 
product of the two expectations, 
i.e. two marginal characteristic 
functions. Why? 

 Why? 
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9) Auto correlation function 

 

𝜙𝜙𝑁𝑁𝑁𝑁(𝑡𝑡1, 𝑡𝑡2) = E[𝜃𝜃(𝑡𝑡1) ⋅ 𝜃𝜃(𝑡𝑡2)] 

= E{𝜃𝜃(𝑡𝑡2) ⋅ [𝜃𝜃(𝑡𝑡1) −𝜃𝜃(𝑡𝑡2) + 𝜃𝜃(𝑡𝑡2)]} 

= E{𝜃𝜃(𝑡𝑡2) ⋅ [𝜃𝜃(𝑡𝑡1) −𝜃𝜃(𝑡𝑡2)]} + E[𝜃𝜃2(𝑡𝑡2)] 

= E[𝜃𝜃(𝑡𝑡2)] ⋅ E[𝜃𝜃(𝑡𝑡1)−𝜃𝜃(𝑡𝑡2)] + E[𝜃𝜃2(𝑡𝑡2)] 

= 𝑚𝑚(𝑡𝑡2) ⋅ [𝑚𝑚(𝑡𝑡1) −𝑚𝑚(𝑡𝑡2)] + 𝑚𝑚2(𝑡𝑡2) + 𝑚𝑚(𝑡𝑡2) 

= 𝑚𝑚(𝑡𝑡2) + 𝑚𝑚(𝑡𝑡1) ⋅ 𝑚𝑚(𝑡𝑡2) 

 

10) Auto covariance function 

 

𝜅𝜅𝑁𝑁𝑁𝑁(𝑡𝑡1, 𝑡𝑡2) = 𝜙𝜙𝑁𝑁𝑁𝑁(𝑡𝑡1, 𝑡𝑡2) − 

= 𝑚𝑚(𝑡𝑡2) + 𝑚𝑚(𝑡𝑡1) ⋅ 𝑚𝑚(𝑡𝑡2)− 

= 

 

11) Auto correlation coefficient function 

 

𝜌𝜌𝑁𝑁𝑁𝑁(𝑡𝑡1, 𝑡𝑡2) =
       

                     
=

              
√          ⋅ √          

= �
        

           
≤        

 
 
 Waiting time until the 𝒏𝒏𝒕𝒕𝒕𝒕 occurrence of a Poisson process 𝑾𝑾𝒏𝒏 
 

 
𝑊𝑊𝑛𝑛: Waiting time until the nth occurrence 
 
𝑇𝑇𝑛𝑛 = 𝑊𝑊𝑛𝑛 −𝑊𝑊𝑛𝑛−1: ___________ time 
 
 
 
 
 
 
 

 
1) Probability ___________ function of 𝑊𝑊𝑛𝑛 

 

𝑓𝑓𝑊𝑊𝑛𝑛(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑃𝑃(𝑡𝑡 < 𝑊𝑊𝑛𝑛 ≤ 𝑡𝑡 + 𝑑𝑑𝑡𝑡) ~ Definition of PDF 

Therefore, 

 Violating symmetry? 

 Violating symmetry? 
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𝑓𝑓𝑊𝑊𝑛𝑛(𝑡𝑡) = lim
Δ𝑡𝑡→0

𝑃𝑃(𝑡𝑡 < 𝑊𝑊𝑛𝑛 ≤ 𝑡𝑡 + Δ𝑡𝑡)
Δ𝑡𝑡

  

= lim
Δ𝑡𝑡→0

𝑃𝑃𝑁𝑁(𝑛𝑛 − 1, 𝑡𝑡) × 𝜈𝜈(𝑡𝑡) × Δ𝑡𝑡 + 𝑜𝑜(Δ𝑡𝑡)
Δ𝑡𝑡

 

= 𝜈𝜈(𝑡𝑡) ⋅
[            ]𝑛𝑛−1 ⋅ exp[             ]

(              )!
, 𝑡𝑡 > 0 

 

2) PDF of 𝑊𝑊𝑛𝑛 for HPP 

 

𝑓𝑓𝑊𝑊𝑛𝑛(𝑡𝑡) =
                                  

                                            
,   𝑡𝑡 > 0 

 

=
                                  

                                            
 

 

𝑛𝑛 = 1: _________________ distribution 

 

𝑓𝑓𝑊𝑊1(𝑡𝑡) = 

 

PDF of waiting time until _______ occurrence =  PDF of __________ time,𝑇𝑇𝑛𝑛 (will be shown 

below) 

 

3) Distribution functions of interarrival time 𝑇𝑇𝑛𝑛 = 𝑊𝑊𝑛𝑛 −𝑊𝑊𝑛𝑛−1 

CDF 

𝐹𝐹𝑇𝑇𝑛𝑛(𝑡𝑡) = 𝑃𝑃(𝑇𝑇𝑛𝑛 ≤ 𝑡𝑡) 

= 1 − 𝑃𝑃(𝑇𝑇𝑛𝑛 > 𝑡𝑡) 

= 1 −� 𝑃𝑃(𝑇𝑇𝑛𝑛 > 𝑡𝑡|𝑊𝑊𝑛𝑛−1 = 𝑤𝑤)𝑓𝑓𝑊𝑊𝑛𝑛−1(𝑤𝑤)𝑑𝑑𝑤𝑤
∞

0
 

Here,  

𝑃𝑃(𝑇𝑇𝑛𝑛 > 𝑡𝑡|𝑊𝑊𝑛𝑛−1 = 𝑤𝑤) = 𝑃𝑃(               events in (𝑤𝑤,𝑤𝑤 + 𝑡𝑡)) 

Note:  (𝑛𝑛 − 1) occurrences up to 
time 𝑡𝑡 and ________ occurrence 
during _____ 

“                   ” PDF: 𝑛𝑛 is a real number 
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Using Poisson distribution, 

𝑃𝑃(𝑇𝑇𝑛𝑛 > 𝑡𝑡|𝑊𝑊𝑛𝑛−1 = 𝑤𝑤) = exp [−𝑚𝑚(𝑤𝑤 + 𝑡𝑡) + 𝑚𝑚(𝑤𝑤)] 

Therefore, 

𝐹𝐹𝑇𝑇𝑛𝑛(𝑡𝑡) = 1−� exp[−𝑚𝑚(𝑤𝑤+ 𝑡𝑡) +𝑚𝑚(𝑤𝑤)] ×
𝜈𝜈(𝑤𝑤)[𝑚𝑚(𝑤𝑤)]𝑛𝑛−2 exp[−𝑚𝑚(𝑤𝑤)]

(𝑛𝑛 − 2)! 𝑑𝑑𝑤𝑤
∞

0
 

= 1 −�
𝜈𝜈(𝑤𝑤)𝑚𝑚(𝑤𝑤)𝑛𝑛−2 exp[−𝑚𝑚(𝑤𝑤 + 𝑡𝑡)]

(𝑛𝑛 − 2)!
𝑑𝑑𝑤𝑤

∞

0
 

 

For HPP, 

𝐹𝐹𝑇𝑇𝑛𝑛(𝑡𝑡) = 1 −�
𝜈𝜈(𝜈𝜈𝑤𝑤)𝑛𝑛−2 exp[−𝜈𝜈(𝑤𝑤 + 𝑡𝑡)]

(𝑛𝑛 − 2)!
𝑑𝑑𝑤𝑤

∞

0
= 1 − exp(−𝜈𝜈𝑡𝑡) 

 

𝑓𝑓𝑊𝑊𝑛𝑛(𝑡𝑡) =
𝑑𝑑𝐹𝐹𝑇𝑇𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝜈𝜈 ⋅ exp(−𝜈𝜈𝑡𝑡) = 𝑓𝑓𝑇𝑇1(𝑡𝑡) 
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457.643 Structural Random Vibrations 
In-Class Material: Class 07 

 
II-1. Random Process (contd.) 
 
 Normal (Gaussian) process (Read L&S 4.10) 
 

𝑋𝑋(𝑡𝑡) is a Gaussian process 

if, for any 𝑛𝑛, and any {𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑛𝑛}, 

the random variables 𝑋𝑋(𝑡𝑡1),⋯ ,𝑋𝑋(𝑡𝑡𝑛𝑛) are __________  ___________ 

 

- The process is completely defined by specifying            for ∀𝑡𝑡 and 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) for ∀(𝑡𝑡, 𝑠𝑠) 

- For a Gaussian process, being “weakly stationary” implies stationarity in the 

__________ sense 

- Any linear function of Gaussian processes is a __________ process 

e.g. �̇�𝑋(𝑡𝑡) is Gaussian if 𝑋𝑋(𝑡𝑡) is Gaussian (why?) 

e.g. 𝑋𝑋(𝑡𝑡) and �̇�𝑋(𝑡𝑡) are __________ ___________ 

- Why useful? 

1) Convenient to handle 

2) ________ _________ theorem 

- Hard to justify Gaussian process assumption if 

1) the distribution is not symmetric, or 

2) __________ is not equal to 3 

- Textbook focusing on non-Gaussian processes: M. Grigoriu (1995), Applied Non-

Gaussian Processes  

 

 Jointly Gaussian processes 
 

𝑋𝑋1(𝑡𝑡),𝑋𝑋2(𝑡𝑡),⋯ ,𝑋𝑋𝑚𝑚(𝑡𝑡) are jointly Gaussian processes 

if, for any 𝑛𝑛, and any {𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑛𝑛}, the random variables 

{𝑋𝑋1(𝑡𝑡1),⋯ ,𝑋𝑋1(𝑡𝑡𝑛𝑛),𝑋𝑋2(𝑡𝑡1),⋯ ,𝑋𝑋2(𝑡𝑡𝑛𝑛),⋯ ,𝑋𝑋𝑚𝑚(𝑡𝑡1),⋯ ,𝑋𝑋𝑚𝑚(𝑡𝑡𝑛𝑛)} are 

__________  ___________ 

 

- The processes are completely defined by specifying 𝑴𝑴𝑿𝑿(𝑡𝑡) = {                                }T and 

𝚺𝚺(t,s) = [               ] 
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II-2. Stochastic Calculus 
 
 
 

 Motivation 
 
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑋𝑋(𝑡𝑡) = lim

ℎ→0

𝑋𝑋(𝑡𝑡 + ℎ) − 𝑋𝑋(𝑡𝑡)
ℎ

 
 
The conventional “limit” cannot be applied to 

random processes 

 

Limit of a random process? 

 
Need to consider the convergence of a sequence of random variables, i.e. 
lim
𝑛𝑛→∞

{𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛} 
 

 

 Converging to the distribution of a random variable (not a particular value) 

 “___________ Convergence” 

 
 Definitions of stochastic convergence 
 

1) Convergence with probability 1 (“almost sure” convergence) 

 

𝑃𝑃 � lim
𝑛𝑛→∞

𝑋𝑋𝑛𝑛 = 𝑋𝑋� = 

 

2) Convergence in probability 

 

lim
𝑛𝑛→∞

𝑃𝑃(|𝑋𝑋𝑛𝑛 − 𝑋𝑋| ≥ 𝜖𝜖) =               ,∀ϵ > 0 

 

3) Convergence in distribution 

 

lim
𝑛𝑛→0

𝐹𝐹𝑋𝑋𝑛𝑛(𝑥𝑥) =  

Lin, Y.K. (1967) Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY. 
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4) ** Convergence in the mean square 

 

lim
𝑛𝑛→∞

E[|𝑋𝑋𝑛𝑛 − 𝑋𝑋|2] = 

 

 requires E[𝑋𝑋2] < ∞, i.e. “                         ” process 

 

Throughout this course, we use the fourth definition with the notation 

𝐥𝐥. 𝐢𝐢.𝐦𝐦.
𝒕𝒕→𝒕𝒕𝟎𝟎

𝑿𝑿(𝒕𝒕) = 𝑿𝑿 

to describe “Limit In the Mean-square” 

 
 Two theorems for limit in the mean square 

 
Proof: 

 

 

 

 

 

 

Theorem 1: 

If l. i. m.
𝑡𝑡→𝑡𝑡0

𝑋𝑋(𝑡𝑡) = 𝑋𝑋 and l. i. m.
s→s0

𝑌𝑌(𝑠𝑠) = 𝑌𝑌, then  lim
𝑡𝑡→𝑡𝑡0,𝑠𝑠→𝑠𝑠0

E[𝑋𝑋(𝑡𝑡) ⋅ 𝑌𝑌(𝑠𝑠)] = 

 

mailto:junhosong@snu.ac.kr


Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 
 

 4 

Using Theorem 1, we can show lim
𝑡𝑡→𝑡𝑡0

E[𝑋𝑋(𝑡𝑡)] = E �l. i. m.
𝑡𝑡→𝑡𝑡0

𝑋𝑋(𝑡𝑡)� 

Namely, 𝐸𝐸[⋅] and l. i. m. are c_____________ or exchangeable 

 

Proof: 

 

 

 

 

 

 
- See Ex 4.9 in L&S 
- Of course, for “second-order process” 

 
Proof: 

  

Theorem 2: 

l. i. m.
𝑡𝑡→𝑡𝑡0

𝑋𝑋(𝑡𝑡) = 𝑋𝑋       ϕ𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) is continuous at (𝑡𝑡0, 𝑡𝑡0) no matter how (𝑡𝑡, 𝑠𝑠) approaches (𝑡𝑡0, 𝑡𝑡0) 
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 Mean-square derivative (derivative of r.p. in mean square sense) 
 
Note: Deterministic: �̇�𝑥(𝑡𝑡) = lim

ℎ→0
𝑥𝑥(𝑡𝑡+ℎ)−𝑥𝑥(𝑡𝑡)

ℎ
 

 

Definition of “mean-square” derivative of a random process: 

�̇�𝑋(𝑡𝑡) ≡ l. i. m
ℎ→0

𝑋𝑋(𝑡𝑡 + ℎ) − 𝑋𝑋(𝑡𝑡)
ℎ

 

 

When is a random process “mean-square differentiable”? (or when does the limit exist in the 

mean square sense?) 
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457.643 Structural Random Vibrations 
In-Class Material: Class 08 

 
II-1. Random Process (going back) 
 
 Artificial generation of Poisson process 

 

 
- Actually, we generate waiting times (arrival times) for 𝑛𝑛 = 1,2,3, …, i.e. 𝑊𝑊1,𝑊𝑊2, … 

- For a homogeneous Poisson process, we can generate 𝑊𝑊𝑛𝑛 using 𝑇𝑇1 

- We know 𝑇𝑇1 follows ________ distribution 

- In Matlab®, one can generate _________ random variables using exprnd(µ,M,N)  

1) µ: mean = 1/ν  

2) M,N: size of the output matrix 

- To generate non-homogeneous Poisson process, need to use a theorem, 

𝑊𝑊𝑖𝑖 = 𝑚𝑚−1(𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2, …, are arrival times of the non-homogeneous Poisson 

process with 𝑚𝑚(𝑡𝑡) when 𝑆𝑆𝑖𝑖 , 𝑖𝑖 = 1,2, …, are arrival times of the homogeneous 

Poisson process with ν = 1 

 

 

 

 

 

 

 

Cinlar, E. (1975). Introduction to Stochastic Processes, Dover Books (reprinted in 2013) 

 

Generate from 
Poisson with ν=1 

Find from m−1(𝑡𝑡) 
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- Example: Generating NHPP with 𝑚𝑚(𝑡𝑡) = 13 ⋅ ln (0.5𝑡𝑡 + 1) 

1) Three random samples: 

 
2) Comparison between exact 𝑚𝑚(𝑡𝑡) and estimated one using 1,000 samples 

 
** Check “NHPoissonGenerationTest.m” at eTL website for details 
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II-2. Stochastic Calculus (contd.) 
 
 Mean-square derivative (derivative of r.p. in mean square sense) (contd.) 
 

Definition of “mean-square” derivative of a random process: 

�̇�𝑋(𝑡𝑡) ≡ l. i. m
ℎ→0

𝑋𝑋(𝑡𝑡 + ℎ) − 𝑋𝑋(𝑡𝑡)
ℎ

 

 

When is a random process “mean-square differentiable”? (or when does the limit exist in the 

mean square sense?) 

 

Recall Theorem 2 with 𝑋𝑋(𝑡𝑡) replaced by 𝑌𝑌(𝑡𝑡): 

 
 

Substituting 𝑌𝑌(𝑡𝑡) = 𝑋𝑋(𝑡𝑡+ℎ)−𝑋𝑋(𝑡𝑡)
ℎ

 above, we need to check the limit of ϕ𝑌𝑌𝑌𝑌(𝑡𝑡, 𝑠𝑠) at the diagonal, 

i.e. 𝑡𝑡 = 𝑠𝑠. Consider 

 

lim
ℎ→0,ℎ′→0

𝜙𝜙𝑌𝑌𝑌𝑌(𝑡𝑡, 𝑠𝑠) = lim
ℎ→0,ℎ′→0

E �
𝑋𝑋(𝑡𝑡 + ℎ) − 𝑋𝑋(𝑡𝑡)

ℎ
⋅
𝑋𝑋(𝑠𝑠 + ℎ′) − 𝑋𝑋(𝑠𝑠)

ℎ′
� 

= lim
ℎ→0,ℎ′→0

1
ℎ
�
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡 + ℎ, 𝑠𝑠 + ℎ′) − 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡 + ℎ, 𝑠𝑠)

ℎ′
−
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠 + ℎ′) − 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠)

ℎ′
� 

=
𝜕𝜕2       
  𝜕𝜕   𝜕𝜕   

 

 

Therefore, 𝑋𝑋(𝑡𝑡) is mean-square differentiable iff 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) is _____-______ _________ at 𝑡𝑡 = 𝑠𝑠 

 

In summary, 

 

 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) is continuous at 𝑡𝑡 = 𝑠𝑠 = 𝑡𝑡0 iff l. i. m
𝑡𝑡→𝑡𝑡0

𝑋𝑋(𝑡𝑡) = 𝑋𝑋 (Theorem 2) 

 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) is second-order differentiable at 𝑡𝑡 = 𝑠𝑠 = 𝑡𝑡0 iff �̇�𝑋(𝑡𝑡) exists at 𝑡𝑡 = 𝑡𝑡0 

(mean-square differentiable) 
 

Theorem 2: 

l. i. m.
𝑡𝑡→𝑡𝑡0

𝑌𝑌(𝑡𝑡) = 𝑌𝑌 iff ϕ𝑌𝑌𝑌𝑌(𝑡𝑡, 𝑠𝑠) is continuous at (𝑡𝑡0, 𝑡𝑡0) no matter how (𝑡𝑡, 𝑠𝑠) approaches (𝑡𝑡0, 𝑡𝑡0) 
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 Properties of �̇�𝑋(𝑡𝑡) 
 

1) E��̇�𝑋(𝑡𝑡)� = E �l. i. m.
ℎ→0

𝑋𝑋(𝑡𝑡+ℎ)−𝑋𝑋(𝑡𝑡)
ℎ

� 

= lim
ℎ→0

E �
𝑋𝑋(𝑡𝑡 + ℎ) − 𝑋𝑋(𝑡𝑡)

ℎ
� 

= lim
ℎ→0

      

=
 𝑑𝑑   
 𝑑𝑑   

 

The mean of the (mean-square) derivative of a r.p. is the derivative of the mean 

function 

2) E�𝑋𝑋(𝑡𝑡) ⋅ �̇�𝑋(𝑠𝑠)� = 𝜙𝜙𝑋𝑋�̇�𝑋(𝑡𝑡, 𝑠𝑠) 

= E �𝑋𝑋(𝑡𝑡) ⋅ l. i. m.
ℎ→0

𝑋𝑋(𝑠𝑠 + ℎ) − 𝑋𝑋(𝑠𝑠)
ℎ

� 

= lim
ℎ→0

�
                                 

   
� 

=
𝜕𝜕    
𝜕𝜕    

 

∴ E��̇�𝑋(𝑡𝑡) ⋅ 𝑋𝑋(𝑠𝑠)� = 𝜙𝜙�̇�𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) =
𝜕𝜕      
𝜕𝜕      

 

3) E��̇�𝑋(𝑡𝑡) ⋅ �̇�𝑋(𝑠𝑠)� = 𝜙𝜙�̇�𝑋�̇�𝑋(𝑡𝑡, 𝑠𝑠) 

= E �l. i. m.
ℎ1→0

𝑋𝑋(𝑡𝑡 + ℎ1) − 𝑋𝑋(𝑡𝑡)
ℎ1

⋅ l. i. m.
ℎ2→0

𝑋𝑋(𝑠𝑠 + ℎ2) − 𝑋𝑋(𝑠𝑠)
ℎ2

� 

=
𝜕𝜕2    
𝜕𝜕  𝜕𝜕  

 

 Mean-square derivative �̇�𝑋(𝑡𝑡) for a stationary r.p. 𝑋𝑋(𝑡𝑡) 

 
 𝜇𝜇𝑋𝑋(𝑡𝑡) = 𝜇𝜇 

 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠) = 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏),   𝜏𝜏 = 𝑡𝑡 − 𝑠𝑠 

 
1) 𝑋𝑋(𝑡𝑡) is mean-square continuous iff 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) is continuous at τ = 

2) 𝑋𝑋(𝑡𝑡) is mean-square differentiable iff 𝜕𝜕
2𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡,𝑠𝑠)
𝜕𝜕𝑡𝑡𝜕𝜕𝑠𝑠

=                    is unique and finite at τ = 

 𝜕𝜕𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡,𝑠𝑠)
𝜕𝜕𝑠𝑠

= 

 𝜕𝜕2𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡,𝑠𝑠)
𝜕𝜕𝑡𝑡𝜕𝜕𝑠𝑠

= 
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3) µ�̇�𝑋(𝑡𝑡) = E��̇�𝑋(𝑡𝑡)� = 𝑑𝑑      
𝑑𝑑      

= 

The mean of the time rate of a stationary r.p. is  

4) Cross correlation between 𝑋𝑋(𝑡𝑡) and �̇�𝑋(𝑡𝑡) 

𝑅𝑅𝑋𝑋�̇�𝑋(𝜏𝜏) =
𝜕𝜕𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠)

𝜕𝜕
= −

    
         

 

𝑅𝑅�̇�𝑋𝑋𝑋(𝜏𝜏) =
𝜕𝜕𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑠𝑠)

𝜕𝜕
=

    
         

 

at τ = 0 

𝑅𝑅𝑋𝑋�̇�𝑋(0) = E[        ⋅        ] = −
𝑑𝑑
𝑑𝑑𝜏𝜏
𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)�

𝜏𝜏=0
  

𝑅𝑅�̇�𝑋𝑋𝑋(0) = E[        ⋅        ] =
𝑑𝑑
𝑑𝑑𝜏𝜏
𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)�

𝜏𝜏=0
  

∴ 𝑅𝑅𝑋𝑋�̇�𝑋(0) = 𝑅𝑅�̇�𝑋𝑋𝑋(0) = 

When 𝑋𝑋(𝑡𝑡) is stationary r.p. and mean-square differentiable, 

 𝑋𝑋(𝑡𝑡) and �̇�𝑋(𝑡𝑡) are ____________, i.e. E�𝑋𝑋�̇�𝑋� = 0 

 𝑋𝑋(𝑡𝑡) and �̇�𝑋(𝑡𝑡) are ____________ as well because  
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457.643 Structural Random Vibrations 
In-Class Material: Class 09 

 
II-2. Stochastic Calculus (contd.) 

 Mean-square derivative �̇�𝑋(𝑡𝑡) for a stationary r.p. 𝑋𝑋(𝑡𝑡) (contd.) 

  
5) 𝑅𝑅�̇�𝑋𝑋𝑋(𝜏𝜏) = E[�̇�𝑋(𝑡𝑡 + 𝜏𝜏) ⋅ 𝑋𝑋(𝑡𝑡)] 

𝑅𝑅𝑋𝑋�̇�𝑋(−𝜏𝜏) = E�𝑋𝑋(𝑡𝑡 − 𝜏𝜏) ⋅ �̇�𝑋(𝑡𝑡)� = E[𝑋𝑋(𝑡𝑡) ⋅ �̇�𝑋(𝑡𝑡 + 𝜏𝜏)] 

Therefore,  

𝑅𝑅𝑋𝑋�̇�𝑋(−𝜏𝜏) = 𝑅𝑅�̇�𝑋𝑋𝑋(𝜏𝜏) 

= −𝑅𝑅𝑋𝑋�̇�𝑋(𝜏𝜏) 

𝑅𝑅𝑋𝑋�̇�𝑋(𝜏𝜏) is an _______ function (_____symmetric around 𝜏𝜏 =      ) 

 

 Example: 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = 𝑛𝑛𝜎𝜎2

2
⋅ 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠
  

 

1) Is the random process 𝑋𝑋(𝑡𝑡) mean-square continuous? 

lim
𝑠𝑠→0

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = 

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) is _____________ at 𝜏𝜏 =      . Therefore, 𝑋𝑋(𝑡𝑡) is ___________________ 

Note: 𝑅𝑅Ẋ𝑋𝑋(𝜏𝜏) = 𝑑𝑑𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)/𝑑𝑑𝜏𝜏 and 𝑅𝑅𝑋𝑋�̇�𝑋(𝜏𝜏) = −𝑑𝑑𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)/𝑑𝑑𝜏𝜏 
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2) Is the random process 𝑋𝑋(𝑡𝑡) mean-square differentiable? 

𝑑𝑑𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏

=
𝑛𝑛𝜎𝜎2𝜔𝜔

2
⋅
𝜔𝜔𝜏𝜏 ⋅ cos𝜔𝜔𝜏𝜏 − sin𝜔𝜔𝜏𝜏

(𝜔𝜔𝜏𝜏)2  

(Is 𝑅𝑅�̇�𝑋𝑋𝑋(τ) anti-symmetric around 𝜏𝜏 = 0?) 

lim
𝑠𝑠→0

𝑑𝑑𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏

= lim
𝑠𝑠→0

𝑛𝑛𝜎𝜎2𝜔𝜔
2

⋅
𝜔𝜔𝜏𝜏 �1 − 1

2 (𝜔𝜔𝜏𝜏)2 + ⋯� − �𝜔𝜔𝜏𝜏 − 1
6 (𝜔𝜔𝜏𝜏)3 + ⋯�

(𝜔𝜔𝜏𝜏)2 =      < 

d2𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏2

= −
𝑛𝑛𝜎𝜎2𝜔𝜔2

2
⋅

(𝜔𝜔𝜏𝜏)2 sin𝜔𝜔𝜏𝜏 + 2𝜔𝜔𝜏𝜏 cos𝜔𝜔𝜏𝜏 − 2 sin𝜔𝜔𝜏𝜏
(𝜔𝜔𝜏𝜏)3  

lim
𝑠𝑠→0

𝑑𝑑2𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏2

= −
𝑛𝑛𝜎𝜎2𝜔𝜔2

6
< 

Therefore, 𝑋𝑋(𝑡𝑡) is ______________________ 

 

 Integration of a random process 

Deterministic 
 

𝑦𝑦 = � 𝑥𝑥(𝑡𝑡)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑡𝑡 = lim

𝑛𝑛→∞
�𝑥𝑥𝑗𝑗 ⋅ Δ𝑡𝑡𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

 
Note: Integral is a limit. Therefore the integral of a random process needs to be defined as a 

stochastic limit. 

 

Stochastic 

𝑌𝑌 = � 𝑋𝑋(𝑡𝑡)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑡𝑡 

𝑌𝑌𝑛𝑛 = �𝑋𝑋𝑗𝑗

𝑛𝑛

𝑗𝑗=1

(𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗) 

Mean-square convergence of the stochastic integral, denoted by l. i. m.
𝑛𝑛→∞

𝑌𝑌𝑛𝑛 = 𝑌𝑌, is achieved 

when lim
𝑛𝑛→∞

E[(𝑌𝑌𝑛𝑛 − 𝑌𝑌)2] = 0 

 

From Theorem 2, if l. i. m
𝑛𝑛→∞

𝑌𝑌𝑛𝑛 = 𝑌𝑌 exists, lim
𝑛𝑛→∞,𝑚𝑚→∞

E[𝑌𝑌𝑚𝑚𝑌𝑌𝑛𝑛] should exist. 
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That is, the following should exist. 

lim
𝑛𝑛→∞,𝑚𝑚→∞

E ��𝑋𝑋𝑗𝑗�𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

�𝑋𝑋𝑘𝑘(𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘)
𝑚𝑚

𝑘𝑘=1

� = � � 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑡𝑡1

𝑏𝑏

𝑎𝑎
𝑑𝑑𝑡𝑡2 

 

In summary, the stochastic integral 𝑌𝑌 = ∫ 𝑋𝑋(𝑡𝑡)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑡𝑡 exists in the mean-square sense if 

∫ ∫ 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑡𝑡1

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑡𝑡2 exists 

 

1) Mean of the stochastic integral 

E �� 𝑋𝑋(𝑡𝑡)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑡𝑡� = � E[𝑋𝑋(𝑡𝑡)]𝑑𝑑𝑡𝑡

𝑏𝑏

𝑎𝑎
 

= �          𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
 

2) Mean square of the stochastic integral 

E ��� 𝑋𝑋(𝑡𝑡)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑡𝑡�

2

� = � � E[𝑋𝑋(𝑡𝑡1)𝑋𝑋(𝑡𝑡2)]𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎
 

= � � 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎
 

3) Generalization (“r.p.  r.v.” or “r.p.  r.p.”) 

𝑌𝑌 = � 𝑋𝑋(𝑡𝑡) ⋅ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
 

or 

𝑍𝑍(𝜔𝜔) = � 𝑋𝑋(𝑡𝑡)ℎ(𝑡𝑡,𝜔𝜔)𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
 

 Example of 𝑓𝑓(𝑡𝑡): shape (envelope) function 

 Example of ℎ(𝑡𝑡,𝜔𝜔): exp(i𝜔𝜔𝑡𝑡) ~ Fourier transform 

※ For the existence of 𝑍𝑍(ω) in the mean-square sense, it should be satisfied that 

         < ∫ ∫ 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)ℎ(𝑡𝑡1,𝜔𝜔)ℎ∗(𝑡𝑡2,𝜔𝜔) < 

Then, 

Note: Theorem 1   
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𝜇𝜇𝑍𝑍(𝜔𝜔) = E[𝑍𝑍(𝜔𝜔)] = �                          𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
 

𝜙𝜙𝑍𝑍𝑍𝑍(𝜔𝜔) = E[𝑍𝑍(𝜔𝜔1)𝑍𝑍∗(𝜔𝜔2)] 

= E �� 𝑋𝑋(𝑡𝑡1)ℎ(𝑡𝑡1,𝜔𝜔1)𝑑𝑑𝑡𝑡1
𝑏𝑏

𝑎𝑎
� 𝑋𝑋∗(𝑡𝑡2)ℎ∗(𝑡𝑡2,𝜔𝜔2)𝑑𝑑𝑡𝑡2
𝑏𝑏

𝑎𝑎
� 

= � �            ℎ(𝑡𝑡1,𝜔𝜔1)ℎ∗(𝑡𝑡2,𝜔𝜔2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎
 

 Spectral decomposition of a random process 

Characterization of a random process in _____________ domain 

𝑍𝑍(𝜔𝜔) = � 𝑋𝑋(𝑡𝑡)ℎ(𝑡𝑡,𝜔𝜔)𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
 

How about using Fourier transform of the random process? That is, using the following filter in 

the above equation? 

ℎ(𝑡𝑡,𝜔𝜔) =
1
2π

exp (−i𝜔𝜔𝑡𝑡) 

As a result, 

𝑋𝑋�(𝜔𝜔) =
1

2𝜋𝜋
� 𝑋𝑋(𝑡𝑡) exp(−i𝜔𝜔𝑡𝑡) 𝑑𝑑𝑡𝑡
∞

−∞
 

Fourier transform of 𝑋𝑋(𝑡𝑡)  represents/describe 𝑋𝑋(𝑡𝑡) by harmonic components 

Inverse relationship: 

𝑋𝑋(𝑡𝑡) = � 𝑋𝑋�(𝜔𝜔) exp(i𝜔𝜔𝑡𝑡)𝑑𝑑𝜔𝜔
∞

−∞
 

※ X�(𝜔𝜔) exists in the mean-square sense iff E[𝑋𝑋�(𝜔𝜔1)𝑋𝑋�∗(𝜔𝜔2)] exists. 

E[𝑋𝑋�(𝜔𝜔1)𝑋𝑋�∗(𝜔𝜔2)] =
1

(2𝜋𝜋)2 � � 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) exp[−i(𝜔𝜔1𝑡𝑡1 − 𝜔𝜔2𝑡𝑡2)]𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
∞

−∞

∞

−∞
= Φ�(𝜔𝜔1,𝜔𝜔2) 

 This is called “Generalized Power Spectral Density Function” 

If this exists, 

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � � Φ� (𝜔𝜔1,𝜔𝜔2) exp[i(𝜔𝜔1𝑡𝑡1 −𝜔𝜔2𝑡𝑡2)]𝑑𝑑𝜔𝜔1𝑑𝑑𝜔𝜔2

∞

−∞

∞

−∞
 

However, 𝑋𝑋�(𝜔𝜔) does NOT exist when 𝑋𝑋(𝑡𝑡) is stationary, i.e. E[𝑋𝑋�(𝜔𝜔1)𝑋𝑋�∗(𝜔𝜔2)] = Φ�(𝜔𝜔1,𝜔𝜔2) 

blows up. 
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457.643 Structural Random Vibrations 
In-Class Material: Class 10 

 
II-2. Stochastic Calculus (contd.) 
 
 Spectral decomposition of a random process (contd.) 

Fourier transform of 𝑋𝑋(𝑡𝑡), i.e. 𝑋𝑋�(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝑋𝑋(𝑡𝑡) exp(−i𝜔𝜔𝑡𝑡)𝑑𝑑𝑡𝑡∞

−∞  can be considered as a spectral 

decomposition of the random process. 

It is noted that the stochastic integral 𝑋𝑋�(𝜔𝜔) exists in the mean square sense if and only if 

E[𝑋𝑋�(𝜔𝜔1)𝑋𝑋�∗(𝜔𝜔2)] = 1
(2𝜋𝜋)2 ∫ ∫ 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) exp[−i(𝜔𝜔1𝑡𝑡1 − 𝜔𝜔2𝑡𝑡2)]𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2

∞
−∞

∞
−∞ = Φ�𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) exist.  

However, the generalized PSD Φ�𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) does not exist when 𝑋𝑋(𝑡𝑡) is a stationary random 

process. Therefore, 𝑋𝑋�(𝜔𝜔) is not useful for the purpose of spectral decomposition. 

To show this, consider a “truncated” Fourier transform of a stationary process 𝑋𝑋(𝑡𝑡), 

𝑋𝑋�(𝜔𝜔,𝑇𝑇) =
1

2𝜋𝜋
� 𝑋𝑋(𝑡𝑡) exp(−i𝜔𝜔𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑇𝑇

−𝑇𝑇
 

E[𝑋𝑋�(𝜔𝜔1,𝑇𝑇)𝑋𝑋�∗(𝜔𝜔2,𝑇𝑇)] =
1

(2𝜋𝜋)2 � � 𝑅𝑅𝑋𝑋𝑋𝑋(𝑡𝑡1 − 𝑡𝑡2) exp[−i(𝜔𝜔1𝑡𝑡1 − 𝜔𝜔2𝑡𝑡2)]
𝑇𝑇

−𝑇𝑇

𝑇𝑇

−𝑇𝑇
𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2 

Let us check the case 𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔, i.e. (after changing variable 𝑡𝑡1 = 𝜏𝜏 + 𝑡𝑡2) 

E[|𝑋𝑋�(𝜔𝜔,𝑇𝑇)|2] =
1

(2𝜋𝜋)2 � � 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−𝑖𝑖𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏𝑑𝑑𝑡𝑡2
       

          

𝑇𝑇

−𝑇𝑇
 

 

          

 

 
Flip & Rotate 
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E[|𝑋𝑋�(𝜔𝜔,𝑇𝑇)|2] =
1

(2𝜋𝜋)2 � � 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−𝑖𝑖𝜔𝜔𝜏𝜏)𝑑𝑑𝑡𝑡2𝑑𝑑𝜏𝜏
𝑇𝑇

−𝑇𝑇−𝜏𝜏

0

−2𝑇𝑇
 

                                                +
1

(2𝜋𝜋)2 � � 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−𝑖𝑖𝜔𝜔𝜏𝜏)𝑑𝑑𝑡𝑡2𝑑𝑑𝜏𝜏
𝑇𝑇−𝜏𝜏

−𝑇𝑇

2𝑇𝑇

0
 

=
1

(2𝜋𝜋)2 �
(                )𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏

0

−2𝑇𝑇
 

                                               +
1

(2𝜋𝜋)2 �
(               )𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏

2𝑇𝑇

0
 

 

∴ E[|𝑋𝑋�(𝜔𝜔,𝑇𝑇)|2] =
1

(2𝜋𝜋)2 �
(2𝑇𝑇 −        )𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏

2𝑇𝑇

−2𝑇𝑇
 

 

E[𝑋𝑋�(𝜔𝜔1)𝑋𝑋�∗(𝜔𝜔2)] = E[|𝑋𝑋�(𝜔𝜔)|2] = lim
𝑇𝑇→∞

E[|𝑋𝑋�(𝜔𝜔,𝑇𝑇)|2] 

This _________ because as 𝑇𝑇 → ∞, 𝑇𝑇 ⋅ 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) ________ in general 

 

Therefore, the generalized PSD Φ�𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) may not converge to a finite value in general, and 

thus the mean-convergence of 𝑋𝑋�(𝜔𝜔) is not guaranteed. 

 

Then, how about… introducing π
T
 prior to taking the limit? That is, 

lim
𝑇𝑇→∞

𝜋𝜋
𝑇𝑇
𝐸𝐸[|𝑋𝑋�(𝜔𝜔,𝑇𝑇)|2] = lim

𝑇𝑇→∞

1
2𝜋𝜋

� �1 −
|𝜏𝜏|
2𝑇𝑇
�𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏

2𝑇𝑇

−2𝑇𝑇
 

 

One can show that the limit above is equal to the following (Lin 1967): 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) =
1
2π

� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

 

This is a _________ transform of 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏). Thus, the integral exists when 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) is “absolutely 

integrable” i.e. ∫ |𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)|𝑑𝑑𝜏𝜏∞
−∞ < ∞ 

Note: Being “absolutely integrable” is not the same concept as being a second-order process, 
i.e. 𝑅𝑅𝑋𝑋𝑋𝑋(0) = E[𝑋𝑋2] < ∞ 
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 Power spectral density (PSD) function of a stationary process 𝑋𝑋(𝑡𝑡) 

Fourier pair involving the power spectral density function and auto-correlation function: 

 

 This is often called “Wiener-Khintchine formula.” 

 The PSD exists when the auto-correlation function is absolutely integrable 

 𝑅𝑅𝑋𝑋𝑋𝑋(0) = ∫                  𝑑𝑑𝜔𝜔∞
−∞ = E[       ]  

This indicates that 𝛷𝛷𝑋𝑋𝑋𝑋(𝜔𝜔) describes the distribution of “                 ” process, i.e. 𝑋𝑋2 

over _________ domain. That is why it is called power spectral density function. 

 

 

 

 Properties of PSD ΦXX(ω) 

1) Non-negative 

∵  𝛷𝛷𝑋𝑋𝑋𝑋(𝜔𝜔) ∝ E[|      |2] 

(𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) is _______________) 

2) Symmetric and Real 

ΦXX(−𝜔𝜔) =  

∵ 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) is ____________ and 𝛷𝛷𝑋𝑋𝑋𝑋(𝜔𝜔) ∝ E[|      |2] 

ΦXX(𝜔𝜔) ≡ lim
𝑇𝑇→∞

𝜋𝜋
𝑇𝑇

E[|𝑋𝑋�(𝜔𝜔,𝑇𝑇)|2] =
1

2𝜋𝜋
� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

 

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = � Φ𝑋𝑋𝑋𝑋(𝜔𝜔) exp(i𝜔𝜔𝜏𝜏)𝑑𝑑𝜔𝜔
∞

−∞
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3) Tail behavior of PSD tells us about whether the process is a 2nd order process or not. 

If lim
|𝜔𝜔|→∞

|𝜔𝜔| ⋅ Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = 0, the integral ∫ Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔∞
−∞ = E[     ] is __________, thus 𝑋𝑋(𝑡𝑡) 

is a 2nd order process. 

4) Behavior of PSD at 𝜔𝜔 = 0: Note that 

𝛷𝛷𝑋𝑋𝑋𝑋(0) =
1
2π

� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

Therefore, 𝛷𝛷𝑋𝑋𝑋𝑋(0) diverges if lim
τ→∞

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) ≠ 0 

If the process has non-zero mean or include periodic component, the PSD diverges at 

ω = 0 

 

※ Alternative definition of PSD (e.g. L&S) 

𝛷𝛷𝑋𝑋𝑋𝑋(𝜔𝜔) =
1

2𝜋𝜋
� 𝛤𝛤𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

(Reasoning of the alternative definition) 

Since lim
|τ|→∞

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = µ2 (even without periodic components in the process), 𝛷𝛷𝑋𝑋𝑋𝑋(0) diverges in 

general. By contrast, if 𝛤𝛤𝑋𝑋𝑋𝑋(𝜏𝜏) is used in the definition of PSD, 𝛷𝛷𝑋𝑋𝑋𝑋(0) may not diverge even if 

the process has non-zero mean µ. 

Of course, there is no problem if µ = 0 (since 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = 𝛤𝛤𝑋𝑋𝑋𝑋(𝜏𝜏)) 
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 One-sided PSD (Using symmetry of PSD) 

𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔) = 2Φ𝑋𝑋𝑋𝑋(𝜔𝜔), ω ≥ 0 

 

Note:  

𝛷𝛷𝑋𝑋𝑋𝑋(𝜔𝜔) =
1

2𝜋𝜋� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

=
1

2π
� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)(cos𝜔𝜔𝜏𝜏 − sin𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

=
1
π
� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) cos𝜔𝜔𝜏𝜏 𝑑𝑑𝜏𝜏
∞

0
 

Therefore, 

𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔) =
2
𝜋𝜋� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) cos𝜔𝜔𝜏𝜏𝑑𝑑𝜏𝜏

∞

0
 

 

Inversely, 

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = � Φ𝑋𝑋𝑋𝑋(𝜔𝜔) exp(i𝜔𝜔𝜏𝜏)𝑑𝑑𝜔𝜔
∞

−∞
 

= �                cos(𝜔𝜔𝜏𝜏)𝑑𝑑𝜔𝜔
∞

0
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457.643 Structural Random Vibrations 
In-Class Material: Class 11 

 
II-2. Stochastic Calculus (contd.) 
 
 Example: “Random Telegraph Process” 

𝑋(𝑡) = 𝑋0 ⋅ (−1)𝑁(𝑡) 

where 𝑋0~𝑁(0, σ2) and 𝑁(𝑡) is a homogeneous Poisson process with the mean occurrence 

rate ν 

 

One can show the auto-correlation function of a random telegraph process is 

𝑅𝑋𝑋(𝜏) = 𝜎2 ⋅ 𝑒−2𝜈|𝜏| 

 

The PSD of 𝑋(𝑡) is derived as follows: 

𝛷𝑋𝑋(𝜔) =
1

2π
∫ 𝑅𝑋𝑋(𝜏) exp(−i𝜔𝜏) 𝑑𝜏

∞

−∞
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=
1

2π
∫ 𝜎2 ⋅ 𝑒−2𝜈|𝜏| ⋅ exp(−i𝜔𝜏) 𝑑𝜏

∞

−∞

 

=
1

π
∫                                   𝑑𝜏

∞

0

 

=
σ2

𝜋
[

𝑒−2𝜈𝜏

4𝜈2 + 𝜔2
(−2𝜈 cos 𝜔𝜏 + 𝜔 sin 𝜔𝜏)]

𝜏=0

∞

 

 

=
          

                          
, −∞ < ω < ∞ 

 

One-sided PSD: 

𝐺𝑋𝑋(𝜔) =
           

                               
                      , ω ≥ 0 

 
 Example 

𝑋(𝑡) = 𝐴cos(𝜔0𝑡) + 𝐵sin(𝜔0𝑡)  where E[𝐴] = E[𝐵] = 0, E[A2] = E[𝐵2] = 𝜎2, and ρ𝐴𝐵 = 0 

It was shown that 𝜇𝑋(𝑡) = 0 and ϕXX(𝑡1, 𝑡2) = 𝑅𝑋𝑋(𝜏) = 𝜎2 cos 𝜔0𝜏 (“                          ” process) 

 

Note: 
 

∫ ecxcos𝑏𝑥 𝑑𝑥 =
ecx

(𝑐2 + 𝑏2)
(𝑐 ⋅ cos 𝑏𝑥 + 𝑏 ⋅ sin 𝑏𝑥) 
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ΦXX(𝜔) =
1

2𝜋
∫ 𝑅𝑋𝑋(𝜏) exp(−i𝜔𝜏)𝑑𝜏

∞

−∞

 

=
σ2

2𝜋
∫ cos 𝜔0𝜏 ⋅ cos 𝜔𝜏 𝑑𝜏

∞

−∞

 

=
σ2

2𝜋
∫

1

2
[                                                  ]

∞

−∞

𝑑𝜏 

=
σ2

2𝜋
∫ [                                                    ] 𝑑𝜏

∞

0

 

=
σ2

2𝜋
[

           

                     
+

           

                     
]

𝜏=0

∞
 

 

Note:  sin𝜔𝑡

𝜔
|

𝑡=0

∞
= 𝜋 ⋅ 𝛿(𝜔)  
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Therefore, 

𝛷𝑋𝑋(𝜔) =
𝜎2

2𝜋
[𝜋𝛿(𝜔 − 𝜔0) + 𝜋𝛿(𝜔 + 𝜔0)] =

𝜎2

2
[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] 

          

∫ Φ𝑋𝑋(𝜔)𝑑𝜔
∞

−∞
= E[     ] =                                  ∫ 𝐺𝑋𝑋(𝜔)𝑑𝜔 = E[      ] =

∞

0
 

 
 Special processes 

1) Narrow-band process (Example above is the ideal narrow-band process) 
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2) Wide-band process 

          

 

 

3) White noise (ideal wide-band process) 

          

𝑅𝑋𝑋(𝜏) = ∫ Φ𝑋𝑋(𝜔) exp(i𝜔𝜏)𝑑𝜔
∞

−∞

= ∫ Φ0 exp(i𝜔𝜏) 𝑑𝜔
∞

−∞

= 2πΦ0𝛿(𝜏) 

Note: 1 = ∫ 𝛿(𝜏)𝑒−𝑖𝜔𝜏∞

−∞
𝑑𝜏 and thus δ(τ) =

1

2π
∫ 1 ⋅ 𝑒𝑖𝜔𝜏𝑑𝜔

∞

−∞
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4) “Banded” white noise (more realistic WN) 

          

 

5) “Filtered” white noise 

                        

e.g. SDOF oscillator (Kanai-Tajimi filter) 

 

※ “Shot Noise” 

𝜇𝑋(𝑡) = 0 and 

𝜅𝑋𝑋(𝑡1, 𝑡2) = 𝜙𝑋𝑋(𝑡1, 𝑡2) = 𝐼(𝑡1) ⋅ 𝛿(𝑡1 − 𝑡2) = 𝐼(𝑡1) ⋅ 𝛿(𝜏) 

Here 𝐼(𝑡) is time-varying “intensity function.” 

Therefore, a __________ ___________ shot noise is a __________ __________ 

That is, 𝐼(𝑡1) = 𝐼 = 2𝜋Φ0 for WN 

ℎ(𝑡) 

𝐻(𝜔) 
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457.643 Structural Random Vibrations 
In-Class Material: Class 12 

 
II-2. Stochastic Calculus (contd.) 
 
 Cross PSD 

Consider jointly processes 𝑋𝑋(𝑡𝑡) and 𝑌𝑌(𝑡𝑡), i.e. 

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) 

Cross PSD of 𝑋𝑋(𝑡𝑡) and 𝑌𝑌(𝑡𝑡) is defined as 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) ≡ lim
𝑇𝑇→∞

𝜋𝜋
𝑇𝑇
𝐸𝐸[𝑋𝑋�(𝜔𝜔,𝑇𝑇)𝑌𝑌�∗(𝜔𝜔,𝑇𝑇)] 

One can show 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) =
1

2𝜋𝜋
� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) exp(−i𝜔𝜔𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

=
1
2π

� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)             𝑑𝑑𝜏𝜏
∞

−∞
− 𝑖𝑖

1
2π

� 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)             𝑑𝑑𝜏𝜏
∞

−∞
 

“co-spectrum”                 “quad-spectrum” 

 

Properties of Cross PSD Φ𝑋𝑋𝑋𝑋(𝜔𝜔) 

1) Hermitian 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = Φ𝑋𝑋𝑋𝑋
∗ (𝜔𝜔) 

Note: Re ΦXY(𝜔𝜔) = ReΦ𝑋𝑋𝑋𝑋(−𝜔𝜔), Im ΦXY(𝜔𝜔) = −Im Φ𝑋𝑋𝑋𝑋(−𝜔𝜔) 
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Note: E[𝑋𝑋(𝑡𝑡) ⋅ 𝑌𝑌(𝑡𝑡)] = 𝑅𝑅𝑋𝑋𝑋𝑋(  ) = ∫               𝑑𝑑𝜔𝜔∞
−∞  

cf. E[𝑋𝑋2(𝑡𝑡)] = 

2) If lim
ω→0

𝜔𝜔 ⋅ Re Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = 0, E[𝑋𝑋(𝑡𝑡) ⋅ 𝑌𝑌(𝑡𝑡)] is ___________. 

3) Im Φ𝑋𝑋𝑋𝑋(0) = 

Re Φ𝑋𝑋𝑋𝑋(0) =
1

2𝜋𝜋� 𝑅𝑅𝑋𝑋𝑌𝑌(𝜏𝜏) exp(−𝑖𝑖 ⋅ 0 ⋅ 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
= 

※ Application example of cross PSD 

Coherency function of ground acceleration processes 𝑎𝑎𝑘𝑘(𝑡𝑡) and 𝑎𝑎𝑙𝑙(𝑡𝑡) at stations 𝑘𝑘 and 𝑙𝑙: 

𝛾𝛾𝑘𝑘𝑙𝑙(𝜔𝜔) =
𝐺𝐺𝑎𝑎𝑘𝑘𝑎𝑎𝑙𝑙(𝜔𝜔)

�𝐺𝐺𝑎𝑎𝑘𝑘𝑎𝑎𝑘𝑘(𝜔𝜔) ⋅ 𝐺𝐺𝑎𝑎𝑙𝑙𝑎𝑎𝑙𝑙(𝜔𝜔)
 

Using the coherency function, one can characterize 

(1) Incoherence effect: scattering of waves in the heterogeneous medium and differential 

superpositioning of waves 

(2) Wave passage effect: delay in the arrival of the wave 

(3) Attenuation effect: amplitude decreases due to geometric spreading, material damping 

and wave scattering 

 

 PSD of derivative process 

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = � Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔
∞

−∞
 

𝑅𝑅�̇�𝑋𝑋𝑋(𝜏𝜏) =
𝑑𝑑𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)

𝑑𝑑𝜏𝜏
 

= � (      )Φ𝑋𝑋𝑋𝑋(𝜔𝜔)
∞

−∞
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜏𝜏 

Der Kiureghian, A. (1996). A coherency model for spatially varying ground motions. Earthquake Engineering 
and Structural Dynamics, 25:99-111. 
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Comparing the two equations above, we note 

Φ�̇�𝑋𝑋𝑋(𝜔𝜔) = 

It is also seen that 

Φ𝑋𝑋�̇�𝑋(𝜔𝜔) = 

We also know that 

𝑅𝑅�̇�𝑋�̇�𝑋(𝜏𝜏) = −
𝑑𝑑2𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏2

 

= −� (        )2Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜏𝜏
∞

−∞
 

= �                        𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜏𝜏
∞

−∞
 

Therefore, 

Φ�̇�𝑋�̇�𝑋(𝜔𝜔) = 

In general, 

Φ𝑋𝑋(𝑚𝑚)𝑋𝑋(𝑛𝑛)(𝜔𝜔) = (𝑖𝑖𝜔𝜔)𝑚𝑚(−𝑖𝑖𝜔𝜔)𝑛𝑛Φ𝑋𝑋𝑋𝑋(𝜔𝜔) 

 

 Generation of artificial time histories by PSD 

e.g. “Spectral representation” method 

Shinozuka & Deodatis 1991: Stationary & Gaussian 

Deodatis & Micaletti 2001: Non-Gaussian 

  𝑋𝑋(𝑡𝑡) = �𝑎𝑎𝑖𝑖cos (𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜃𝜃𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 𝑎𝑎𝑖𝑖: contribution from the frequency 𝜔𝜔𝑖𝑖 ~ determined by ______ 

 𝜔𝜔𝑖𝑖: closely-spaced frequency values (>0) 

 𝜃𝜃𝑖𝑖: random phase angle ~ U(0,2π] 

 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑗𝑗 are statistically independent (𝑖𝑖 ≠ 𝑗𝑗) 
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Check 

1) E[𝑋𝑋(𝑡𝑡)] 

E[cos(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜃𝜃𝑖𝑖)] = � cos(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜃𝜃𝑖𝑖)            𝑑𝑑𝜃𝜃
2𝜋𝜋

0
 

= 

Therefore, 𝑋𝑋(𝑡𝑡) is a _____-______ process 

2) 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) 

𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = ��𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗E�cos(𝜔𝜔𝑖𝑖𝑡𝑡1 + 𝜃𝜃𝑖𝑖) ⋅ cos�𝜔𝜔𝑗𝑗𝑡𝑡2 + 𝜃𝜃𝑗𝑗��
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

(𝑖𝑖 ≠ 𝑗𝑗) 

E�cos(𝜔𝜔𝑖𝑖𝑡𝑡1 + 𝜃𝜃𝑖𝑖) ⋅ cos�𝜔𝜔𝑗𝑗𝑡𝑡2 + 𝜃𝜃𝑗𝑗�� = E[cos(𝜔𝜔𝑖𝑖𝑡𝑡1 + 𝜃𝜃𝑖𝑖)] ⋅ E�cos�𝜔𝜔𝑗𝑗𝑡𝑡2 + 𝜃𝜃𝑗𝑗�� 

= 

(𝑖𝑖 = 𝑗𝑗) 

E[cos(𝜔𝜔𝑖𝑖𝑡𝑡1 + 𝜃𝜃𝑖𝑖) ⋅ cos(𝜔𝜔𝑖𝑖𝑡𝑡2 + 𝜃𝜃𝑖𝑖)] =
1
2 �

E[cos(𝜔𝜔𝑖𝑖(𝑡𝑡1 + 𝑡𝑡2) + 2𝜃𝜃𝑖𝑖)] + E�cos�𝜔𝜔𝑖𝑖(𝑡𝑡1 − 𝑡𝑡2)��� 

=
1
2

cos�𝜔𝜔𝑖𝑖(𝑡𝑡1 − 𝑡𝑡2)� 

= 1
2

cos (𝜔𝜔𝑖𝑖    )  → 𝑋𝑋(𝑡𝑡) is a __________ process 

Therefore,  

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) =
1
2
�𝑎𝑎𝑖𝑖2cos (𝜔𝜔𝑖𝑖𝜏𝜏)
𝑛𝑛

𝑖𝑖=1

 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) =
1
4
�𝑎𝑎𝑖𝑖2[𝛿𝛿(𝜔𝜔 + 𝜔𝜔𝑖𝑖) + 𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

 

 

 

Recall 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = 𝜎𝜎2𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑜𝑜𝜏𝜏  Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = 𝜎𝜎2

2
[𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑜𝑜) + 𝛿𝛿(𝜔𝜔 + 𝜔𝜔𝑜𝑜)] 
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Given PSD                                                  Spectral Representation 

 
How to determine 𝑎𝑎𝑖𝑖? 

… such that the powers E[𝑋𝑋2] in the corresponding intervals are equivalent 

� Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔
𝑖𝑖𝑖𝑖+𝑖𝑖𝑖𝑖+1

2

𝑖𝑖𝑖𝑖−1+𝑖𝑖𝑖𝑖
2

= 

When Δω is small, 

ΦXX(𝜔𝜔𝑖𝑖) ⋅
𝜔𝜔𝑖𝑖+1 − 𝜔𝜔𝑖𝑖−1

2
= 

Therefore, 

∴   𝑎𝑎𝑖𝑖 = 2�Φ𝑋𝑋𝑋𝑋(𝜔𝜔𝑖𝑖) ⋅
𝜔𝜔𝑖𝑖+1 − 𝜔𝜔𝑖𝑖−1

2
 

           = 2�Φ𝑋𝑋𝑋𝑋(𝜔𝜔𝑖𝑖) ⋅        

 

The generated process has Gaussianity and Ergodicity (proof: Deodatis 2001) 

 
 
 Spectral moments 

 VanMarcke (1972, ASME JEM): first introduced 

 Michaelov et al. (1999, Structural Safety): a good summary and extension to 

nonstationary case 
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The m-th order spectral moment is defined as 

  𝜆𝜆𝑚𝑚 = � 𝜔𝜔𝑚𝑚𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0
 

1) Help compute variances easily 

𝜆𝜆0 = � 𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔 =
∞

0
 

𝜆𝜆2 = � 𝜔𝜔2𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0
= 

𝜆𝜆4 = � 𝜔𝜔4𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0
= 

𝜆𝜆2𝑛𝑛 = � 𝜔𝜔2𝑛𝑛𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔 =
∞

0
 

2) Capture frequency-related characteristics of a random process 

(in analogy to spectral moments E[𝑋𝑋𝑚𝑚] capturing characteristics of a random process) 

 Central frequency 

  𝜔𝜔𝑐𝑐 =
λ1
𝜆𝜆0

=
∫ 𝜔𝜔𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔∞
0

∫ 𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔∞
0

 

In analogy to the mean 

E[𝑋𝑋] =
∫ 𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞

∫ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 ∞
−∞

= 

Geometric “center” of probability 

density function 
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 Normalized radius of gyration of PSD 

s =

�𝜆𝜆2𝜆𝜆0
− �𝜆𝜆1𝜆𝜆0

�
2

𝜔𝜔𝑐𝑐
 

=
�𝜆𝜆2𝜆𝜆0

− 𝜔𝜔𝑐𝑐2

𝜔𝜔𝑐𝑐
 

= �
𝜆𝜆0𝜆𝜆2
𝜆𝜆12

− 1  ,    0 ≤ 𝑐𝑐 < ∞ 

 Bandwidth factor 

δ =
s

√s2 + 1
  

If s → 0, δ = 

   s → ∞, δ = 

Therefore, 0 ≤ δ ≤ 1 

If s = �𝜆𝜆0𝜆𝜆2
𝜆𝜆12

− 1 is substituted,  

δ = �1 −
𝜆𝜆12

𝜆𝜆0𝜆𝜆2
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 457.643 Structural Random Vibrations 
In-Class Material: Class 13 

 
II-2. Stochastic Calculus (contd.) 
 
 Ergodicity 

 
 
 
 
 

Ensemble Average: E[𝑋𝑋(𝑡𝑡)] = 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
Temporal Average: 𝑚𝑚𝑇𝑇 =  
 

Average over the time domain is actually a _________ variable. Consider 

𝑀𝑀𝑇𝑇 =
1
𝑇𝑇
� 𝑋𝑋(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
= 〈𝑋𝑋(𝑡𝑡)〉 

𝜙𝜙𝑇𝑇(𝜏𝜏) =
1

𝑇𝑇 − 𝜏𝜏
� 𝑋𝑋(𝑡𝑡 + 𝜏𝜏)𝑋𝑋(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇−𝜏𝜏

0
 

These are random because the results depend on random outcome (selection) of a time 

history. 

1) “Ergodic” process: If 𝑋𝑋(𝑡𝑡) is an ergodic process, one can use the temporal average 

from a time history 𝑥𝑥(𝑡𝑡) as an substitute for an ___________ expectation. 
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2) Basic __________ condition for ergodicity: stationarity 

Stationary            Ergodic 

 

What if 𝑋𝑋(𝑡𝑡) is NOT stationary? µ(t1) ≠ 𝜇𝜇(𝑡𝑡2) 

3) Condition for ergodicity in the mean 𝑀𝑀𝑇𝑇 

 lim
𝑇𝑇→∞

E[𝑀𝑀𝑇𝑇] = 𝜇𝜇𝑋𝑋(𝑡𝑡) = E[𝑋𝑋(𝑡𝑡)] ~ automatically satisfied for _________ process 

 lim
𝑇𝑇→∞

𝑉𝑉𝑉𝑉𝑉𝑉[𝑀𝑀𝑇𝑇] = 

Var[𝑀𝑀𝑇𝑇] = E ��
1
𝑇𝑇
� 𝑋𝑋(𝑡𝑡)
𝑇𝑇

0
𝑑𝑑𝑡𝑡 − 𝜇𝜇𝑋𝑋�

2

� 

= E ��
1
𝑇𝑇
� (𝑋𝑋(𝑡𝑡) − 𝜇𝜇𝑋𝑋)
𝑇𝑇

0
𝑑𝑑𝑡𝑡�

2

� 

=
1
𝑇𝑇2

� � Γ𝑋𝑋𝑋𝑋(𝑡𝑡1 − 𝑡𝑡2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
𝑇𝑇

0

𝑇𝑇

0
 

=
2
𝑇𝑇
� �1 −

𝜏𝜏
𝑇𝑇
�Γ𝑋𝑋𝑋𝑋(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑇𝑇

0
 

∴ lim
𝑇𝑇→∞

Var[𝑀𝑀𝑇𝑇] = 0 ↔ lim
𝑇𝑇→∞

1
𝑇𝑇 ∫ Γ𝑋𝑋𝑋𝑋(𝜏𝜏)𝑑𝑑𝜏𝜏 = 0𝑇𝑇

0  (See Lin 1967, p. 64) 

This is the condition for “ergodicity in the mean” 

4) Condition for ergodicity in the correlation function 𝜙𝜙𝑇𝑇(𝜏𝜏) 

 lim
𝑇𝑇→∞

E[𝜙𝜙𝑇𝑇(𝜏𝜏)] = 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) ~ automatically satisfied for _________ process 

“Flip and Rotate” trick used  
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 lim
𝑇𝑇→∞

Var[𝜙𝜙𝑇𝑇(𝜏𝜏)] = 0 

The latter is equivalent to (Lin 1967, p. 65) 

lim
𝑇𝑇→∞

1
𝑇𝑇
� E{[𝑋𝑋(𝑡𝑡 + 𝜏𝜏)𝑋𝑋(𝑡𝑡) − 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)][𝑋𝑋(𝑡𝑡 + 𝜏𝜏 + 𝑢𝑢)𝑋𝑋(𝑡𝑡 + 𝑢𝑢) − 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏)]}𝑑𝑑𝑢𝑢 = 0
𝑇𝑇

0
 

 
Example: Telegraph Random Process 

𝛤𝛤𝑋𝑋𝑋𝑋(𝜏𝜏) = 𝜎𝜎2 exp(−2𝜈𝜈|𝜏𝜏|) 

Is the process ergodic in the mean? 
  

Example: 𝑌𝑌(𝑡𝑡) = 𝐴𝐴 + 𝑋𝑋(𝑡𝑡) where 𝑋𝑋(𝑡𝑡) is the random telegraph process, and E[𝐴𝐴] = 0 and 

Var[𝐴𝐴] = 𝜎𝜎2. Is 𝑌𝑌(𝑡𝑡) ergodic in the mean? 
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III. Random Vibration of Linear Structures 

 Stochastic response of “linear” structural system 

Recall the system equation introduced in 0. Introduction 

𝒟𝒟[𝒳𝒳(𝑥𝑥, 𝑡𝑡)] = 𝒴𝒴(𝑥𝑥, 𝑡𝑡), 𝑡𝑡 ≥ 0, 𝑥𝑥 ∈ 𝐷𝐷 ⊂ ℛ𝑑𝑑 
 

1. Deterministic systems and input (457.516 Dynamics of Structures) 
2. Deterministic systems and stochastic input (457.643 Structural Random Vibrations) 
3. Stochastic systems and deterministic input (457.646 Topics in Structural Reliability) 
4. Stochastic systems and input 

 
We consider the second case in this course. The system is “linear” when the differential 

equation is linear, i.e. s__________ principle works. 

e.g. if 𝑥𝑥1(𝑡𝑡) is the response to 𝑦𝑦1(𝑡𝑡), and 𝑥𝑥2(𝑡𝑡) is the response to the input 𝑦𝑦2(𝑡𝑡), the response 

to 𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) is ______________ 

III-1. Response Functions of Structural Systems 

 Characterization of linear systems 

1) Time-domain: “Impulse Response Function” 

 

 

 

 

 

2) Frequency-domain: “Frequency Response Function” 
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 Impulse response function of a linear system 

Consider the differential equation (DE) of a general linear system 

𝑉𝑉𝑛𝑛
𝑑𝑑𝑛𝑛𝑥𝑥
𝑑𝑑𝑡𝑡𝑛𝑛

+ 𝑉𝑉𝑛𝑛−1
𝑑𝑑𝑛𝑛−1𝑥𝑥
𝑑𝑑𝑡𝑡𝑛𝑛−1

+⋯+ 𝑉𝑉1
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑉𝑉0 = 𝑝𝑝(𝑡𝑡) 

Impulse response function of a linear system ℎ(𝑡𝑡) is the solution of the DE when 𝑝𝑝(𝑡𝑡) = 𝛿𝛿(𝑡𝑡), 

i.e. 

𝑉𝑉𝑛𝑛
𝑑𝑑𝑛𝑛ℎ
𝑑𝑑𝑡𝑡𝑛𝑛

+ 𝑉𝑉𝑛𝑛−1
𝑑𝑑𝑛𝑛−1ℎ
𝑑𝑑𝑡𝑡𝑛𝑛−1

+ ⋯+ 𝑉𝑉1
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

+ 𝑉𝑉0 = 𝛿𝛿(𝑡𝑡) ⋯   (∗) 

ℎ(𝑡𝑡) = ℎℎ(𝑡𝑡) + ℎ𝑝𝑝(𝑡𝑡) 

where ℎℎ(𝑡𝑡): homogeneous solution and ℎ𝑝𝑝(𝑡𝑡): particular solution 

Strategy: Model the dirac delta input function by a triangular function for 𝑡𝑡 ∈ (−𝜖𝜖, 𝜖𝜖). Then, 

ℎ(𝑡𝑡) = ℎℎ(𝑡𝑡) with the initial conditions caused by the impulse. 

 

From (*), it is clear that only the _______est term can be dirac delta function because if an 

non-highest-order term is dirac delta, the higher-order-terms will blow up. 

∴ 𝑉𝑉𝑛𝑛
𝑑𝑑𝑛𝑛ℎ
𝑑𝑑𝑡𝑡𝑛𝑛

= 𝛿𝛿(𝑡𝑡), 0− < 𝑡𝑡 < 0+ 

𝑉𝑉𝑛𝑛
𝑑𝑑𝑛𝑛−1ℎ
𝑑𝑑𝑡𝑡𝑛𝑛−1

�
0−

0+

= � 𝛿𝛿(𝑡𝑡)𝑑𝑑𝑡𝑡
0+

0−
=          → 𝑉𝑉𝑛𝑛

𝑑𝑑𝑛𝑛−1ℎ
𝑑𝑑𝑡𝑡𝑛𝑛−1

�
𝑡𝑡=0+

= 

Therefore, the initial conditions at 𝑡𝑡 = 0+ are 

𝑑𝑑𝑛𝑛−1ℎ
𝑑𝑑𝑡𝑡𝑛𝑛−1

=        ,
𝑑𝑑𝑛𝑛−2ℎ
𝑑𝑑𝑡𝑡𝑛𝑛−2

= ⋯ = ℎ =     
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 457.643 Structural Random Vibrations 
In-Class Material: Class 14 

 
III-1. Response Functions of Structural Systems (contd.) 

 Characterization of linear systems (contd.)  

Example: IRF of an SDOF oscillator 

Equations of Motion: 

1) External force: 𝑝𝑝(𝑡𝑡) 

𝑚𝑚�̈�𝑥(𝑡𝑡) + 𝑐𝑐�̇�𝑥(𝑡𝑡) + 𝑘𝑘𝑥𝑥(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) 

2) Ground acceleration: �̈�𝑥𝑔𝑔(𝑡𝑡) 

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑢 + 𝑘𝑘𝑢𝑢 = 0 

 𝑥𝑥: total displacement, 𝑢𝑢: relative displacement 

 Thus, 𝑥𝑥 =  

𝑚𝑚�̈�𝑢 + 𝑐𝑐�̇�𝑢+ 𝑘𝑘𝑢𝑢 = 

Divide the equation by 𝑚𝑚, 

�̈�𝑠(t) + 2𝜉𝜉𝜔𝜔0�̇�𝑠(𝑡𝑡) + ω0
2𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) 

where ω0 = �𝑘𝑘
𝑚𝑚

, 𝜉𝜉 = 𝑐𝑐
2𝑚𝑚𝜔𝜔0

= 𝑐𝑐
2√𝑘𝑘𝑚𝑚

, and  

𝑓𝑓(𝑡𝑡) = 𝑝𝑝(𝑡𝑡)
𝑚𝑚

  or  −ẍg(𝑡𝑡) 
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IRF of the system is obtained from 

ℎ̈(𝑡𝑡) + 2𝜉𝜉𝜔𝜔0ℎ̇(𝑡𝑡) + 𝜔𝜔0
2ℎ(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)   

Initial conditions at 𝑡𝑡 = 0+: 

 𝑑𝑑𝑛𝑛−1ℎ
𝑑𝑑𝑡𝑡𝑛𝑛−1

�
0+

= 1
𝑎𝑎𝑛𝑛

      𝑑𝑑ℎ
𝑑𝑑𝑡𝑡
�
0+

= ℎ′(0+) = 

 Lower-order derivatives are zero  ℎ(0+) = 

Find the homogeneous solution ℎℎ(𝑡𝑡) from the equation of motion 

ℎ̈(𝑡𝑡) + 2𝜉𝜉𝜔𝜔0ℎ̇(𝑡𝑡) + 𝜔𝜔0
2ℎ(𝑡𝑡) = 0   

Setting ℎ(𝑡𝑡) = 𝑒𝑒𝑟𝑟𝑡𝑡 and substituting it into the equation, 

𝑟𝑟2 ⋅ 𝑒𝑒𝑟𝑟𝑡𝑡 + 2𝜉𝜉𝜔𝜔0𝑟𝑟 ⋅ 𝑒𝑒𝑟𝑟𝑡𝑡 +𝜔𝜔0
2 ⋅ 𝑒𝑒𝑟𝑟𝑡𝑡 = 0  

𝑟𝑟2 + 2ξω0𝑟𝑟 + 𝜔𝜔0
2 = 0 

𝑟𝑟 = −ξω0 ± �𝜉𝜉2𝜔𝜔0
2 −𝜔𝜔0

2 

For 0 ≤ ξ ≤ 1 (most practical situation), 

𝑟𝑟 = −ξω0 ± �𝜉𝜉2𝜔𝜔02 − 𝜔𝜔02 = −ξω0 ± 𝑖𝑖𝜔𝜔𝐷𝐷 

where 𝜔𝜔𝐷𝐷 = 𝜔𝜔0�1− 𝜉𝜉2 (damped natural frequency) 

ℎ(𝑡𝑡) = 𝐴𝐴1𝑒𝑒(−𝜉𝜉𝜔𝜔0+𝑖𝑖𝜔𝜔𝐷𝐷)𝑡𝑡 + 𝐴𝐴2𝑒𝑒(−𝜉𝜉𝜔𝜔0−𝑖𝑖𝜔𝜔𝐷𝐷)𝑡𝑡 

= 𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡�𝐴𝐴1𝑒𝑒𝑖𝑖𝜔𝜔𝐷𝐷𝑡𝑡 + 𝐴𝐴2𝑒𝑒−𝑖𝑖𝜔𝜔𝐷𝐷𝑡𝑡� 

= 𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡(𝐵𝐵1 cos𝜔𝜔𝐷𝐷𝑡𝑡 + 𝐵𝐵2 sin𝜔𝜔𝐷𝐷𝑡𝑡) 

Determine 𝐵𝐵1 and 𝐵𝐵2 by the IC’s, i.e. ℎ′(0+) = 1 and ℎ(0+) = 0 

ℎ(0) = 𝐵𝐵1 = 

ℎ′(𝑡𝑡) = 𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡(−𝐵𝐵1𝜔𝜔𝐷𝐷 sin𝜔𝜔𝐷𝐷 𝑡𝑡 + 𝐵𝐵2𝜔𝜔𝐷𝐷 cos𝜔𝜔𝐷𝐷𝑡𝑡 − 𝜉𝜉𝜔𝜔0𝐵𝐵1 cos𝜔𝜔𝐷𝐷𝑡𝑡 − 𝜉𝜉𝜔𝜔0𝐵𝐵2 sin𝜔𝜔𝐷𝐷𝑡𝑡) 

∴ ℎ′(0) = 𝐵𝐵2𝜔𝜔𝐷𝐷 = 
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Finally, 

ℎ(𝑡𝑡) =
1
𝜔𝜔𝐷𝐷

𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 ,   𝑡𝑡 > 0     (0 otherwise) 

 

Note: This is the IRF when the mass-normalized force 𝑓𝑓(𝑡𝑡) is given as δ(t). Therefore, if the 

force 𝑝𝑝(𝑡𝑡) is given as δ(t), the IRF is 

ℎ(𝑡𝑡) =
1

𝑚𝑚𝜔𝜔𝐷𝐷
𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 ,   𝑡𝑡 > 0     (0 otherwise) 

 

For ξ = 0 (no damping; undamped system), 

ℎ(𝑡𝑡) =
1
ω0

sin𝜔𝜔0𝑡𝑡 ,    𝑡𝑡 > 0 

 

For ξ = 1 (“critical damping”), 

 Try 𝑒𝑒𝑟𝑟𝑡𝑡 and 𝑟𝑟 ⋅ 𝑒𝑒𝑟𝑟𝑡𝑡 in solving the DE; or 

 ℎ(𝑡𝑡) = lim
𝜉𝜉→1

1
𝜔𝜔0�1−𝜉𝜉2

𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 

Either way, the IRF is derived as 

ℎ(𝑡𝑡) = 𝑡𝑡 ⋅ 𝑒𝑒−𝜔𝜔0𝑡𝑡,    𝑡𝑡 > 0 
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 Response of a linear system to general loading (by IRF)  

 

 

 

 

 

Loading at 𝑡𝑡 = τ: 𝑓𝑓(𝜏𝜏)𝛿𝛿(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏 

 Response at time 𝑡𝑡 caused by 𝑓𝑓(𝜏𝜏): 𝑓𝑓(τ)ℎ(𝑡𝑡 − τ)𝑑𝑑τ 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥ℎ(𝑡𝑡) + 𝑥𝑥𝑝𝑝(𝑡𝑡) 

= 𝑥𝑥ℎ(𝑡𝑡) + � 𝑓𝑓(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

Note:  

 Homogeneous solution 𝑥𝑥ℎ(𝑡𝑡) is determined by ______ 

 Particular solution 𝑥𝑥𝑝𝑝(𝑡𝑡) is alternatively obtained by ∫ 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0  (convolution 

integral or Duhamel’s integral)  works because of the __________ rule (linear 

system) 

 The force and the IRF in the integral should be consistent in terms of _________ by 

mass 

e.g. Standard SDOF oscillator 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(0)𝑔𝑔(𝑡𝑡) + �̇�𝑥(0)ℎ(𝑡𝑡) + � 𝑓𝑓(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

where 

ℎ(𝑡𝑡) = 1
ωD
𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 ,    𝑡𝑡 > 0 and 

𝑔𝑔(𝑡𝑡) = e−𝜉𝜉𝜔𝜔0𝑡𝑡 ⋅ �cos𝜔𝜔𝐷𝐷𝑡𝑡+ 𝜉𝜉

�1−𝜉𝜉2
sin𝜔𝜔𝐷𝐷𝑡𝑡�,  𝑡𝑡 > 0 

Linear 
System 
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 Frequency response function of a linear system 

For a “stable” system subjected to a harmonic input 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡, its “steady-state” response is 

𝑥𝑥(𝑡𝑡) = 𝐻𝐻(ω)𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥ℎ(𝑡𝑡) + � 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
= 𝑥𝑥ℎ(𝑡𝑡) +� 𝑒𝑒𝑖𝑖𝜔𝜔(𝑡𝑡−𝜏𝜏)ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑡𝑡

0
 

Then, for a stable system, i.e. lim
𝑡𝑡→∞

𝑥𝑥ℎ(𝑡𝑡) = 0, 

lim
t→∞

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡 ⋅ � 𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

0
= 𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡𝐻𝐻(𝜔𝜔) 

Therefore, the relationship between IRF and FRF is 

𝐻𝐻(ω) = � ℎ(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏𝑑𝑑𝜏𝜏
∞

0
= � ℎ(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏𝑑𝑑𝜏𝜏

∞

−∞
 

ℎ(𝑡𝑡) =
1
2π

� 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝜔𝜔𝜏𝜏𝑑𝑑𝜔𝜔
∞

−∞
  

FRF and IRF form a Fourier pair and describe the linear system in the _________ and 

_______ domain respectively. 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 15 

 
III-1. Response Functions of Structural Systems (contd.) 

 Direct derivation of 𝐇𝐇(𝛚𝛚) 

Assume 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and find the particular solution in the form 𝑥𝑥𝑝𝑝(𝑡𝑡) = 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

Example 1 

�̈�𝑥 + 2𝜉𝜉𝜔𝜔0�̇�𝑥 + 𝜔𝜔0
2𝑥𝑥 = 2𝜉𝜉𝜔𝜔0𝑓𝑓̇ 

𝐻𝐻(𝜔𝜔) for the response 𝑥𝑥(𝑡𝑡) to the input 𝑓𝑓(𝑡𝑡)? 

 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑓𝑓̇(𝑡𝑡) = 

 𝑥𝑥(𝑡𝑡) = 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , �̇�𝑥(𝑡𝑡) =                    and �̈�𝑥(𝑡𝑡) = 

Substituting these into the equation, one finds 

𝐻𝐻(ω)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖[                                                       ] =                                   𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

Therefore, 

𝐻𝐻(𝜔𝜔) =
2𝑖𝑖𝜉𝜉𝜔𝜔0𝜔𝜔

𝜔𝜔02 − 𝜔𝜔2 + 2𝑖𝑖𝜉𝜉𝜔𝜔0𝜔𝜔
 

Example 2: Standard SDOF oscillator 

�̈�𝑥 + 2𝜉𝜉𝜔𝜔0�̇�𝑥 + 𝜔𝜔0
2𝑥𝑥 = 𝑓𝑓 

𝐻𝐻(𝜔𝜔) for the response 𝑥𝑥(𝑡𝑡) to the input 𝑓𝑓(𝑡𝑡)? 

 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

 𝑥𝑥(𝑡𝑡) = 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , �̇�𝑥(𝑡𝑡) =                    and �̈�𝑥(𝑡𝑡) = 

𝐻𝐻(ω)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖[                                                       ] = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

𝐻𝐻(𝜔𝜔) =
1

𝜔𝜔02 − 𝜔𝜔2 + 2𝑖𝑖𝜉𝜉𝜔𝜔0𝜔𝜔
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Note: Derivation of 𝐻𝐻(𝜔𝜔) for “state-space” formulation 

�̇�𝐳(𝑡𝑡) = 𝐀𝐀 ⋅ 𝐳𝐳(𝑡𝑡) + 𝐁𝐁 ⋅ 𝐰𝐰(𝑡𝑡) 

𝐲𝐲(𝑡𝑡) = 𝐂𝐂𝐲𝐲 ⋅ 𝐳𝐳(𝑡𝑡) + 𝐃𝐃𝐲𝐲 ⋅ 𝐰𝐰(𝑡𝑡) 

For example, consider the standard SDOF oscillator �̈�𝑥(𝑡𝑡) + 2𝜉𝜉𝜔𝜔0�̇�𝑥(𝑡𝑡) + 𝜔𝜔0
2𝑥𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡). If the 

system is described by a state-space formulation, 

𝐳𝐳(𝑡𝑡) = � �, 𝐀𝐀 = � �, 𝐁𝐁 = � � and 𝐰𝐰(𝑡𝑡) = [ ] 

If one is interested in the responses 𝑥𝑥(𝑡𝑡) and �̇�𝑥(𝑡𝑡), 𝐲𝐲(𝑡𝑡) =            , thus 𝐂𝐂𝐲𝐲 and 𝐃𝐃𝐲𝐲 are                   

and              respectively. 

As shown in Chen (1999), the frequency response function vector is in general obtained by 

𝐡𝐡(ω) = 𝐂𝐂𝐲𝐲(𝑖𝑖ω𝐈𝐈 − 𝐀𝐀)−1𝐁𝐁+ 𝐃𝐃𝐲𝐲 

(Derive the transfer function by Laplace transform and replace "s" by "𝑖𝑖ω") 

 Response to a general loading by 𝐇𝐇(𝛚𝛚) 

𝑥𝑥(𝑡𝑡) = � 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

= � 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)
1

2𝜋𝜋
� 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔
∞

−∞
𝑑𝑑𝜏𝜏

∞

−∞
 

= � 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞

1
2𝜋𝜋

� 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑖𝑖−𝑖𝑖)
∞

−∞
𝑑𝑑𝜏𝜏𝑑𝑑𝜔𝜔 

For the green-colored integral, we change the variable, i.e. �̃�𝑡 = 𝑡𝑡 − 𝜏𝜏, then it becomes 

𝑓𝑓̅(𝜔𝜔) =
1

2𝜋𝜋
� 𝑓𝑓(�̃�𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖�̃�𝑖𝑑𝑑�̃�𝑡
∞

−∞
 

 i.e. Fourier transform of the input time history. 

Finally, the response time history is obtained by 

𝑥𝑥(𝑡𝑡) = � 𝑓𝑓̅(𝜔𝜔)𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔
∞

−∞
 

Chen, C.T. (1999). Linear System Theory & Design, Oxford University Press. 
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 Derivation of 𝐡𝐡(𝐭𝐭) from 𝐇𝐇(𝛚𝛚) 

ℎ(𝑡𝑡) =
1
2π

� 𝐻𝐻(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔
∞

−∞
 

 Need to use “Residue Theorem” – appears in textbooks on complex analysis, e.g. 

Advanced Calculus for Applications (Hildebrand, 1976) 

Residue Theorem 

Consider 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖 is a complex value. Let 𝑓𝑓(𝑧𝑧) be “analytic” i.e. single-valued and finite 

derivative on contour 𝐶𝐶, and its inside except at a finite number of points, z1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑚𝑚 ("poles”) 

inside 𝐶𝐶. Then,  

�𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧 = 2𝜋𝜋𝑖𝑖�Res 𝑓𝑓(𝑧𝑧𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

  

(counter-clockwise) 

where Res 𝑓𝑓(𝑧𝑧𝑗𝑗) is the “residue” of 𝑓𝑓(𝑧𝑧) at 𝑧𝑧 = 𝑧𝑧𝑗𝑗 

For example, 𝑓𝑓(𝑧𝑧) = 1/(z − z1)(𝑧𝑧 − 𝑧𝑧2) has two poles,  

For a single pole, i.e. (𝑧𝑧 − 𝑧𝑧𝑗𝑗) appears in the denominator of 𝑓𝑓(𝑧𝑧), 

Res 𝑓𝑓�𝑧𝑧𝑗𝑗� = lim
𝑧𝑧→𝑧𝑧𝑗𝑗

�𝑧𝑧 − 𝑧𝑧𝑗𝑗� ⋅ 𝑓𝑓(𝑧𝑧) 

For a n-th order pole, i.e. �𝑧𝑧 − 𝑧𝑧𝑗𝑗�
𝑛𝑛 appears in the denominator of 𝑓𝑓(𝑧𝑧) 

Res 𝑓𝑓�𝑧𝑧𝑗𝑗� = lim
𝑧𝑧→𝑧𝑧𝑗𝑗

�𝑧𝑧 − 𝑧𝑧𝑗𝑗�
𝑛𝑛 ⋅ 𝑓𝑓(𝑧𝑧) 

Application of the residue theorem to a line integral, e.g. ∫ 𝑓𝑓(𝜔𝜔)𝑑𝑑𝜔𝜔∞
−∞   

� 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧
  

𝐶𝐶
= � 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

𝑟𝑟

−𝑟𝑟
+ �𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

𝑠𝑠
 

 

 

 

C 
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Provided ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧S  vanishes as 𝑟𝑟 → ∞ 

� 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧
∞

−∞
= � 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

  

𝐶𝐶
= 2𝜋𝜋𝑖𝑖�Res 𝑓𝑓(𝑧𝑧𝑗𝑗)

𝑚𝑚

𝑗𝑗=1

 

(upper half-plane) 

What if we need to use the lower half-plane to make ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧S   vanish? 

� 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧
  

𝐶𝐶
= � 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

−𝑟𝑟

𝑟𝑟
+ �𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

𝑠𝑠
 

Therefore, for the lower half-plane, 

� 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧
∞

−∞
= −� 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

  

𝐶𝐶
= −2𝜋𝜋𝑖𝑖�Res 𝑓𝑓(𝑧𝑧𝑗𝑗)

𝑚𝑚

𝑗𝑗=1

 

 

Example: Derive IRF of an SDOF oscillator from its FRF 

Note its FRF is 

𝐻𝐻(𝜔𝜔) =
1

𝜔𝜔02 − 𝜔𝜔2 + 2𝑖𝑖𝜉𝜉𝜔𝜔0𝜔𝜔
 

ℎ(𝑡𝑡) =
1

2π
�

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝜔𝜔02 − 𝜔𝜔2 + 2𝑖𝑖𝜉𝜉𝜔𝜔0𝜔𝜔
𝑑𝑑𝜔𝜔

∞

−∞
 

=
1

2π
�

𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖

𝜔𝜔02 − 𝑧𝑧2 + 2𝑖𝑖𝜉𝜉𝜔𝜔0𝑧𝑧
𝑑𝑑𝑧𝑧

  

𝐶𝐶
−

1
2𝜋𝜋

�𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧
𝑠𝑠

 

Which half-plane should be used to make the second integral vanish? 

Consider poles of the analytic function 𝑓𝑓(𝑧𝑧), i.e. roots of the equation 𝜔𝜔0
2 − 𝑧𝑧2 + 2𝑖𝑖𝜉𝜉𝜔𝜔0𝑧𝑧 = 0 

 𝑧𝑧1 = ω0�−�1− 𝜉𝜉2 + 𝑖𝑖𝜉𝜉� 

 𝑧𝑧2 = ω0��1 − 𝜉𝜉2 + 𝑖𝑖𝜉𝜉� 

When 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖, 
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𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑒𝑒𝑖𝑖(𝑎𝑎+𝑖𝑖𝑖𝑖)𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖 ⋅ 𝑒𝑒−𝑖𝑖𝑖𝑖 

When 𝑖𝑖      0, the 1
2𝜋𝜋 ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧𝑠𝑠  vanishes as 𝑟𝑟 → ∞. Therefore, we should use the (           ) half-

plane. 

 

 

 

 

 

ℎ(𝑡𝑡) =
1

2𝜋𝜋
� 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

  

𝐶𝐶
=

1
2𝜋𝜋

⋅ 2𝜋𝜋𝑖𝑖�Res 𝑓𝑓�𝑧𝑧𝑗𝑗�
2

𝑗𝑗=1

= 𝑖𝑖 ⋅ �Res 𝑓𝑓(𝑧𝑧1) + Res 𝑓𝑓(𝑧𝑧2)� 

𝑓𝑓(𝑧𝑧) =
𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖

−(𝑧𝑧 − 𝑧𝑧1)(𝑧𝑧 − 𝑧𝑧2) 

 Res 𝑓𝑓(𝑧𝑧1) = lim
𝑧𝑧→𝑧𝑧1

(𝑧𝑧 − 𝑧𝑧1) ⋅ 𝑓𝑓(𝑧𝑧) = 𝑒𝑒𝑖𝑖𝑧𝑧1𝑡𝑡

−(𝑧𝑧1−𝑧𝑧2)
= 𝑒𝑒

−𝜔𝜔0�𝜉𝜉+𝑖𝑖�1−𝜉𝜉2�𝑡𝑡

2𝑖𝑖𝐷𝐷
 

 Res 𝑓𝑓(𝑧𝑧2) = lim
𝑧𝑧→𝑧𝑧2

(𝑧𝑧 − 𝑧𝑧2) ⋅ 𝑓𝑓(𝑧𝑧) = 𝑒𝑒𝑖𝑖𝑧𝑧2𝑡𝑡

−(𝑧𝑧2−𝑧𝑧1)
= 𝑒𝑒

−𝜔𝜔0�𝜉𝜉−𝑖𝑖�1−𝜉𝜉2�𝑡𝑡

−2𝑖𝑖𝐷𝐷
 

Finally, 

ℎ(𝑡𝑡) = 𝑖𝑖 ⋅ �Res 𝑓𝑓(𝑧𝑧1) + Res 𝑓𝑓(𝑧𝑧2)� 

=
1
ωD

𝑒𝑒−𝜉𝜉𝑖𝑖0𝑖𝑖 sin𝜔𝜔𝐷𝐷𝑡𝑡    (𝑡𝑡 > 0) 

 
III-2. Random Vibration Analysis of Linear Structures 

… 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 16 

 
III-2. Random Vibration Analysis of Linear Structures (contd.) 

 Response of a linear system to a stochastic input process 

Deterministic input 

𝑎𝑎𝑛𝑛
𝑑𝑑𝑛𝑛𝑥𝑥
𝑑𝑑𝑡𝑡𝑛𝑛

+ ⋯+ 𝑎𝑎1
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑎𝑎0 = 𝑝𝑝(𝑡𝑡) 

𝑥𝑥(𝑡𝑡) = �𝑥𝑥(𝑖𝑖)(0)𝑔𝑔𝑖𝑖(𝑡𝑡)
𝑛𝑛−1

𝑖𝑖=1

+ � 𝑝𝑝(𝜏𝜏)ℎ𝑝𝑝(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
  

�𝑥𝑥(𝑡𝑡) = �𝑥𝑥(𝑖𝑖)(0)𝑔𝑔𝑖𝑖(𝑡𝑡)
𝑛𝑛−1

𝑖𝑖=1

+ � 𝑓𝑓(𝜏𝜏)ℎ𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
� 

Stochastic input 

𝑎𝑎𝑛𝑛
𝑑𝑑𝑛𝑛𝑋𝑋
𝑑𝑑𝑡𝑡𝑛𝑛

+⋯+ 𝑎𝑎1
𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

+ 𝑎𝑎0 = 𝑃𝑃(𝑡𝑡) 

𝑋𝑋(𝑡𝑡) = �𝑋𝑋(𝑖𝑖)(0)𝑔𝑔𝑖𝑖(𝑡𝑡)
𝑛𝑛−1

𝑖𝑖=1

+ � 𝑃𝑃(𝜏𝜏)ℎ𝑝𝑝(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
  

 Example: stochastic response of standard SDOF oscillator 

�̈�𝑥(𝑡𝑡) + 2ξω0�̇�𝑥(𝑡𝑡) + 𝜔𝜔0
2𝑥𝑥 = 𝑓𝑓(𝑡𝑡)  

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(0)𝑔𝑔(𝑡𝑡) + �̇�𝑥(0)ℎ(𝑡𝑡) + � 𝑓𝑓(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

 𝑔𝑔(𝑡𝑡) = 𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡 ⋅ �cos𝜔𝜔𝐷𝐷𝑡𝑡 + 𝜉𝜉
�1−𝜉𝜉2

sin𝜔𝜔𝐷𝐷𝑡𝑡� ⋅ 𝑈𝑈(𝑡𝑡)  𝑔𝑔1(𝑡𝑡) above  

 ℎ(𝑡𝑡) = 1
𝜔𝜔𝐷𝐷

𝑒𝑒−𝜉𝜉𝜔𝜔0𝑡𝑡 ⋅ sin𝜔𝜔𝐷𝐷𝑡𝑡 ⋅ 𝑈𝑈(𝑡𝑡)  𝑔𝑔2(𝑡𝑡) above 

When there exists randomness in the initial conditions and the external force, the response is 

a stochastic response 
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𝑋𝑋(𝑡𝑡) = 𝑆𝑆1 ⋅ 𝑔𝑔(𝑡𝑡) + 𝑆𝑆2 ⋅ ℎ(𝑡𝑡) + � 𝐹𝐹(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

Question: µ𝑋𝑋(𝑡𝑡), ϕ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2), …? 

Assuming the integral (↗) exists in the mean-square sense, we can derive the moment 

functions as follows. 

1) µ𝑋𝑋(𝑡𝑡) = E[𝑋𝑋(𝑡𝑡)] 

=           ⋅ 𝑔𝑔(𝑡𝑡) +           ⋅ ℎ(𝑡𝑡) + �                ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

2) ϕ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = E[𝑋𝑋(𝑡𝑡1)𝑋𝑋(𝑡𝑡2)] 
=              ⋅ 𝑔𝑔(𝑡𝑡1)𝑔𝑔(𝑡𝑡2) +              ⋅ ℎ(𝑡𝑡1)ℎ(𝑡𝑡2) +                    ⋅ {𝑔𝑔(𝑡𝑡1)ℎ(𝑡𝑡2) + 𝑔𝑔(𝑡𝑡2)ℎ(𝑡𝑡1)} 

+� � 𝜙𝜙𝐹𝐹𝐹𝐹(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2

0

t1

0
 

+E �[𝑆𝑆1𝑔𝑔(𝑡𝑡1) + 𝑆𝑆2ℎ(𝑡𝑡1)]� 𝐹𝐹(𝜏𝜏2)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2
𝑡𝑡2

0
� 

+E �[𝑆𝑆1𝑔𝑔(𝑡𝑡2) + 𝑆𝑆2ℎ(𝑡𝑡2)]� 𝐹𝐹(𝜏𝜏1)ℎ(𝑡𝑡1 − 𝜏𝜏1)𝑑𝑑𝜏𝜏1
𝑡𝑡1

0
� 

3) κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋(𝑡𝑡1),𝑋𝑋(𝑡𝑡2)] = E��𝑋𝑋(𝑡𝑡1)− 𝜇𝜇𝑋𝑋(𝑡𝑡1)� ⋅ �𝑋𝑋(𝑡𝑡2) − 𝜇𝜇𝑋𝑋(𝑡𝑡2)�� 

= � � 𝜅𝜅𝐹𝐹𝐹𝐹(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2

0

t1

0
 

+σ𝑆𝑆1
2 𝑔𝑔(𝑡𝑡1)𝑔𝑔(𝑡𝑡2) + σ𝑆𝑆2

2 ℎ(𝑡𝑡1)ℎ(𝑡𝑡2) + 𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆1, 𝑆𝑆2] ⋅ [𝑔𝑔(𝑡𝑡1) ⋅ ℎ(𝑡𝑡2) + 𝑔𝑔(𝑡𝑡2) ⋅ ℎ(𝑡𝑡1)] 

+ terms involving covariances between 𝑆𝑆1 and 𝐹𝐹, and those between 𝑆𝑆2 and 𝐹𝐹 

   (usually zero) 

 

 Response of a linear system under multiple stochastic inputs 

Assuming zero IC’s for simplicity, suppose a linear system 

is subjected to multiple stochastic loads 

𝐹𝐹1(𝑡𝑡),𝐹𝐹2(𝑡𝑡),⋯  

Then, the stochastic response and its moment functions 

are 
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 𝑋𝑋(𝑡𝑡) = ∑ ∫ 𝐹𝐹𝑖𝑖(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0

𝑛𝑛
𝑖𝑖=1  

 𝜇𝜇𝑋𝑋(𝑡𝑡) = ∑ ∫ 𝜇𝜇𝐹𝐹𝑖𝑖(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0

𝑛𝑛
𝑖𝑖=1  

 𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = ∑ ∫ ∫ 𝜙𝜙𝐹𝐹𝑖𝑖𝐹𝐹𝑗𝑗(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2
0

t1
0

𝑛𝑛
𝑖𝑖=1  

 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = ∑ ∫ ∫ 𝜅𝜅𝐹𝐹𝑖𝑖𝐹𝐹𝑗𝑗(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2
0

t1
0

𝑛𝑛
𝑖𝑖=1  

If 𝐹𝐹𝑖𝑖(𝑡𝑡) and 𝐹𝐹𝑗𝑗(𝑡𝑡) (𝑖𝑖 ≠ 𝑗𝑗) are statistically independent of each other, the double integral 

becomes   

 Cross covariance between response and excitation 

𝜅𝜅𝑋𝑋𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) = E[(𝑋𝑋(𝑡𝑡1)−         )(𝐹𝐹(𝑡𝑡2) −         )] 

𝑋𝑋(𝑡𝑡1) − 𝜇𝜇𝑋𝑋(𝑡𝑡1) = � 𝐹𝐹(𝜏𝜏)ℎ(𝑡𝑡1 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡1

0
− � 𝜇𝜇𝐹𝐹(𝜏𝜏)ℎ(𝑡𝑡1 − 𝜏𝜏)𝑑𝑑𝜏𝜏

𝑡𝑡1

0
= 

∴ κ𝑋𝑋,𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) = � E{[𝐹𝐹(𝜏𝜏) − 𝜇𝜇𝐹𝐹(𝜏𝜏)][𝐹𝐹(𝑡𝑡2)−       ]}ℎ(𝑡𝑡1 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡1

0
 

Therefore, 

κ𝑋𝑋,𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) = � 𝜅𝜅𝐹𝐹𝐹𝐹(   ,   )ℎ(𝑡𝑡1 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡1

0
 

for 𝑡𝑡1 ≥ 𝑡𝑡2 

When 𝑡𝑡1 < 𝑡𝑡2, 𝜅𝜅𝑋𝑋𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) =  

 

 Example: Response to shot noise (Delta-correlated process) 

Recall: Shot noise is white noise with time-varying intensity 

 𝜇𝜇𝐹𝐹(𝑡𝑡) = 

 𝜅𝜅𝐹𝐹𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) = 𝐼𝐼(𝑡𝑡1)𝛿𝛿(𝑡𝑡1 − 𝑡𝑡2) 

When 𝐼𝐼(𝑡𝑡) = 𝐼𝐼, i.e. constant, the shot noise becomes 

__________ noise 
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Assuming zero IC’s 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � � 𝜅𝜅𝐹𝐹𝐹𝐹(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2
𝑡𝑡1

0

𝑡𝑡2

0
 

= � �                     ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2
𝑡𝑡1

0

𝑡𝑡2

0
 

= � 𝐼𝐼(𝜏𝜏)ℎ(𝑡𝑡1 − 𝜏𝜏)ℎ(𝑡𝑡2 − 𝜏𝜏)𝑑𝑑𝜏𝜏
min(𝑡𝑡1,𝑡𝑡2)

0
  

 

Example: Massless SDOF oscillator under shot noise 

Equation of motion: 

𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝑝𝑝(𝑡𝑡) 

�̇�𝑥 + 𝛼𝛼𝑥𝑥 = 𝑓𝑓(𝑡𝑡) 

where α = 𝑘𝑘/𝑐𝑐 and 𝑓𝑓(𝑡𝑡) = 𝑝𝑝(𝑡𝑡)/𝑐𝑐 

 

Chracterization of the system: impulse response function? 

ℎ̇(𝑡𝑡) + 𝛼𝛼ℎ(𝑡𝑡) = δ(t) 

Initial condition: ℎ(0+) = 1
1

= 

Homogeneous solution: 

Set ℎ(𝑡𝑡) = 𝑒𝑒𝑟𝑟𝑡𝑡 

𝑟𝑟 = 

Therefore, 

ℎ(𝑡𝑡) = 𝐴𝐴 ⋅ 𝑒𝑒−𝛼𝛼𝑡𝑡 

Applying IC, the impulse response function is ℎ(𝑡𝑡) =                     for  𝑡𝑡      0 
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Suppose the intensity function of the shot noise 𝐹𝐹(𝑡𝑡) is 

given as 

𝐼𝐼(𝑡𝑡) = 𝐼𝐼  for 0 < 𝑡𝑡 ≤ 𝑡𝑡0 and 0 otherwise 

Then, 

𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � 𝐼𝐼(𝜏𝜏)ℎ(𝑡𝑡1 − 𝜏𝜏)ℎ(𝑡𝑡2 − 𝜏𝜏)𝑑𝑑𝜏𝜏
min(𝑡𝑡1,𝑡𝑡2)

0
 

= 𝐼𝐼 � 𝑒𝑒−𝛼𝛼(𝑡𝑡1−𝜏𝜏) ⋅ 𝑒𝑒−𝛼𝛼(𝑡𝑡2−𝜏𝜏)𝑑𝑑𝜏𝜏
min(t0,t1,t2)

0
 

= 𝐼𝐼 ⋅ 𝑒𝑒−𝛼𝛼(𝑡𝑡1+𝑡𝑡2) � 𝑒𝑒2𝛼𝛼𝜏𝜏𝑑𝑑𝜏𝜏
𝑡𝑡∗

0
 

=
𝐼𝐼

2𝛼𝛼
⋅ 𝑒𝑒−𝛼𝛼(𝑡𝑡1+𝑡𝑡2)[exp(2𝛼𝛼𝑡𝑡∗) − 1] 

 

𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡, 𝑡𝑡) = 𝜎𝜎𝑥𝑥2 =? 

For 𝑡𝑡 ≤ 𝑡𝑡0, i.e. 𝑡𝑡∗ = 𝑡𝑡 

𝜎𝜎𝑋𝑋2 = 

For 𝑡𝑡 > 𝑡𝑡0, i.e. 𝑡𝑡∗ = 𝑡𝑡0 

𝜎𝜎𝑋𝑋2 = 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 17 

 
III-2. Random Vibration Analysis of Linear Structures (contd.) 

 Response of a linear system to weakly stationary input 

𝜅𝜅𝐹𝐹𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) = 𝛤𝛤𝐹𝐹𝐹𝐹(𝜏𝜏) where τ = 𝑡𝑡1 − 𝑡𝑡2 

Assuming zero initial conditions, 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � � 𝜅𝜅𝐹𝐹𝐹𝐹(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2

0

𝑡𝑡1

0
 

= � � 𝛤𝛤𝐹𝐹𝐹𝐹(𝜏𝜏)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2

0

𝑡𝑡1

0
 

where 𝜏𝜏 = 𝜏𝜏1 − 𝜏𝜏2 

Note that 𝛤𝛤𝐹𝐹𝐹𝐹(𝜏𝜏) = ∫ Φ𝐹𝐹𝐹𝐹(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔∞
−∞  

Thus,  

𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � � � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2

0

𝑡𝑡1

0

∞

−∞
𝑑𝑑𝜔𝜔 

= � � � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡1−𝑖𝑖1)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡2−𝑖𝑖2)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡1−𝑡𝑡2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1
𝑡𝑡2

0

𝑡𝑡1

0

∞

−∞
𝑑𝑑𝜔𝜔 

By changing variable 𝑢𝑢 = 𝑡𝑡1 − 𝜏𝜏1, one can show 

� ℎ(𝑡𝑡1 − 𝜏𝜏1)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡1−𝑖𝑖1)𝑑𝑑𝜏𝜏1
𝑡𝑡1

0
= � ℎ(𝑢𝑢)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢

𝑡𝑡1

0
 

= � ℎ(𝑢𝑢)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢
𝑡𝑡1

−∞
 

= ℋ(𝜔𝜔, 𝑡𝑡1) 

This is so-called “incomplete” Fourier transform of the impulse response function. 

cf. “complete” FT of IRF gives the FRF 

𝐻𝐻(𝜔𝜔) = � ℎ(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
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Therefore, 𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) for a weakly stationary input 𝐹𝐹(𝑡𝑡) is expressed as 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)
∞

−∞
ℋ(𝜔𝜔, 𝑡𝑡1)ℋ∗(𝜔𝜔, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 

Note: 

 The response of a linear system to a stationary input is ___________ stationary 

necessarily. 

 However, as 𝑡𝑡1, 𝑡𝑡2 → ∞, the incomplete FTs becomes independent of 𝑡𝑡1 and 𝑡𝑡2, 

Therefore, κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) depends only on τ = 𝑡𝑡1 − 𝑡𝑡2 

Observations: 

1. lim
𝑡𝑡→∞

ℋ(𝜔𝜔, 𝑡𝑡) = 𝐻𝐻(𝜔𝜔) for a “stable” system 

Therefore, the response of a linear system to a stationary input becomes 

____________ e__________ 

2. κ𝑋𝑋𝑋𝑋(0,0) must be ________ and it means σ𝑋𝑋2(0) =      . This makes sense because we 

assumed _________ IC’s 

3. For the stationary response, i.e. 𝑡𝑡1, 𝑡𝑡2 → ∞ 

𝜅𝜅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)
∞

−∞
ℋ(𝜔𝜔, 𝑡𝑡1)ℋ∗(𝜔𝜔, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 

                      =  � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)
∞

−∞
|𝐻𝐻(ω)|2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 

That is,  

𝛤𝛤𝑋𝑋𝑋𝑋(𝜏𝜏) = � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)
∞

−∞
|𝐻𝐻(ω)|2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 

 

4. From this result, for a stationary response, it is found that 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = 
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For example, let us consider… 

 𝓗𝓗(𝜔𝜔, 𝑡𝑡) and H(ω) of standard SDOF oscillator 

Recall 

 ℎ(𝑡𝑡) = 1
ωD

𝑒𝑒−𝜉𝜉𝑖𝑖0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 

 𝐻𝐻(𝜔𝜔) = 1
𝑖𝑖0
2−𝑖𝑖2+2𝑖𝑖𝜉𝜉𝑖𝑖0𝑖𝑖

= 𝑖𝑖0
2−𝑖𝑖2−2𝑖𝑖𝜉𝜉𝑖𝑖0𝑖𝑖

�𝑖𝑖0
2−𝑖𝑖2�

2+(2𝜉𝜉𝑖𝑖0𝑖𝑖)^2
 

|𝐻𝐻(𝜔𝜔)|2 =
1

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 

 

𝓗𝓗(𝜔𝜔, 𝑡𝑡1) = �
1
𝜔𝜔𝐷𝐷

𝑒𝑒−𝜉𝜉𝑖𝑖0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 ⋅ 𝑈𝑈(𝑡𝑡) ⋅ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡
𝑡𝑡

−∞
 

= 𝐻𝐻(𝜔𝜔) �1 − �cos𝜔𝜔𝐷𝐷𝑡𝑡 +
𝜉𝜉𝜔𝜔0 + 𝑖𝑖𝜔𝜔

𝜔𝜔𝐷𝐷
sin𝜔𝜔𝐷𝐷𝑡𝑡� ⋅ 𝑒𝑒−𝜉𝜉𝑖𝑖0𝑡𝑡 ⋅ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡� 
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From this result, the terms in ( ) has the same order as 1, and 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡 oscillates. Therefore, the 

rate of the convergence of the terms in [ ] to _____ is determined by _______ 

In other words, “sufficient” time to achieve stationarity depends on ξω0𝑡𝑡 = 𝜉𝜉 2𝜋𝜋
𝑇𝑇0
𝑡𝑡 

Suppose we set  ξω0𝑡𝑡 = 2𝜋𝜋𝜉𝜉 𝑡𝑡
𝑇𝑇0

= π  (note 𝑒𝑒−𝜋𝜋 = 4%) and solve it for 𝑡𝑡, i.e. time to make the 

exponentially decaying term as 4%, 𝑡𝑡4% = 𝑇𝑇0
2𝜉𝜉

 

e.g. ξ = 0.1  𝑡𝑡4% ≅ 5𝑇𝑇0, ξ = 0.05  𝑡𝑡4% ≅ 10𝑇𝑇0 

※ Alternative (empirical) method: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang, Z., and Song, J. (2016) Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear 
random vibration analysis, Structural Safety, http://dx.doi.org/10.1016/j.strusafe.2016.08.005  
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Figure 3. A typical scaled std[𝑍𝑍(𝑗𝑗Δ𝑡𝑡)] curve and the fitting function 

 

 Stationary response of standard SDOF oscillator to “white noise” 

Useful for linear random vibration analysis of MDOF systems using modal combination, i.e. 

each mode is represented by a standard SDOF oscillator (will be shown later) 

ΦFF(𝜔𝜔) = Φ0 

PSD of the stationary response 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = Φ0|𝐻𝐻(𝜔𝜔)|2 

=
Φ0

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 

Thus, 

Γ𝑋𝑋𝑋𝑋(𝜏𝜏) = � Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 
∞

−∞
 

= Φ0�
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 𝑑𝑑𝜔𝜔
∞

−∞
 

How? We can use ____________ theorem 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 18 

 
III-2. Random Vibration Analysis of Linear Structures (contd.) 

 Stationary response of standard SDOF oscillator to “white noise” 

Useful for linear random vibration analysis of MDOF systems using modal combination, i.e. 

each mode is represented by a standard SDOF oscillator (will be shown later) 

ΦFF(𝜔𝜔) = Φ0 

PSD of the stationary response 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = Φ0|𝐻𝐻(𝜔𝜔)|2 

=
Φ0

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 

Thus, 

Γ𝑋𝑋𝑋𝑋(𝜏𝜏) = � Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 
∞

−∞
 

= Φ0�
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 𝑑𝑑𝜔𝜔
∞

−∞
 

How? We can use ____________ theorem 

Poles? 𝑓𝑓(𝑧𝑧) = Φ0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

�𝑖𝑖0
2−𝑧𝑧2�

2+4𝜉𝜉2𝑖𝑖0
2𝑧𝑧2

= Φ0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝑧𝑧−𝑧𝑧1)(𝑧𝑧−𝑧𝑧2)(𝑧𝑧−𝑧𝑧3)(𝑧𝑧−𝑧𝑧4) 

Solve (ω0
2 − 𝑧𝑧2)2 + 4𝜉𝜉2𝜔𝜔0

2𝑧𝑧2 = 0 for 𝑧𝑧 

ω0
2 − 𝑧𝑧2 = ±2𝑖𝑖𝜉𝜉𝜔𝜔0𝑧𝑧 

z2 ± 2𝑖𝑖𝜉𝜉𝜔𝜔0𝑧𝑧 − 𝜔𝜔0
2 = 0 

• 𝑧𝑧1 = 𝜔𝜔𝐷𝐷 − 𝑖𝑖𝜉𝜉𝜔𝜔0 

• 𝑧𝑧2 = −𝜔𝜔𝐷𝐷 − 𝑖𝑖𝜉𝜉𝜔𝜔0 

• 𝑧𝑧3 = 𝜔𝜔𝐷𝐷 + 𝑖𝑖𝜉𝜉𝜔𝜔0 

• 𝑧𝑧4 = −𝜔𝜔𝐷𝐷 + 𝑖𝑖𝜉𝜉𝜔𝜔0 
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First consider τ > 0, note 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖 

𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑒𝑒𝑖𝑖(𝑎𝑎+𝑖𝑖𝑖𝑖)𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖 ⋅ 𝑒𝑒−𝑖𝑖𝑖𝑖 

Therefore, the function insider the integral vanishes as 𝑟𝑟 → ∞ if 𝑖𝑖    0. 

That is, we should use upper/lower half-plane for the residue theorem. 

� 𝑓𝑓(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

−∞
= � 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧

  

𝐶𝐶
 

= 2π𝑖𝑖�Res 𝑓𝑓(    ) + Res 𝑓𝑓(    )� 

= 2π𝑖𝑖 �
Φ0𝑒𝑒𝑖𝑖     𝑖𝑖

(    −𝑧𝑧    )(    −𝑧𝑧    )(    −𝑧𝑧    )
+

Φ0𝑒𝑒𝑖𝑖     𝑖𝑖

(    −𝑧𝑧    )(    −𝑧𝑧    )(    −𝑧𝑧    )
� 

As a result, 

Γ𝑋𝑋𝑋𝑋(𝜏𝜏) =
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
𝑒𝑒−𝜉𝜉𝑖𝑖𝑖𝑖 �cos𝜔𝜔𝐷𝐷𝜏𝜏 +

𝜉𝜉
�1 − 𝜉𝜉2 

sin𝜔𝜔𝐷𝐷𝜏𝜏� , 𝜏𝜏 > 0 

From ___________, for ∀τ 

Γ𝑋𝑋𝑋𝑋(𝜏𝜏) =
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
𝑒𝑒−𝜉𝜉𝑖𝑖|𝑖𝑖| �cos𝜔𝜔𝐷𝐷𝜏𝜏 +

𝜉𝜉
�1 − 𝜉𝜉2 

sin𝜔𝜔𝐷𝐷|𝜏𝜏|� 

1) Variance of the stationary response of standard SDOF oscillator to “white noise”  

σ𝑋𝑋2 = Γ𝑋𝑋𝑋𝑋(    ) =
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
 

2) Mean-square continuous? 

3) Mean-square differentiable? 

4) Cross-covariance of the response and its time derivative 

Γ�̇�𝑋𝑋𝑋(𝜏𝜏) = −Γ𝑋𝑋�̇�𝑋(𝜏𝜏) =
𝑑𝑑Γ𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏

= −
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔0𝜔𝜔𝐷𝐷
𝑒𝑒−𝜉𝜉𝑖𝑖0𝑖𝑖 sin𝜔𝜔𝐷𝐷𝜏𝜏     for 𝜏𝜏 > 0  

Therefore, for ∀τ,  

Γ�̇�𝑋𝑋𝑋(𝜏𝜏) = −
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔0𝜔𝜔𝐷𝐷
𝑒𝑒−𝜉𝜉𝑖𝑖0|𝑖𝑖| sin𝜔𝜔𝐷𝐷𝜏𝜏 
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5) Auto-covariance of the time derivative 

Γ�̇�𝑋�̇�𝑋(𝜏𝜏) = −
𝑑𝑑2Γ𝑋𝑋𝑋𝑋(𝜏𝜏)
𝑑𝑑𝜏𝜏2

=
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔0
𝑒𝑒−𝜉𝜉𝑖𝑖0|𝑖𝑖| �cos𝜔𝜔𝐷𝐷𝜏𝜏 −

𝜉𝜉
�1 − 𝜉𝜉2

sin𝜔𝜔𝐷𝐷|𝜏𝜏|� 

6) Note that the time derivative of the SDOF response to white noise is ______ 

differentiable (in the mean-square sense). 

Setting 𝑌𝑌(𝑡𝑡) = �̇�𝑋(𝑡𝑡), Γ𝑌𝑌𝑌𝑌(𝜏𝜏) = Γ�̇�𝑋�̇�𝑋(𝜏𝜏) 

𝑑𝑑Γ𝑌𝑌𝑌𝑌(𝑖𝑖)
𝑑𝑑𝑖𝑖

 does not exist at τ = 0 

7) PSD of the time derivative (velocity) 

Φ�̇�𝑋�̇�𝑋(𝜔𝜔) = 𝜔𝜔2Φ𝑋𝑋𝑋𝑋(𝜔𝜔) 

=
Φ0𝜔𝜔2

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 

8) Note 

Γ�̇�𝑋�̇�𝑋(𝜏𝜏) = Φ0�
𝜔𝜔2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝜔𝜔02 − 𝜔𝜔2)2 + 4𝜉𝜉2𝜔𝜔02𝜔𝜔2 𝑑𝑑𝜔𝜔
∞

−∞
= Result in (5) 

The term inside the integral is 𝑜𝑜(ω2)/𝑜𝑜(ω4): decays faster than 1/ω 

How about �̈�𝑋(𝑡𝑡)? Φ�̈�𝑋�̈�𝑋(𝜔𝜔) = 𝜔𝜔4Φ𝑋𝑋𝑋𝑋(𝜔𝜔) 

Therefore, Γ�̈�𝑋�̈�𝑋(𝜏𝜏) is the integral of the term proportional to 𝑜𝑜(ω4)/𝑜𝑜(ω4): does NOT 

decay faster than 1/ω. Thus Γ�̈�𝑋�̈�𝑋(𝜏𝜏) → ∞  

9) Variance of the time derivative �̇�𝑋(𝑡𝑡) 

σ�̇�𝑋
2 = Γ�̇�𝑋�̇�𝑋(   ) =

𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔0
 

 

 Non-stationary response of standard SDOF oscillator to “white noise” 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � Φ0ℋ(𝜔𝜔, 𝑡𝑡1)ℋ∗(𝜔𝜔, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝜔𝜔(𝑡𝑡1−𝑡𝑡2)𝑑𝑑𝜔𝜔
∞

−∞
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 Supplementary Materials: SDOF responses to WN 
 
I. “Stationary” responses of the standard SDOF oscillator to white noise: )(tX  and its 

derivative dttdXtY /)()( =  
 
    (Plots generated for ,0 π2=ω  05.0=ζ and 0.10 =Φ ) 
 
(1) Autocovariance function of :)(tX  
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 (2) Crosscovariance function of )(tX  and )(tY : 
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(3) Autocovariance function of )(tY : 
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(4) Crosscorrelation coefficient function of )(tX  and )(tY : 
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II. “Nonstationary” responses of the standard SDOF oscillator to white noise: )(tX  and 
its derivative dttdXtY /)()( =  

 
(1) Autocovariance function of )(tX : 
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1) Eventually approaches to the variance of the stationary response, 3
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(2) Autocovariance function of )(tY : 
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Note: 

1) Eventually approaches to the variance of the stationary response, 
0

0

2ζω
Φπ  

2) The “sufficient” time to achieve stationarity depends on 0ζω .  
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(3) Crosscovariance of )(tX  and )(tY : 
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(4) Crosscorreltion coefficient function of )(tX  and )(tY : 
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Note: 

1) )(tXYρ  is not zero due to the nonstationarity. 
2) Therefore, )(tXYρ  can be used as a criterion for checking stationarity. 
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 Stationary response of standard SDOF oscillator to wide-band inputs: approximation 
by “white-noise” response 

Φ𝑋𝑋𝑋𝑋(𝜔𝜔) = Φ𝐹𝐹𝐹𝐹(𝜔𝜔)|𝐻𝐻(𝜔𝜔)|2 

≅ Φ0|𝐻𝐻(𝜔𝜔)|2 

where Φ0 = Φ𝐹𝐹𝐹𝐹(𝜔𝜔0) 

 

The accuracy of the WN approximation depends on 

• ξ: Bandwidth of |𝐻𝐻(𝜔𝜔)|2 (accurate if it is narrow 

band, i.e. ξ ≅ 0) 

• Bandwidth parameter of 𝐹𝐹(𝑡𝑡) (e.g. δ, s, ξg) 

accurate if it is wideband, e.g. ξg ≫ 0 

• ω0
ω𝑔𝑔

≅ 1  

 Spectral moments of stationary response of SDOF to white noise input 

λ𝑚𝑚 = � 𝜔𝜔𝑚𝑚𝐺𝐺𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0
 

= 2Φ0� 𝜔𝜔𝑚𝑚|𝐻𝐻(𝜔𝜔)|2𝑑𝑑𝜔𝜔
∞

0
 

• λ0 = E�𝑋𝑋2� = 𝜎𝜎𝑋𝑋2 = 𝜋𝜋Φ0
2𝜉𝜉𝜔𝜔0

3 

• λ1 = 𝜋𝜋Φ0
2𝜉𝜉𝜔𝜔2 × 2

𝜋𝜋�1−𝜉𝜉2
tan−1�

�1−𝜉𝜉2

𝜉𝜉 � ≅ 𝜋𝜋Φ0
2𝜉𝜉𝜔𝜔2 × �1− 2𝜉𝜉

𝜋𝜋 �  for 𝜉𝜉 ≅ 0  

 Useful for identifying the bandwidth of the process, e.g. δ = �1 − 𝜆𝜆1
2

𝜆𝜆0𝜆𝜆2
 

• λ2 = E �Ẋ2(𝑡𝑡)� = 𝜎𝜎�̇�𝑋
2 = 𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔0
 

• λ𝑚𝑚 → ∞ if 𝑚𝑚 > 3 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 19 

 
III-2. Random Vibration Analysis of Linear Structures (contd.) 

 Spectral representation of nonstationary process 

Used PSD Φ𝑋𝑋𝑋𝑋(ω) for spectral representation of a stationary process 𝑋𝑋(𝑡𝑡). What to use if 𝑋𝑋(𝑡𝑡) 

is non-stationary? 

Main purpose: describe the change of the frequency content over time 

1) Generalized PSD Φ�𝑋𝑋𝑋𝑋(ω1,ω2): Fourier transform of ϕ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) 

Assuming 𝑋𝑋�(ω) = 1
2π ∫ 𝑋𝑋(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡∞

−∞  exists in the mean-square sense, 

Φ�𝑋𝑋𝑋𝑋(ω1,ω2) ≡ E[𝑋𝑋�(ω1)𝑋𝑋�∗(ω2)] 

=
1

(2𝜋𝜋)2 � � E[𝑋𝑋(𝑡𝑡1)𝑋𝑋∗(𝑡𝑡2)]𝑒𝑒−𝑖𝑖(𝑖𝑖1𝑖𝑖1−𝑖𝑖2𝑖𝑖2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
∞

−∞

∞

−∞
 

=
1

(2𝜋𝜋)2 � �                    𝑒𝑒−𝑖𝑖(𝑖𝑖1𝑖𝑖1−𝑖𝑖2𝑖𝑖2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
∞

−∞

∞

−∞
 

Can show (from the formulation for ϕ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) of a linear system) 

Φ�𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) = Φ�𝐹𝐹𝐹𝐹(𝜔𝜔1,𝜔𝜔2)𝐻𝐻(𝜔𝜔1)𝐻𝐻∗(𝜔𝜔2) 

It is also noted that 

ϕ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � �                    𝑒𝑒𝑖𝑖(𝑖𝑖1𝑖𝑖1−𝑖𝑖2𝑖𝑖2)𝑑𝑑𝜔𝜔1𝑑𝑑𝜔𝜔2

∞

−∞

∞

−∞
 

Question: Practical? No, because 

 It is difficult to assign physical meaning (two ω’s) 

 The time term does not appear in the PSD although it is important for 

nonstationary process 
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2) Instantaneous PSD Φ𝑖𝑖(𝜔𝜔, 𝑡𝑡) (Page 1952)  

ϕ𝑖𝑖(𝜏𝜏, 𝑡𝑡) = E �𝑋𝑋 �𝑡𝑡 −
𝜏𝜏
2
�𝑋𝑋 �𝑡𝑡 +

𝜏𝜏
2
�� 

Φ𝑖𝑖(𝜔𝜔, 𝑡𝑡) =
1

2𝜋𝜋
� 𝜙𝜙𝑖𝑖(𝜏𝜏, 𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜏𝜏
∞

−∞
 

3) Physical PSD (Mark 1970) 

Φ𝑝𝑝(𝜔𝜔, 𝑡𝑡)w = E ��� 𝑤𝑤(𝑡𝑡 − 𝜏𝜏)𝑋𝑋(𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜏𝜏
∞

−∞
�
2

� 

where 𝑤𝑤(𝑡𝑡 − 𝜏𝜏) is the “window” function that captures PSD around the time 𝑡𝑡 

4) Evolutionary PSD (Pristley 1965, 1967) 

Consider two different versions of inverse FT 

 𝑋𝑋(𝑡𝑡) = ∫ 𝑋𝑋�(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔∞
−∞   Riemann integral 

 𝑋𝑋(𝑡𝑡) = ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)∞
−∞   Stieltjes integral 

~ generalization of Riemann integral by use of “increment process” 𝑑𝑑𝑑𝑑(ω) 

 

 

 

 

 

 

 

 

 

 

※ Increment Process 𝑑𝑑𝑑𝑑(ω) 
 

(1) Can use Fourier integral even when 𝑋𝑋�(ω) = 𝑑𝑑𝑑𝑑(ω)
𝑑𝑑ω

 does not exist, i.e. 
𝑑𝑑𝑑𝑑(ω) is smoother 
 

𝑋𝑋(𝑡𝑡) = � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)
∞

−∞
 

 
-- Fourier-Stieltjes integral 
 

(2) “Orthogonal” increment process 𝑑𝑑𝑑𝑑(𝜔𝜔) 
 
E[𝑑𝑑𝑑𝑑(𝜔𝜔1)𝑑𝑑𝑑𝑑∗(𝜔𝜔2)] = Φ(𝜔𝜔1)𝛿𝛿(𝜔𝜔1 − 𝜔𝜔2)𝑑𝑑𝜔𝜔1𝑑𝑑𝜔𝜔2 
 
It has been proved that (Lin & Cai 1995), for an orthogonal increment 
process, 
 
𝑋𝑋(𝑡𝑡) = ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)∞

−∞  exists ↔ 𝑋𝑋(𝑡𝑡) is weakly stationary 
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a) Priestley’s idea (toward “evolutionary” PSD)  

𝑋𝑋(𝑡𝑡) = � 𝐴𝐴(𝜔𝜔, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)
∞

−∞
 

where 

 𝐴𝐴(ω, 𝑡𝑡): frequency-time modulating function 

 𝑑𝑑𝑑𝑑(ω): orthogonal increment process representing a stationary “base” 

process 𝑋𝑋𝑠𝑠(𝑡𝑡) = ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)∞
−∞  

b) In this case, the auto-correlation function is derived as 

ϕ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = E[𝑋𝑋(𝑡𝑡1)𝑋𝑋∗(𝑡𝑡2)] 

= � � 𝐴𝐴(𝜔𝜔1, 𝑡𝑡1)𝐴𝐴∗(𝜔𝜔2, 𝑡𝑡2)𝑒𝑒𝑖𝑖(𝑖𝑖1𝑖𝑖1−𝑖𝑖2𝑖𝑖2)E[𝑑𝑑𝑑𝑑(𝜔𝜔1)𝑑𝑑𝑑𝑑(𝜔𝜔2)]
∞

−∞

∞

−∞
 

= � 𝐴𝐴(𝜔𝜔, 𝑡𝑡1)𝐴𝐴∗(𝜔𝜔, 𝑡𝑡2)𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖1−𝑖𝑖2)Φ𝑑𝑑𝑑𝑑(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

−∞
 

Note, for a stationary process: 

𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) = � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖Φ𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

−∞
 

 

 
Note that 𝑋𝑋�(𝜔𝜔) does not exist for stationary process 
 
Proof for (→): 
 
𝜙𝜙𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = E[𝑋𝑋(𝑡𝑡1)𝑋𝑋∗(𝑡𝑡2)] 

= � � 𝑒𝑒𝑖𝑖𝑖𝑖1𝑖𝑖1−𝑖𝑖𝑖𝑖2𝑖𝑖2E[𝑑𝑑𝑑𝑑(𝜔𝜔1)𝑑𝑑𝑑𝑑∗(𝜔𝜔2)]
∞

−∞

∞

−∞
 

= � � 𝑒𝑒𝑖𝑖𝑖𝑖1𝑖𝑖1−𝑖𝑖𝑖𝑖2𝑖𝑖2Φ(𝜔𝜔1)𝛿𝛿(𝜔𝜔1 − 𝜔𝜔2)𝑑𝑑𝜔𝜔1𝑑𝑑𝜔𝜔2

∞

−∞

∞

−∞
 

= � 𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖1−𝑖𝑖2)Φ(𝜔𝜔1)𝑑𝑑𝜔𝜔1
∞

−∞
 

= 
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c) For 𝑡𝑡1 = 𝑡𝑡2, 

E[𝑋𝑋2(𝑡𝑡)] = � |𝐴𝐴(𝜔𝜔, 𝑡𝑡)|2
∞

−∞
Φ𝑑𝑑𝑑𝑑(𝜔𝜔)𝑑𝑑𝜔𝜔 

Note, for a stationary process: 

E[𝑋𝑋2] = � Φ𝑋𝑋𝑋𝑋(𝜔𝜔)
∞

−∞
𝑑𝑑𝜔𝜔 

Comparing the two equations, |𝐴𝐴(𝜔𝜔, 𝑡𝑡)|2Φ𝑑𝑑𝑑𝑑(ω) seems to describe the evolution of 

the spectral representation of the non-stationary process at time 𝑡𝑡, so we can… 

d) Define “Evolutionary” PSD (EPSD) as 

Φ(ω, 𝑡𝑡) = Φ𝑑𝑑𝑑𝑑(𝜔𝜔)|𝐴𝐴(𝜔𝜔, 𝑡𝑡)|2 

to describe the evolution of the frequency 

content over time using the frequency-time 

modulating function 𝐴𝐴(ω, 𝑡𝑡) 

e) Special case: uniformly modulated evolutionary 

process 

𝐴𝐴(ω, 𝑡𝑡) = 𝐴𝐴(𝑡𝑡) 

In this case, it is noted 

𝑋𝑋(𝑡𝑡) = � 𝐴𝐴(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)
∞

−∞
= 𝐴𝐴(𝑡𝑡)� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝜔𝜔)

∞

−∞
= 𝐴𝐴(𝑡𝑡)𝑋𝑋𝑠𝑠(𝑡𝑡)  

Φ𝑋𝑋𝑋𝑋(ω, 𝑡𝑡) = |𝐴𝐴(𝑡𝑡)|2Φ𝑑𝑑𝑑𝑑(𝜔𝜔) 

E[𝑋𝑋2(𝑡𝑡)] = |𝐴𝐴(𝑡𝑡)|2𝐸𝐸[𝑋𝑋𝑠𝑠2(𝑡𝑡)] = |𝐴𝐴(𝑡𝑡)|2𝐸𝐸[𝑋𝑋𝑠𝑠2] 

How to determine 𝐴𝐴(ω, 𝑡𝑡)? Examples: 

 Kubo & Penzien (1976): Identified 𝐴𝐴(𝑡𝑡) by statistical analysis of San 

Fernando earthquake records (Clough & Penzien 1993) 

�̈�𝑋𝑔𝑔(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) ⋅ 𝑋𝑋𝑠𝑠(𝑡𝑡) 
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The “envelope function” 𝐴𝐴(𝑡𝑡) was identified in the form 𝑎𝑎1𝑡𝑡 ⋅ exp (−𝑎𝑎2𝑡𝑡) 

 Jangid (2004, EESD): provided an extensive survey of envelope functions 

and investigated SDOF nonstationary responses 

 

 Other ways for spectral representation of nonstationary processes: 

Wavelet transform (Kareem, Spanos, …), Hilbert-Huang transform (with 

empirical model decomposition; Wen & Gu, 2004, 2009 in JEM) 
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f) Input-output relationship when evolutionary PSD is used (to be continued) 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 20 

 
III-2. Random Vibration Analysis of Linear Structures (contd.) 

 Spectral representation of nonstationary process (contd.) 

4) Evolutionary PSD (Pristley 1965, 1967; contd.) 

f) Input-output relationship when evolutionary PSD is used? 

In general, it was shown (see Class 16) 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � � 𝜅𝜅𝐹𝐹𝐹𝐹(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑡𝑡1 − 𝜏𝜏1)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2
∞

−∞

∞

−∞
 

If the input process 𝐹𝐹(𝑡𝑡) is modeled as an evolutionary process, i.e. 

κ𝐹𝐹𝐹𝐹(𝜏𝜏1, 𝜏𝜏2) = � Φ𝑠𝑠𝑠𝑠(𝜔𝜔)𝐴𝐴𝐹𝐹(𝜔𝜔, 𝜏𝜏1)𝐴𝐴𝐹𝐹∗ (𝜔𝜔, 𝜏𝜏2)𝑒𝑒𝑖𝑖𝑖𝑖(𝜏𝜏1−𝜏𝜏2)𝑑𝑑𝜔𝜔
∞

−∞
 

Substituting this into the equation above and exchanging the order of the integrals, 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � Φ𝑠𝑠𝑠𝑠(𝜔𝜔) × �� 𝐴𝐴𝐹𝐹(𝜔𝜔, 𝜏𝜏1)ℎ(𝑡𝑡1 − 𝜏𝜏1)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡1−𝜏𝜏1)𝑑𝑑𝜏𝜏1
∞

−∞
�

∞

−∞
 

                    × �� 𝐴𝐴𝐹𝐹∗ (𝜔𝜔, 𝜏𝜏2)ℎ(𝑡𝑡2 − 𝜏𝜏2)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡2−𝜏𝜏2)𝑑𝑑𝜏𝜏2
∞

−∞
� 𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡1−𝑡𝑡2)𝑑𝑑𝜔𝜔 

Here we define 

m(ω, 𝑡𝑡) = � 𝐴𝐴𝐹𝐹(𝜔𝜔, 𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

It is noted that the lower boundary value can be replaced by 0 because 𝐴𝐴F(ω, τ) =    

for ∀τ < 0 and the upper boundary value can be replaced by 𝑡𝑡 because ℎ(𝑡𝑡 − τ) =   

for 𝑡𝑡 − τ     0.  

Using the function m(ω, 𝑡𝑡), the auto-covariance function is determined as 

κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � Φ𝑠𝑠𝑠𝑠(𝜔𝜔)m(𝜔𝜔, 𝑡𝑡1)m∗(𝜔𝜔, 𝑡𝑡2)
∞

−∞
𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡1−𝑡𝑡2)𝑑𝑑𝜔𝜔 

Note that, for a stationary input, the auto-covariance function is 
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κ𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = � Φ𝐹𝐹𝐹𝐹(𝜔𝜔)ℋ(ω, 𝑡𝑡1)ℋ∗(ω, 𝑡𝑡2)
∞

−∞
𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡1−𝑡𝑡2)𝑑𝑑𝜔𝜔 

That is, we use 

• ℋ(𝜔𝜔, 𝑡𝑡) = ∫ ℎ(𝑢𝑢)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢𝑡𝑡
−∞  for stationary input 

• m(ω, 𝑡𝑡) = ∫ 𝐴𝐴𝐹𝐹(𝜔𝜔, 𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑑𝑑𝜏𝜏∞
−∞  for nonstationary input 

( information regarding the nonstationary added) 

If 𝐴𝐴𝐹𝐹(ω, t) = 1, m(ω, 𝑡𝑡)        ℋ(𝜔𝜔, 𝑡𝑡)  

Note: The mean-square of the nonstationary output is derived as 

E[𝑋𝑋2(𝑡𝑡)] = � Φ𝑠𝑠𝑠𝑠(𝜔𝜔)|m(𝜔𝜔, 𝑡𝑡)|2𝑑𝑑𝜔𝜔
∞

−∞
 

Evolutionary PSD of the nonstationary response?  

Φ𝑋𝑋𝑋𝑋(ω, 𝑡𝑡) = |m(𝜔𝜔, 𝑡𝑡)|2Φ𝑠𝑠𝑠𝑠(𝜔𝜔) 

It is found that the response is evolutionary if the input is evolutionary (because 

Φ𝑋𝑋𝑋𝑋(ω, 𝑡𝑡) = |𝐴𝐴𝑋𝑋(ω, 𝑡𝑡)|2Φ𝑠𝑠𝑠𝑠(ω)). The frequency-time modulating function of the 

response is 

𝐴𝐴𝑋𝑋(ω, 𝑡𝑡) =              = � 𝐴𝐴𝐹𝐹(𝜔𝜔, 𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

For the stationary input and output, the PSD is 

Φ𝑋𝑋𝑋𝑋(ω) = |𝐻𝐻(𝜔𝜔)|2Φ𝐹𝐹𝐹𝐹(𝜔𝜔) 

 

Example: (Consider again) nonstationary response of standard oscillator to WN 

ℎ(𝑡𝑡) =
1
ωD

𝑒𝑒−𝜉𝜉𝑖𝑖0𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑡𝑡 

WN input: Φ𝐹𝐹𝐹𝐹(ω) = Φ0 

If WN input is modeled by use of the evolutionary model, 
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𝐴𝐴𝐹𝐹(𝜔𝜔, 𝑡𝑡) = �0, 𝑡𝑡 < 0
1, 𝑡𝑡 ≥ 0 

Φss(𝜔𝜔) = Φ0 

m(ω, 𝑡𝑡) = � 𝐴𝐴𝐹𝐹(𝜔𝜔, 𝑡𝑡)ℎ(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
 

                = ℋ(ω, t)   ∵ stationary input 

Therefore, 

Φ𝑋𝑋𝑋𝑋(ω, 𝑡𝑡) = |m(ω, 𝑡𝑡)|2Φ𝑠𝑠𝑠𝑠(𝜔𝜔) 

= |ℋ(𝜔𝜔, 𝑡𝑡)|2Φ0 

As 𝑡𝑡 → ∞, Φ𝑋𝑋𝑋𝑋(ω, 𝑡𝑡) → |𝐻𝐻(𝜔𝜔)|2Φ0  

Describe 𝑋𝑋(𝑡𝑡) as an evolutionary process? What is the frequency-time modulating function in 

Φ𝑋𝑋𝑋𝑋(ω, 𝑡𝑡) = |𝐴𝐴𝑋𝑋(𝜔𝜔, 𝑡𝑡)|2Φ𝑠𝑠𝑠𝑠(𝜔𝜔)? 

Comparing this with the equations above, it is clear in this example that 

𝐴𝐴𝑋𝑋(ω, 𝑡𝑡) = 𝑚𝑚(𝜔𝜔, 𝑡𝑡) = ℋ(𝜔𝜔, 𝑡𝑡) = � ℎ(𝑢𝑢)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢
𝑡𝑡

0

=
1

(𝜔𝜔02 − 𝜔𝜔2) + 2𝑖𝑖𝑖𝑖𝜔𝜔0𝜔𝜔
�1 − 𝑒𝑒−(𝜉𝜉𝑖𝑖0+𝑖𝑖𝑖𝑖)𝑡𝑡 �cos𝜔𝜔𝐷𝐷𝑡𝑡 +

𝑖𝑖𝜔𝜔0 + 𝑖𝑖𝜔𝜔
𝜔𝜔𝐷𝐷

sin𝜔𝜔𝐷𝐷𝑡𝑡�� 

 

IV. Random Vibration Analysis of MDOF Systems 

• State-space approach (Section 8.6, 9.8 & 10.6 in L&S) 

• Modal approach (discussed in this course) 

 Modal analysis of MDOF system (Review) 

1) Equation of Motion 

𝐌𝐌�̈�𝐱 + 𝐂𝐂�̇�𝐱 + 𝐊𝐊𝐱𝐱 = 𝐏𝐏𝐅𝐅 
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where 𝐌𝐌,𝐂𝐂 and 𝐊𝐊 are (𝑛𝑛 × 𝑛𝑛) mass, damping and stiffness matrices; �̈�𝐱, �̇�𝐱 and 𝐱𝐱 are 

(𝑛𝑛 × 1) vectors of acceleration, velocity and displacement; 𝐏𝐏 is (𝑛𝑛 × 𝑚𝑚) matrix that 

determines the contributions of the external forces to the DOFs; and 𝐅𝐅 is (𝑚𝑚 × 1) 

vector of the forces 

2) Let 𝐱𝐱 = 𝚽𝚽𝚽𝚽(𝑡𝑡) 

where 𝚽𝚽 = [𝛟𝛟1 𝛟𝛟2    ⋯ 𝛟𝛟𝑛𝑛] is the matrix containing 𝑛𝑛 modal shape vectors, and 

𝚽𝚽(t) = [𝑞𝑞1(𝑡𝑡)  𝑞𝑞2(𝑡𝑡) ⋯   𝑞𝑞𝑛𝑛(𝑡𝑡)]T is the vector of scales of the modes at time 𝑡𝑡 

 Superposition of multiple modes, each of which is scaled by 𝑞𝑞𝑖𝑖(𝑡𝑡) at time 𝑡𝑡 

Thus, �̇�𝐱 = 𝚽𝚽�̇�𝚽(𝑡𝑡) and �̈�𝐱 = 𝚽𝚽�̈�𝚽(𝑡𝑡) 

3) We select 𝚽𝚽 to be the solution to an eigenvalue problem 

𝐊𝐊𝚽𝚽 = 𝛌𝛌𝐌𝐌𝚽𝚽 

where 𝛌𝛌 = diag[λ𝑖𝑖] = diag[ω𝑖𝑖
2], i.e. the diagonal matrix of the eigenvalues (real & 

positive because 𝐌𝐌 and 𝐊𝐊 are symmetric and positive-definite), and 𝚽𝚽 is the 

eigenmatrix 

(Pre-)multiply E.O.M. by 𝚽𝚽T 

𝚽𝚽T𝐌𝐌𝚽𝚽�̈�𝚽+ 𝚽𝚽T𝐂𝐂𝚽𝚽�̇�𝚽+ 𝚽𝚽T𝐊𝐊𝚽𝚽𝚽𝚽 = 𝚽𝚽T𝐏𝐏𝐅𝐅 

where 

 𝚽𝚽T𝐌𝐌𝚽𝚽 = diag[𝑀𝑀𝑖𝑖]: Modal masses 

 𝚽𝚽T𝐊𝐊𝚽𝚽 = diag�𝜔𝜔𝑖𝑖
2𝑀𝑀𝑖𝑖�: Modal stiffnesses (ω𝑖𝑖 = �𝐾𝐾𝑖𝑖

𝑀𝑀𝑖𝑖
, modal frequency) 

 𝚽𝚽T𝐂𝐂𝚽𝚽 = diag[𝐶𝐶𝑖𝑖]: Modal damping coefficients (= diag[2𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑀𝑀𝑖𝑖] for classical 

damping; ξ𝑖𝑖: modal damping ratio) 

When 𝐅𝐅(𝑡𝑡) = [𝐹𝐹(𝑡𝑡)], i.e. single input process, 

𝚽𝚽T𝐏𝐏 = �
⋮

γ𝑖𝑖𝑀𝑀𝑖𝑖
⋮
� and γ𝑖𝑖 = 𝝓𝝓𝑖𝑖

T𝐏𝐏
𝑀𝑀𝑖𝑖

, so-called “modal participation factor” 
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4) The i-th de-coupled (thanks to the orthogonality) equation is 

�̈�𝑞𝑖𝑖 + 2ξ𝑖𝑖ω𝑖𝑖�̇�𝑞𝑖𝑖 + 𝜔𝜔𝑖𝑖
2𝑞𝑞𝑖𝑖 = γ𝑖𝑖𝐹𝐹(𝑡𝑡), 𝑖𝑖 = 1, … , 𝑛𝑛 

Recall 

𝑞𝑞(𝑡𝑡) = 𝑔𝑔𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖(0) + ℎ𝑖𝑖(𝑡𝑡)�̇�𝑞𝑖𝑖(0) + γ𝑖𝑖 � 𝐹𝐹(𝜏𝜏)ℎ𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

= 𝑔𝑔𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖(0) + ℎ𝑖𝑖(𝑡𝑡)�̇�𝑞𝑖𝑖(0) + γ𝑖𝑖𝑠𝑠𝑖𝑖(𝑡𝑡) 

where ℎ𝑖𝑖(𝑡𝑡) is the unit impulse response function of the i-th mode (per-unit-mass 

force), i.e. 

ℎ𝑖𝑖(𝑡𝑡) = 1
𝑖𝑖𝐷𝐷𝑖𝑖

𝑒𝑒−𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑖𝑖𝑡𝑡  and ω𝐷𝐷𝑖𝑖 = �1 − 𝑖𝑖𝑖𝑖2 ⋅ ω𝑖𝑖 

Recall 𝐱𝐱 = 𝚽𝚽𝚽𝚽(𝑡𝑡), for zero IC’s,  

𝐱𝐱 = 𝚽𝚽𝚪𝚪𝚪𝚪(𝑡𝑡) 

where 𝚪𝚪 = diag[γ𝑖𝑖] and 𝚪𝚪(𝑡𝑡) = {𝑠𝑠1(𝑡𝑡)⋯𝑠𝑠𝑛𝑛(𝑡𝑡)}T 

5) Generic response 

𝐲𝐲 = 𝐐𝐐𝐱𝐱 = 𝐐𝐐𝚽𝚽𝚪𝚪𝚪𝚪(𝑡𝑡) = 𝐀𝐀𝚪𝚪(𝑡𝑡) 

(scalar version) 𝑦𝑦𝑘𝑘 = ∑ 𝑎𝑎𝑘𝑘,𝑖𝑖𝑠𝑠𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1  

where 

 𝐀𝐀: “effective” participation matrix (participation of each mode to each generic 

response) 

 𝚪𝚪(𝑡𝑡): vector of normalized modal responses 

Examples: 

(1) The relative displacement of 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) 

𝐲𝐲 = 𝐐𝐐𝐱𝐱 = [1 −1] �
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)� 

(2) Resisting force: 𝐐𝐐 = [𝑘𝑘𝑠𝑠 −𝑘𝑘𝑠𝑠] 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 21 

 

IV. Random Vibration Analysis of MDOF Systems (contd.) 

 Modal analysis of MDOF system (Review; contd.) 

6) Derivation of ℎ(𝑡𝑡) and 𝐻𝐻(ω) 

ℎ𝑝𝑝𝑝𝑝(𝑡𝑡): u.i.r.f of the p-th response to the loading applied at the q-th DOF 

To derive ℎ𝑝𝑝𝑝𝑝(𝑡𝑡), set 

• 𝐐𝐐 = [0 ⋯0  1  0 ⋯0] (“1” at the p-th element only): 𝐲𝐲 = 𝑦𝑦 = 𝑥𝑥𝑝𝑝 

• 𝐏𝐏 = {0⋯0  1  0⋯0}T(“1” at the q-th element only): (impulse) load applied at 

the q-th DOF 

• 𝐅𝐅 = 𝐹𝐹(𝑡𝑡) = δ(𝑡𝑡)  𝑠𝑠𝑖𝑖(𝑡𝑡) = ∫ 𝐹𝐹(𝜏𝜏)ℎ𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 = ℎ𝑖𝑖(𝑡𝑡) 

• γ𝑖𝑖 = 𝛟𝛟𝑖𝑖
T𝐏𝐏
𝑀𝑀𝑖𝑖

= 𝜙𝜙𝑞𝑞𝑖𝑖
𝑀𝑀𝑖𝑖

 

Then, obtain the generic response 𝐲𝐲 = 𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐(𝑡𝑡) to obtain ℎ𝑝𝑝𝑝𝑝(𝑡𝑡) 

ℎ𝑝𝑝𝑝𝑝(𝑡𝑡) =  𝐲𝐲 

= 𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐(𝑡𝑡) 

= [0 ⋯0  1  0 ⋯0]𝐐𝐐diag �
𝜙𝜙𝑝𝑝𝑖𝑖
𝑀𝑀𝑖𝑖

� �
ℎ1(𝑡𝑡)
⋮

ℎ𝑛𝑛(𝑡𝑡)
� 

= �𝜙𝜙𝑝𝑝1  𝜙𝜙𝑝𝑝2  ⋯  𝜙𝜙𝑝𝑝𝑛𝑛� diag �
𝜙𝜙𝑝𝑝𝑖𝑖
𝑀𝑀𝑖𝑖

� �
ℎ1(𝑡𝑡)
⋮

ℎ𝑛𝑛(𝑡𝑡)
� 

Thus, 

ℎ𝑝𝑝𝑝𝑝(𝑡𝑡) = ��
𝜙𝜙𝑝𝑝𝑖𝑖𝜙𝜙𝑝𝑝𝑖𝑖
𝑀𝑀𝑖𝑖

� ℎ𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 

𝐻𝐻𝑝𝑝𝑝𝑝(𝜔𝜔) = ��
𝜙𝜙𝑝𝑝𝑖𝑖𝜙𝜙𝑝𝑝𝑖𝑖
𝑀𝑀𝑖𝑖

�𝐻𝐻𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=1
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7) Multiple inputs (𝑚𝑚 ≠ 1): By superposition, 

𝐲𝐲 = �𝐀𝐀𝑘𝑘𝐐𝐐𝑘𝑘(𝑡𝑡)
𝑛𝑛

𝑘𝑘=1

 

where 𝐀𝐀𝑘𝑘 = 𝐐𝐐𝐐𝐐𝐐𝐐𝑘𝑘, 𝐐𝐐𝑘𝑘 = diag �𝝓𝝓𝑖𝑖
T𝑷𝑷𝑘𝑘
𝑀𝑀𝑖𝑖

�, 𝐐𝐐𝑘𝑘(𝑡𝑡) = ∫ 𝐹𝐹𝑘𝑘(𝜏𝜏)𝒉𝒉(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0  

Scalar version: 

𝑦𝑦𝑝𝑝(𝑡𝑡) = ���𝑎𝑎𝑝𝑝𝑖𝑖�𝑘𝑘𝑠𝑠𝑖𝑖𝑘𝑘(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

m

k=1

 

where 𝑠𝑠𝑖𝑖𝑘𝑘(𝑡𝑡) = ∫ 𝐹𝐹𝑘𝑘(𝜏𝜏)ℎ𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0  

 MDOF response to stochastic input: moment functions 

When the inputs are modeled by a vector of “random” processes 𝐅𝐅(𝑡𝑡) = {𝐹𝐹1(𝑡𝑡) 𝐹𝐹2(𝑡𝑡)⋯𝐹𝐹𝑚𝑚(𝑡𝑡)}T 

𝐘𝐘(𝑡𝑡) = �𝐀𝐀𝑘𝑘𝑺𝑺𝑘𝑘(𝑡𝑡)
𝑚𝑚

𝑘𝑘=1

 

1) Mean response:  

E[𝐘𝐘(𝑡𝑡)] = �𝐀𝐀𝑘𝑘E[𝑺𝑺𝑘𝑘(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=1

 

where 

E[𝐒𝐒𝑘𝑘(𝑡𝑡)] = � E[𝐹𝐹𝑘𝑘(𝜏𝜏)]𝒉𝒉(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
= � µ𝑘𝑘(𝜏𝜏)𝒉𝒉(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏

𝑡𝑡

0
 

2) Auto- and cross-covariances of the responses:  

𝐘𝐘(𝑡𝑡1)𝐘𝐘(𝑡𝑡2)T = ��𝐀𝐀𝑘𝑘𝐒𝐒𝑘𝑘(𝑡𝑡1)𝐒𝐒𝑙𝑙T(𝑡𝑡2)𝐀𝐀𝑙𝑙T
𝑚𝑚

𝑙𝑙=1

𝑚𝑚

𝑘𝑘=1

 

𝚺𝚺𝐘𝐘𝐘𝐘(𝑡𝑡1, 𝑡𝑡2) = E[𝐘𝐘(𝑡𝑡1)𝐘𝐘(𝑡𝑡2)T] = ��𝐀𝐀𝑘𝑘𝚺𝚺𝐒𝐒𝑘𝑘𝐒𝐒𝑙𝑙(𝑡𝑡1, 𝑡𝑡2)
𝑚𝑚

𝑙𝑙=1

𝑚𝑚

𝑘𝑘=1

𝐀𝐀𝑙𝑙T 

(single input case: 𝚺𝚺𝐘𝐘𝐘𝐘(𝑡𝑡1, 𝑡𝑡2) = 𝐀𝐀𝚺𝚺𝐒𝐒𝐒𝐒(𝑡𝑡1, 𝑡𝑡2)𝐀𝐀T) 
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Typical element (𝑖𝑖, 𝑗𝑗) in the matrix 𝚺𝚺𝐒𝐒𝑘𝑘𝐒𝐒𝑙𝑙(𝑡𝑡1, 𝑡𝑡2): 

κ𝑆𝑆𝑘𝑘𝑆𝑆𝑙𝑙
(𝑖𝑖,𝑗𝑗) (𝑡𝑡1, 𝑡𝑡2) = � � 𝜅𝜅𝐹𝐹𝑘𝑘𝐹𝐹𝑙𝑙(𝜏𝜏1, 𝜏𝜏2)ℎ𝑖𝑖(𝑡𝑡1 − 𝜏𝜏1)ℎ𝑗𝑗(𝑡𝑡2 − 𝜏𝜏2)𝑑𝑑𝜏𝜏2𝑑𝑑𝜏𝜏1

𝑡𝑡2

0

𝑡𝑡1

0
 

3) PSD of stationary response to stationary input:  

𝐐𝐐𝐘𝐘𝐘𝐘(ω) = ��𝐀𝐀𝑘𝑘𝐐𝐐𝐒𝐒𝑘𝑘𝐒𝐒𝑙𝑙(ω)𝐀𝐀𝑙𝑙𝑇𝑇
𝑚𝑚

𝑙𝑙=1

𝑚𝑚

𝑘𝑘=1

 

Typical element (𝑖𝑖, 𝑗𝑗) in the matrix 𝐐𝐐𝐒𝐒𝑘𝑘𝐒𝐒𝑙𝑙(ω): 

Φ𝐒𝐒𝑘𝑘𝐒𝐒𝑙𝑙
(𝑖𝑖,𝑗𝑗)(ω) = Φ𝐹𝐹𝑘𝑘𝐹𝐹𝑙𝑙(ω)𝐻𝐻𝑖𝑖(ω)𝐻𝐻𝑗𝑗∗(ω) 

(single input case: 𝐐𝐐𝐘𝐘𝐘𝐘(ω) = 𝐀𝐀𝐐𝐐𝐒𝐒𝐒𝐒(ω)𝐀𝐀T) 

4) Response to evolutionary excitation, i.e. 

Φ𝐹𝐹𝑘𝑘𝐹𝐹𝑙𝑙(ω, 𝑡𝑡) = 𝐴𝐴𝑘𝑘(ω, 𝑡𝑡)𝐴𝐴𝑙𝑙∗(ω, 𝑡𝑡)Φ𝐹𝐹𝑘𝑘𝐹𝐹𝑙𝑙
𝑆𝑆 (ω) 

Note 𝐴𝐴𝑘𝑘(ω, 𝑡𝑡) is not the effective participation matrix, but the frequency-time 

modulation function; and Φ𝐹𝐹𝑘𝑘𝐹𝐹𝑙𝑙
𝑆𝑆 (𝜔𝜔) is the cross-PSD of the base stationary process 

𝐹𝐹𝑘𝑘𝑠𝑠(𝑡𝑡) and 𝐹𝐹𝑙𝑙𝑠𝑠(𝑡𝑡) that appear in the evolutionary process of 𝐹𝐹𝑘𝑘(𝑡𝑡) = 𝐴𝐴𝑘𝑘(ω, 𝑡𝑡)𝐹𝐹𝑘𝑘𝑠𝑠(𝑡𝑡) and 

𝐹𝐹𝑙𝑙(𝑡𝑡) = 𝐴𝐴𝑙𝑙(ω, 𝑡𝑡)𝐹𝐹𝑙𝑙𝑠𝑠(𝑡𝑡) 

Φ𝑺𝑺𝑘𝑘𝑺𝑺𝑙𝑙
(𝑖𝑖,𝑗𝑗) = m𝑖𝑖𝑘𝑘(ω, 𝑡𝑡)m𝑗𝑗𝑙𝑙

∗ (ω, 𝑡𝑡)Φ𝐹𝐹𝑘𝑘𝐹𝐹𝑙𝑙
𝑆𝑆 (ω) 

where 

m𝑖𝑖𝑘𝑘(ω, 𝑡𝑡) = � 𝐴𝐴𝑘𝑘(ω, 𝑡𝑡 − 𝜏𝜏)ℎ𝑖𝑖(𝜏𝜏)𝑒𝑒−𝑖𝑖ωτ𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

 “Stationary” response to of MDOF system to (single) WN – important for CQC 

Generic response (displacement, stress, internal forces, etc.) 

𝑦𝑦𝑝𝑝(𝑡𝑡) = �𝑎𝑎𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

  

- the p-th element of 𝐲𝐲 = 𝐀𝐀𝐐𝐐(𝑡𝑡) = 𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐(𝑡𝑡)   
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1) PSD of the stationary response:  

Φ𝑦𝑦𝑝𝑝𝑦𝑦𝑞𝑞(ω) = ��𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝𝑗𝑗Φ𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗(𝜔𝜔)
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

where 

Φ𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗(ω) = Φ𝐹𝐹𝐹𝐹(ω)𝐻𝐻𝑖𝑖(𝜔𝜔)𝐻𝐻𝑗𝑗∗(𝜔𝜔) 

For white noise 𝐹𝐹(𝑡𝑡), i.e. Φ𝐹𝐹𝐹𝐹(ω) = Φ0 

∴ Φ𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗(ω) = Φ0𝐻𝐻𝑖𝑖(ω)𝐻𝐻𝑗𝑗∗(ω) and 𝐻𝐻𝑖𝑖(ω) = 1
𝜔𝜔𝑖𝑖
2−𝜔𝜔2+2𝑖𝑖𝜉𝜉𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔

  

2) Cross-correlation functions of modal responses (needed to derive spectral moments 

λ𝑚𝑚,𝑖𝑖𝑗𝑗):  

𝑅𝑅𝑖𝑖𝑗𝑗(τ) = E�𝑆𝑆𝑖𝑖(𝑡𝑡 + 𝜏𝜏)𝑆𝑆𝑗𝑗(𝑡𝑡)� 

= � Φ𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗(ω)𝑒𝑒𝑖𝑖ωτ𝑑𝑑ω
∞

−∞
 

= Φ0� 𝐻𝐻𝑖𝑖(ω)𝐻𝐻𝑗𝑗∗(ω)𝑒𝑒𝑖𝑖ωτ𝑑𝑑𝜔𝜔
∞

−∞
 

= πΦ0�α𝑖𝑖𝑗𝑗𝑔𝑔𝑖𝑖(𝜏𝜏) + β𝑖𝑖𝑗𝑗ℎ𝑖𝑖(τ)�, τ > 0 (use |𝜏𝜏| 𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝜏𝜏) 

where 

• ℎ𝑖𝑖(𝑡𝑡) = 1
ω𝐷𝐷𝑖𝑖

𝑒𝑒−ξ𝑖𝑖ω𝑖𝑖𝑡𝑡 sin𝜔𝜔𝐷𝐷𝑖𝑖𝑡𝑡  (for 𝑡𝑡 > 0) 

• 𝑔𝑔𝑖𝑖(𝑡𝑡) = 𝑒𝑒−ξ𝑖𝑖ω𝑖𝑖𝑡𝑡 �cos𝜔𝜔𝐷𝐷𝑖𝑖𝑡𝑡 + 𝜉𝜉𝑖𝑖

�1−𝜉𝜉𝑖𝑖
2

sin𝜔𝜔𝐷𝐷𝑖𝑖𝑡𝑡� 

• α𝑖𝑖𝑗𝑗 = 4�𝜔𝜔𝑖𝑖𝜉𝜉𝑖𝑖+𝜔𝜔𝑗𝑗𝜉𝜉𝑗𝑗�
𝐾𝐾𝑖𝑖𝑗𝑗

, β𝑖𝑖𝑗𝑗 =
2�𝜔𝜔𝑗𝑗

2−𝜔𝜔𝑖𝑖
2�

𝐾𝐾𝑖𝑖𝑗𝑗
 

• 𝐾𝐾𝑖𝑖𝑗𝑗 = �𝜔𝜔𝑖𝑖
2 − 𝜔𝜔𝑗𝑗2�

2 + 4𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗�𝜔𝜔𝑖𝑖𝜉𝜉𝑖𝑖 + 𝜔𝜔𝑗𝑗𝜉𝜉𝑗𝑗� ⋅ �𝜔𝜔𝑖𝑖𝜉𝜉𝑗𝑗 + 𝜔𝜔𝑗𝑗𝜉𝜉𝑖𝑖� 

Using 𝑅𝑅𝑖𝑖𝑗𝑗(τ), we can derive 

λ𝑚𝑚,𝑖𝑖𝑗𝑗 = 2� ω𝑚𝑚Φ𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗(𝜔𝜔)𝑑𝑑ω
∞

0
 

mailto:junhosong@snu.ac.kr


Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 
 

  5 

3) Zeroth order spectral moment:  

λ0,𝑖𝑖𝑗𝑗 = E�𝑆𝑆𝑖𝑖(𝑡𝑡)𝑆𝑆𝑗𝑗(𝑡𝑡)� = 𝑅𝑅𝑖𝑖𝑗𝑗(0) = πΦ0α𝑖𝑖𝑗𝑗 =
4πΦ0�ω𝑖𝑖ξ𝑖𝑖 + ω𝑗𝑗ξ𝑗𝑗� 

𝐾𝐾𝑖𝑖𝑗𝑗
 

4) E��̇�𝑆(𝑡𝑡)𝑆𝑆𝑗𝑗(𝑡𝑡)� = 𝑑𝑑
𝑑𝑑τ
𝑅𝑅𝑖𝑖𝑗𝑗(τ)�

τ=0
= −E�𝑆𝑆(𝑡𝑡)�̇�𝑆𝑗𝑗(𝑡𝑡)� 

5) 2nd order spectral moment: 

−
𝑑𝑑2

𝑑𝑑τ2
𝑅𝑅𝑖𝑖𝑗𝑗(τ)�

τ=0
= E��̇�𝑆(𝑡𝑡)�̇�𝑆𝑗𝑗(𝑡𝑡)� = λ2,𝑖𝑖𝑗𝑗 =

4πΦ0ω𝑖𝑖ω𝑗𝑗�ω𝑖𝑖ξ𝑗𝑗 + ω𝑗𝑗ξ𝑖𝑖� 
𝐾𝐾𝑖𝑖𝑗𝑗

 

6) 1st order spectral moments  

λ1,𝑖𝑖𝑗𝑗 = 2� ω1Φ𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗(𝜔𝜔)
∞

0
𝑑𝑑𝜔𝜔 

7) λ0,𝑖𝑖𝑖𝑖, λ2,𝑖𝑖𝑖𝑖, λ1,𝑖𝑖𝑗𝑗, λ1,𝑖𝑖𝑖𝑖: see the summary 

8) Cross-modal correlation coefficient: 

ρ𝑚𝑚,𝑖𝑖𝑗𝑗 = 𝜆𝜆𝑚𝑚,𝑖𝑖𝑗𝑗/�𝜆𝜆𝑚𝑚,𝑖𝑖𝑖𝑖𝜆𝜆𝑚𝑚,𝑗𝑗𝑗𝑗 

See the summary for ρ0,𝑖𝑖𝑗𝑗 and ρ2,𝑖𝑖𝑗𝑗 ~ correlation between 𝑆𝑆𝑖𝑖(𝑡𝑡) and 𝑆𝑆𝑗𝑗(𝑡𝑡), and between 

�̇�𝑆(𝑡𝑡) and �̇�𝑆𝑗𝑗(𝑡𝑡), respectively 

See the summary for ρ1,𝑖𝑖𝑗𝑗 
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Summary 

Spectral moments of stationary modal responses )(tsi  and )(ts j  to a white noise input whose 
power spectral density function is .0Φ  
 

∫∫
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 457.643 Structural Random Vibrations 
In-Class Material: Class 22 

 

IV. Random Vibration Analysis of MDOF Systems (contd.) 

 Spectral moments of MDOF generic response 𝑦𝑦𝑝𝑝 = ∑ 𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝(𝑡𝑡)𝑛𝑛
𝑝𝑝=1  

𝜆𝜆𝑚𝑚 = � 𝜔𝜔𝑚𝑚2Φ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0
 

Note 

Φ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝(𝜔𝜔) = ��𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝Φ𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗(𝜔𝜔)
𝑝𝑝𝑝𝑝

 

Thus, 

𝜆𝜆𝑚𝑚 = ��𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

� 𝜔𝜔𝑚𝑚2Φ𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0
 

𝜆𝜆𝑚𝑚 = ��𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝          
𝑝𝑝𝑝𝑝

 

In words, the m-th order spectral moment of the generic response 𝑦𝑦𝑝𝑝 can be obtained by the 

weighted sum of the m-th order (cross) spectral moments of the modal responses 𝑠𝑠𝑝𝑝(𝑡𝑡), 𝑖𝑖 =

1, … ,𝑛𝑛 

If WN approximation is made, the spectral moment is approximated as 

𝜆𝜆𝑚𝑚 ≅��𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝          
𝑝𝑝𝑝𝑝

 

Can use the closed-form formulas provided in the previous classnotes for 𝜆𝜆𝑚𝑚,𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊  

ij

jjii
jiij K

tsts
)(4

)]()([E 0
,0

ζω+ζωΦπ
=⋅=λ , 

ij

ijjiji
jiij K

tsts
)(4

)]()([E 0
,2

ζω+ζωωωΦπ
=⋅=λ   

22
2 2 1 2 2 2 2 10

1, 2 2

112 1 1( ) 2 tan ( ) ln ( ) 2 tan
1 1

ji i
ij i j i i j j i j i j j i j i

ij i j ji j
K

ζζ ωλ ω ω ζ ωω ζ ω ω ω ω ζ ωω ζ
ζ ω ζζ ζ

− −
    − −Φ       = + + − − + + +         − −      
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Example:  

 

 

 

 

 

A frame structure with a light equipment attached (𝛼𝛼       1) and small damping (𝜉𝜉1, 𝜉𝜉2      1) 

The ground acceleration process is assumed to be a white noise with the intensity Φ0 

Question: the mean square of the displacements E[𝑥𝑥12] and E[𝑥𝑥22] 

𝐌𝐌 = �           0       
     0            � 

𝐊𝐊 = � 𝛼𝛼𝛼𝛼          
          (1 + 𝛼𝛼)𝛼𝛼� 

E.O.M. 

𝐌𝐌�̈�𝐱 + 𝐂𝐂�̇�𝐱 + 𝐊𝐊𝐱𝐱 = 𝐌𝐌𝐌𝐌(−�̈�𝑥𝑔𝑔) 

Here 𝐏𝐏 =           and 𝐅𝐅(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) = 

Eigenvalue analysis 

|𝐊𝐊 − λ𝐌𝐌| = 0 

�𝛼𝛼𝛼𝛼 − 𝜆𝜆𝛼𝛼𝜆𝜆      
           (1 + 𝛼𝛼)𝛼𝛼 − 𝜆𝜆𝜆𝜆� = 0 

𝜆𝜆2 − (2 + 𝛼𝛼)
𝛼𝛼
𝜆𝜆
𝜆𝜆 +

𝛼𝛼2

𝜆𝜆2 = 0   

𝜆𝜆 = �1 +
𝛼𝛼
2

±
1
2
�𝛼𝛼2 + 4𝛼𝛼�

𝛼𝛼
𝜆𝜆

 

For small 𝛼𝛼 ≪ 1, 
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𝜔𝜔1 ≅ �1 −
√𝛼𝛼
2 ��

𝛼𝛼
𝜆𝜆

 

𝜔𝜔2 ≅ �1 +
√𝛼𝛼
2 ��

𝛼𝛼
𝜆𝜆

 

The corresponding modal vectors are 

𝛟𝛟1 = �
1
√𝛼𝛼
1
� 

𝛟𝛟2 = �−
1
√𝛼𝛼
1

� 

 

Modal masses: 

𝑀𝑀1 = 𝛟𝛟1
T𝐌𝐌𝛟𝛟1 = 2𝜆𝜆 

𝑀𝑀2 = 𝛟𝛟2
T𝐌𝐌𝛟𝛟2 = 2𝜆𝜆 

Modal participation factors: 

γ𝑝𝑝 =
𝛟𝛟𝑝𝑝
T𝐏𝐏
𝑀𝑀𝑝𝑝

=
𝛟𝛟𝑝𝑝
T         
𝑀𝑀𝑝𝑝

 

γ1 =
1 + √𝛼𝛼

2
≅ 

γ2 =
1 − √𝛼𝛼

2
≅ 

Effective modal participation factor: 

𝐀𝐀 = 𝐐𝐐𝐐𝐐𝐐𝐐 = �

12
22

12
22

12
22

12
22

� �

12
22

12
22

12
22

12
22

� �

12
22

12
22

12
22

12
22

� =

⎣
⎢
⎢
⎡

1
2√𝛼𝛼

−
1

2√𝛼𝛼
1
2

1
2 ⎦

⎥
⎥
⎤
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Recall 

E�𝑥𝑥𝑝𝑝2� = 𝜆𝜆0
(𝑝𝑝) = ��𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝜆𝜆0,𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝

= ��𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝�𝜆𝜆0,𝑝𝑝𝑝𝑝𝜆𝜆0,𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

 

WN modal responses: 

𝜆𝜆0,𝑝𝑝𝑝𝑝 =
𝜋𝜋Φ0

2𝜉𝜉𝑝𝑝𝜔𝜔𝑝𝑝
3 ≅

𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
 

where 𝜔𝜔0 = �𝑘𝑘
𝑚𝑚

 

𝜌𝜌0,12 =
8𝜉𝜉2𝑟𝑟

3
2

[(1 − 𝑟𝑟)2 + 4𝜉𝜉2𝑟𝑟](1 + 𝑟𝑟)
 

where 𝑟𝑟 = 𝜔𝜔1/𝜔𝜔2, and 

1 − 𝑟𝑟 = 1 −
1−√𝛼𝛼2
1+√𝛼𝛼2

= √𝛼𝛼

1+√𝛼𝛼2
≅ √𝛼𝛼,  1 + 𝑟𝑟 = 1 +

1−√𝛼𝛼2
1+√𝛼𝛼2

= 2

1+√𝛼𝛼2
≅ 2 

Therefore, 

𝜌𝜌0,12 ≅
4𝜉𝜉2

4𝜉𝜉2 + 𝛼𝛼
 

Finally, from 𝐀𝐀 = �
1

2√𝛼𝛼
− 1

2√𝛼𝛼
1
2

1
2

� and E�𝑥𝑥𝑝𝑝2� = ∑ ∑ 𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝�𝜆𝜆0,𝑝𝑝𝑝𝑝𝜆𝜆0,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , the mean square 

responses are finally derived as 

E[𝑥𝑥12] = �
1

2√𝛼𝛼
�
2
𝜆𝜆0,11 + 2 �

1
2√𝛼𝛼

��−
1

2√𝛼𝛼
�𝜌𝜌0,12�𝜆𝜆0,11𝜆𝜆0,22 + �−

1
2√𝛼𝛼

�
2
𝜆𝜆0,22

=
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
⋅

1
2𝛼𝛼

⋅ �1 −
4𝜉𝜉2

4𝜉𝜉2 + 𝛼𝛼�
  

E[𝑥𝑥22] =
𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
⋅

1
2
⋅ �1 +

4𝜉𝜉2

4𝜉𝜉2 + 𝛼𝛼�
 

For  𝜉𝜉 = 0.05 , the standard deviations of the displacements normalized by 𝜋𝜋Φ0/2𝜉𝜉𝜔𝜔0
3 are 
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𝜎𝜎𝑥𝑥1/�

𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
 𝜎𝜎𝑥𝑥2/�

𝜋𝜋Φ0

2𝜉𝜉𝜔𝜔03
 

Exact 𝜌𝜌0,12 
neglected Error (%) Exact 𝜌𝜌0,12 

neglected Error (%) 

𝛼𝛼 = 0.01 5 7.07 41 0.866 0.707 −18 

𝛼𝛼 = 0.001 6.71 22.4 233 0.975 0.707 −27 

 

 Random vibration theory behind modal combination rules 

Recall 𝑦𝑦𝑟𝑟 = ∑ 𝑎𝑎𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛
𝑝𝑝=1  and (𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥)2 ≅ (∑𝑎𝑎𝑟𝑟𝑝𝑝  𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥)2 where 

𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 = max
0<𝑡𝑡≤𝜏𝜏

|𝑦𝑦𝑟𝑟(𝑡𝑡)|  and 𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 = max
0<𝑡𝑡≤𝜏𝜏

|𝑠𝑠𝑝𝑝(𝑡𝑡)| 

1) Modal combination rules 

SRSS (Rosenblueth 1951):  

𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 ≅ ��𝑎𝑎𝑟𝑟𝑝𝑝2 (𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥)2
𝑛𝑛

𝑝𝑝=1

�
1/2

 

CQC (Der Kiureghian 1981, EESD)  

𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 ≅ ���𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥

𝑛𝑛

𝑝𝑝=1

𝑛𝑛

𝑝𝑝=1

�

1
2

 

           = ��(𝑎𝑎𝑟𝑟𝑝𝑝)2(𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥)2
𝑛𝑛

𝑝𝑝=1

+ 2 � � 𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥

𝑛𝑛

𝑝𝑝=𝑝𝑝+1

𝑛𝑛−1

𝑝𝑝=1

�

1/2

 

 

2) Random vibration theory 

Recall 

𝜆𝜆𝑚𝑚 = ��𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌𝑚𝑚,𝑝𝑝𝑝𝑝�𝜆𝜆𝑚𝑚,𝑝𝑝𝑝𝑝𝜆𝜆𝑚𝑚,𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝
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For example, consider 𝜆𝜆 = 0 

𝜆𝜆0 = E[𝑌𝑌𝑟𝑟2] = 𝜎𝜎𝑌𝑌𝑟𝑟
2 = ��𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝�𝜆𝜆0,𝑝𝑝𝑝𝑝𝜆𝜆0,𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝

 

= ��𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝𝜎𝜎𝑠𝑠𝑖𝑖𝜎𝜎𝑠𝑠𝑗𝑗
𝑝𝑝𝑝𝑝

 

That is, 

𝜎𝜎𝑌𝑌𝑟𝑟 = ���𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝𝜎𝜎𝑠𝑠𝑖𝑖𝜎𝜎𝑠𝑠𝑗𝑗
𝑝𝑝𝑝𝑝

�

1
2

 

Assume E[𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥] = 𝑝𝑝𝜎𝜎𝑌𝑌𝑟𝑟 and E[𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥] = 𝑝𝑝𝜎𝜎𝑠𝑠𝑖𝑖, E�𝑠𝑠𝑝𝑝
𝑚𝑚𝑚𝑚𝑥𝑥� = 𝑝𝑝𝜎𝜎𝑠𝑠𝑗𝑗 

E[𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥]
𝑝𝑝

= ���𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝
 E[𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥]

𝑝𝑝
 
 E�𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥�

𝑝𝑝
 

𝑝𝑝𝑝𝑝

�

1
2

 

Inspired by this, CQC rule is proposed as 

𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 ≅ ���𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥

𝑛𝑛

𝑝𝑝=1

𝑛𝑛

𝑝𝑝=1

�

1
2

 

This actually means 

E[𝑦𝑦𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥] ≅ ���𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝜌𝜌0,𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊E[𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥]E�𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥�

𝑛𝑛

𝑝𝑝=1

𝑛𝑛

𝑝𝑝=1

�

1
2

 

Herein E[𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥] and E�𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥� are obtained from ___________ spectrum. 

3) SRSS works well when modal frequencies are well-separated, say 𝑟𝑟 = 𝜔𝜔𝑖𝑖
𝜔𝜔𝑗𝑗

< 0.2
0.2+𝜉𝜉𝑖𝑖+𝜉𝜉_𝑝𝑝

  

(𝜔𝜔𝑝𝑝 > 𝜔𝜔𝑝𝑝) because 𝜌𝜌0,𝑝𝑝𝑝𝑝 ≅ 0.10 

4) Approximation introduced in CQC for practicality 

𝜌𝜌0,𝑝𝑝𝑝𝑝 ≅ 𝜌𝜌0,𝑝𝑝𝑝𝑝
𝑊𝑊𝑊𝑊 

mailto:junhosong@snu.ac.kr


Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 
 

  1 

 457.643 Structural Random Vibrations 
In-Class Material: Class 23 

 

V. Crossings & Failure Analysis 

 Failure probabilities 

1) Instantaneous failure probability 

𝑃𝑃(|𝑋𝑋(𝑡𝑡)| > 𝑎𝑎) or 𝑃𝑃(𝑋𝑋(𝑡𝑡) > 𝑎𝑎) 

e.g. Gaussian with µ𝑋𝑋(𝑡𝑡) and σ𝑋𝑋(𝑡𝑡) 

𝑋𝑋(𝑡𝑡)~𝑁𝑁(µ𝑋𝑋(𝑡𝑡),σ𝑋𝑋2(𝑡𝑡)) 

𝑃𝑃(𝑋𝑋(𝑡𝑡) > 𝑎𝑎) = 1 − 𝐹𝐹𝑋𝑋(𝑡𝑡)(𝑎𝑎)

= 1 −Φ�
             

                
� 

2) First-passage failure probability 

𝑃𝑃 �max
0<𝑡𝑡≤𝜏𝜏

|𝑋𝑋(𝑡𝑡)| > 𝑎𝑎� = 𝑃𝑃(𝑎𝑎𝑡𝑡 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡            𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 (0, 𝜏𝜏]) 

can be estimated by checking the probability distribution of _______ values, or 

by deriving from __________ rates and other characteristics 

3) Accumulated damage 

e.g. Fatigue damage index 

(L&S 11.8~11.11, 12.9) 

𝐷𝐷(𝑡𝑡): damage measure (counts)  

 

 Crossing statistics 

1) 𝑁𝑁+(𝑎𝑎; 𝑡𝑡): Number of upcrossings of level 𝑎𝑎 in (0, 𝑡𝑡) 

𝑝𝑝+(𝑎𝑎; 𝑡𝑡): Probability of an uncrossing of level 𝑎𝑎 in (𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡] 
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Upcrossing event at (𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡] 

Conditions: 

• 𝑋𝑋(𝑡𝑡)     𝑎𝑎 

• �̇�𝑋(𝑡𝑡)      0 

• 𝑋𝑋(𝑡𝑡 + 𝑑𝑑𝑡𝑡) ≅ 𝑋𝑋(𝑡𝑡) + �̇�𝑋(𝑡𝑡)𝑑𝑑𝑡𝑡          𝑎𝑎 

Therefore, 

𝑝𝑝+(𝑎𝑎; 𝑡𝑡) = 𝑃𝑃�{                < 𝑋𝑋(𝑡𝑡) <       }

∩ ��̇�𝑋(𝑡𝑡)       0�� 

= � �𝑓𝑓𝑋𝑋�̇�𝑋(𝑥𝑥, �̇�𝑥; 𝑡𝑡)
∞

0
𝑑𝑑𝑥𝑥𝑑𝑑�̇�𝑥 

= � 𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)�̇�𝑥𝑑𝑑𝑡𝑡𝑑𝑑�̇�𝑥
∞

0
 

= 𝑑𝑑𝑡𝑡� �̇�𝑥𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)𝑑𝑑�̇�𝑥
∞

0
 

For the bottom figure, the third condition is interpreted as 𝑎𝑎 − �̇�𝑥𝑑𝑑𝑡𝑡 < 𝑥𝑥 and thus �̇�𝑥 >

− 1
𝑑𝑑𝑡𝑡
𝑥𝑥 + 1

𝑑𝑑𝑡𝑡
𝑎𝑎 

2) 𝑑𝑑𝑁𝑁+(𝑎𝑎; 𝑡𝑡)(= 𝜕𝜕𝑁𝑁+(𝑎𝑎;𝑡𝑡)
𝜕𝜕𝑡𝑡

𝑑𝑑𝑡𝑡): Number of crossings in (𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡] 

E[𝑑𝑑𝑁𝑁+(𝑎𝑎; 𝑡𝑡)] = 0 × 𝑃𝑃(0 crossings) + 1 × 𝑃𝑃(1 crossing) + 2 × 𝑃𝑃(2 crossings) +⋯ 

≅ 𝑃𝑃(1 crossing in (𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡]) 

= 𝑝𝑝+(𝑎𝑎; 𝑡𝑡) 

= 𝑑𝑑𝑡𝑡� �̇�𝑥𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)𝑑𝑑�̇�𝑥
∞

0
 

3) Average number of upcrossings in (𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡], i.e. “mean upcrossing rate”  

ν+(𝑎𝑎; 𝑡𝑡) = E �
𝑑𝑑𝑁𝑁+(𝑎𝑎; 𝑡𝑡)

𝑑𝑑𝑡𝑡
� = � �̇�𝑥𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)𝑑𝑑�̇�𝑥

∞

0
 

S.O. Rice (1944; 1945)  “Rice formula” 

Downcrossing rate? 
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ν−(𝑎𝑎; 𝑡𝑡) = −� �̇�𝑥𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)𝑑𝑑�̇�𝑥
0

−∞
= � |�̇�𝑥|𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)𝑑𝑑�̇�𝑥

0

−∞
 

All crossings? 

ν(𝑎𝑎; 𝑡𝑡) = 𝜈𝜈+(𝑎𝑎; 𝑡𝑡) + 𝜈𝜈−(𝑎𝑎; 𝑡𝑡) 

= � |�̇�𝑥|𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥; 𝑡𝑡)𝑑𝑑�̇�𝑥
∞

−∞
 

• More rigorous derivation available in L&S (p. 265) 

4) Mean number of crossing in (𝑡𝑡1, 𝑡𝑡2] 

E[𝑁𝑁(𝑎𝑎; 𝑡𝑡2)−𝑁𝑁(𝑎𝑎; 𝑡𝑡1)] = � 𝜈𝜈(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡2

𝑡𝑡1
 

5) If 𝑋𝑋(𝑡𝑡) is stationary, 

• 𝑓𝑓𝑋𝑋�̇�𝑋(𝑥𝑥, �̇�𝑥; 𝑡𝑡)  𝑓𝑓𝑋𝑋�̇�𝑋(𝑥𝑥, �̇�𝑥) (if zero-mean Gaussian, 𝑓𝑓𝑋𝑋(𝑥𝑥) ⋅ 𝑓𝑓�̇�𝑋(�̇�𝑥)) 

• ν(𝑎𝑎; 𝑡𝑡)  ν(𝑎𝑎) 

• E[𝑁𝑁(𝑎𝑎; 𝑡𝑡2)−𝑁𝑁(𝑎𝑎; 𝑡𝑡1)]  ν(𝑎𝑎) ⋅ (𝑡𝑡2 − 𝑡𝑡1) 

6) Relationship between crossing rate and peak 

distribution (approximation for narrow-band 

processes) 

If 𝑋𝑋(𝑡𝑡) is stationary narrow-band process, 

almost every upcrossings over µ is associated 

with one and only one peak, then… 

𝑃𝑃(a randomly selected peak > 𝑎𝑎) ≅
ν+(𝑎𝑎)
ν+(µ) 

≅ 1 − 𝐹𝐹𝑝𝑝(𝑎𝑎) 

where 𝐹𝐹𝑝𝑝(⋅) is the CDF of a local peak 

PDF 𝑓𝑓𝑝𝑝(𝑎𝑎) ≅ − 1
𝜈𝜈+(𝜇𝜇) ⋅

𝑑𝑑𝜈𝜈+(𝑎𝑎)
𝑑𝑑𝑎𝑎
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Example: A stationary Gaussian process with zero-mean 

𝑓𝑓𝑋𝑋�̇�𝑋(𝑥𝑥, �̇�𝑥) = 𝑓𝑓𝑋𝑋(𝑥𝑥) ⋅ 𝑓𝑓�̇�𝑋(�̇�𝑥) 

=
1

2𝜋𝜋σ𝑋𝑋σ�̇�𝑋
exp �−

1
2 �
�
𝑥𝑥
σ2
�
2

+ �
�̇�𝑥
σ�̇�𝑋
2�

2

�� 

ν+(𝑎𝑎) = � �̇�𝑥𝑓𝑓𝑋𝑋�̇�𝑋(𝑎𝑎, �̇�𝑥)𝑑𝑑�̇�𝑥
∞

0
 

= � �̇�𝑥
1

2πσ𝑋𝑋σ�̇�𝑋
exp �−

1
2 ��

𝑎𝑎
σX2
�
2

+ �
�̇�𝑥
σ�̇�𝑋
2�

2

�� 𝑑𝑑�̇�𝑥
∞

0
 

=
1

2πσ𝑋𝑋σ�̇�𝑋
exp �−

𝑎𝑎2

2σ𝑋𝑋2
�� �̇�𝑥 exp�−

�̇�𝑥2

σ�̇�𝑋
2� 𝑑𝑑�̇�𝑥

∞

0
 

One can show that ∫ �̇�𝑥 exp �− �̇�𝑥2

σ�̇�𝑋
2 � 𝑑𝑑�̇�𝑥

∞
0 = σ�̇�𝑋

2  (hint: change variable �̇�𝑥2 → 𝑡𝑡) 

Therefore,  

ν+(𝑎𝑎) =
1

2π
σ�̇�𝑋
σ𝑋𝑋

 exp�−
𝑎𝑎2

2σ𝑋𝑋2
� 

=
1

2π
�
𝜆𝜆2
𝜆𝜆0

exp�−
𝑎𝑎2

2σ𝑋𝑋2
� 

Some notable results: 

• ν−(𝑎𝑎) = 

• ν(𝑎𝑎) = 

• ν+(0) = 1
2𝜋𝜋�

𝜆𝜆2
𝜆𝜆0

 

• �λ2
λ0

= 2πν+(0): circular apparent frequency 

e.g. WN response: λ2 = πΦ0
2𝜉𝜉ω0

 and λ0 = πΦ0
2𝜉𝜉𝜔𝜔0

3  �λ2
λ0

= ω0 

• NB approximation for local peak distribution: 𝑓𝑓𝑝𝑝(𝑎𝑎) ≅ − 1
𝜈𝜈+(0) ⋅

𝑑𝑑𝜈𝜈+(𝑎𝑎)
𝑑𝑑𝑎𝑎

= 𝑎𝑎
𝜆𝜆0

exp �− 𝑎𝑎2

2𝜆𝜆0
� 

 “Rayleigh” distribution 
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 Distribution of local peaks (NOT NB approximation; L&S pp. 488-490) 

𝐹𝐹𝑝𝑝(𝑎𝑎; 𝑡𝑡) =
∫ ∫ |�̈�𝑥|𝑓𝑓𝑋𝑋�̇�𝑋�̈�𝑋(𝑥𝑥, 0, �̈�𝑥; 𝑡𝑡)𝑑𝑑𝑥𝑥𝑑𝑑�̈�𝑥𝑎𝑎

−∞
0
−∞

∫ |�̈�𝑥|𝑓𝑓�̇�𝑋�̈�𝑋(0, �̈�𝑥; 𝑡𝑡)𝑑𝑑�̈�𝑥0
−∞

,    𝑓𝑓𝑝𝑝(𝑎𝑎; 𝑡𝑡) =
𝑑𝑑𝐹𝐹𝑝𝑝(𝑎𝑎; 𝑡𝑡)

𝑑𝑑𝑎𝑎
=
∫ |�̈�𝑥|𝑓𝑓𝑋𝑋�̇�𝑋�̈�𝑋(𝑎𝑎, 0, �̈�𝑥; 𝑡𝑡)𝑑𝑑�̈�𝑥0
−∞

∫ |�̈�𝑥|𝑓𝑓�̇�𝑋�̈�𝑋(0, �̈�𝑥; 𝑡𝑡)𝑑𝑑�̈�𝑥0
−∞

 

Example: The PDF and CDF of the local peaks of a stationary Gaussian process :)(tX  
(Rice distribution; Ex 11.1 in L&S) 
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P

aaaaaf
22
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Note 

(1) 0=α : wide-band     







σ
µ−

−
σπ

= 2

2

2
)(exp

2
1)(

X

X

X
P

aaf  (Gaussian) 

 

(2) 1=α : narrow-band   







σ
µ−

−
σ
µ−

= 2

2

2 2
)(exp)()(

X

X

X

X
P

aaaf  (Rayleigh) 

 
(3) The average fraction of local peaks below the mean value. 

      
2

1)( α−
=µ XPF  

       0.5 for 0=α  (Gaussian) and 0 for 1=α  (Rayleigh)  
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※ How was it derived? 

• 𝑓𝑓𝑋𝑋�̇�𝑋�̈�𝑋(𝑥𝑥, �̇�𝑥, �̈�𝑥) = 𝑓𝑓𝑋𝑋�̈�𝑋(𝑥𝑥, �̈�𝑥) ⋅ 𝑓𝑓�̇�𝑋(�̇�𝑥) (∵ stationary and Gaussian) 

• ρ𝑋𝑋�̈�𝑋? Note COV�X, Ẍ� = −λ2  

∵ Φ𝑋𝑋�̈�𝑋(ω) = (−𝑐𝑐ω)2Φ𝑋𝑋𝑋𝑋(ω) = −ω2Φ𝑋𝑋𝑋𝑋(ω) = −Φ�̇�𝑋�̇�𝑋(ω) 

∴ ρ𝑋𝑋�̈�𝑋 = −
λ2

�λ0λ4
= −α 

• α = λ2
�λ0λ4

= 𝜈𝜈𝑋𝑋
+(0)
𝜈𝜈�̇�𝑋

+(0) =
1

2𝜋𝜋�
𝜆𝜆2
𝜆𝜆0

1
2𝜋𝜋�

𝜆𝜆4
𝜆𝜆2

 

Note: α is another measure of the bandwidth (cf. 0 < s < ∞ and 0 < δ < 1) 

• 0 < α < 1 

• α ≅ 0:  ν�̇�𝑋
+(0) ≫ 𝜈𝜈𝑋𝑋+(0) wide-band process 

• α ≅ 1:  ν�̇�𝑋
+(0) ≅ 𝜈𝜈𝑋𝑋+(0) narrow-band process 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 24 

 

V. Crossings & Failure Analysis (contd.) 

 (Upper) bound on first-passage probability using crossing rate 

𝑃𝑃(at least one failure in (0, 𝑡𝑡]) = �𝑃𝑃(𝑖𝑖 crossing(s) in (0, 𝑡𝑡])
∞

𝑖𝑖=1

 

Note 

� 𝜈𝜈(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡
t

0
= E[𝑁𝑁(𝑎𝑎; 𝑡𝑡)] 

= mean no. of crossings in (0, 𝑡𝑡] 

= �𝑖𝑖 ⋅ 𝑃𝑃(𝑖𝑖 crossing(s) in (0, 𝑡𝑡])
∞

𝑖𝑖=1

 

∴ 𝑃𝑃(at least one failure) ≤ � 𝜈𝜈(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡
t

0
 

This approximation works well when crossing events are rare, but may not work if it is a 

narrow-band process (because if there is crossing, multiple crossings can occur). 

 Probability distribution of “global” peak and first-passage probability 

𝑋𝑋τ = max
0≤𝑡𝑡≤𝜏𝜏

𝑋𝑋(𝑡𝑡)  (cf. |𝑋𝑋(𝑡𝑡)| ~ two-sided) 

Relationship between first-passage probability and CDF of the global peak: 

𝑝𝑝𝑋𝑋(𝑎𝑎; 𝜏𝜏) =     − 𝐹𝐹𝑋𝑋𝜏𝜏(𝑎𝑎) 

𝐹𝐹𝑋𝑋τ(𝑎𝑎) = 𝑃𝑃(𝑋𝑋(0) ≤ 𝑎𝑎 ∩                upcrossings above level 𝑎𝑎 in (0, 𝑡𝑡]) 

              ≅ 𝐹𝐹𝑋𝑋(𝑎𝑎; 0) ⋅ 𝑃𝑃(               upcrossings above level 𝑎𝑎 in (0, t]) 

Two methods to obtain the probability of __________ upcrossings: 

• Poisson assumption 

• Vanmarcke’s formula (Prof. Erik Vanmarcke) 
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 First-passage probability by Poisson assumption 

In this approach, it is assumed that upcrossing events form a Poisson process. 

This approach works relatively well if the threshold value 𝑎𝑎 is ________ or the process is a 

_____-band process (because correlation between crossing events is _____ in these cases). 

𝑃𝑃(𝑥𝑥 crossing(s) in (0, τ]) =
𝑚𝑚(𝑡𝑡)𝑥𝑥

𝑥𝑥!
exp[−𝑚𝑚(τ)] 

∴ 𝑃𝑃(0 crossings in (0, τ]) = exp[−𝑚𝑚(τ)] 

                                                 = exp �−�               𝑑𝑑𝑡𝑡
τ

0
� 

Therefore, the first-passage probability by Poisson assumption is 

𝑝𝑝𝑋𝑋(𝑎𝑎; 𝜏𝜏) = 1 − 𝐹𝐹𝑋𝑋(𝑎𝑎; 0) ⋅ exp �−� 𝜈𝜈+(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
� 

Note: the first-passage probability takes the form 1 − 𝐴𝐴 ⋅ 𝐿𝐿𝑋𝑋(𝑎𝑎; 𝜏𝜏) = 1 − 𝐴𝐴 ⋅ exp�−∫ 𝛼𝛼(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 �. 

The approach by Vanmarcke aims to improve the accuracy of 𝐴𝐴 and α(𝑎𝑎; 𝑡𝑡). 

Example: Stationary Gaussian process with zero-mean 

ν+(𝑎𝑎) =
1
2π

�
λ2
λ0

exp�−
𝑎𝑎2

2𝜆𝜆0
� 

𝐹𝐹𝑋𝑋(𝑎𝑎; 0) = 𝑃𝑃(𝑋𝑋 ≤ 𝑎𝑎) = Φ�
𝑎𝑎
𝜎𝜎𝑋𝑋
� = Φ(𝑟𝑟) 

Thus,  

𝑝𝑝𝑋𝑋(𝑎𝑎; 𝜏𝜏) = 1 −Φ�
𝑎𝑎
𝜎𝜎𝑋𝑋
� ⋅ exp �−

1
2π

�
λ2
λ0

exp �−
𝑎𝑎2

2𝜆𝜆0
� ⋅ 𝜏𝜏� 

Note: For two-sided crossing, F|𝑋𝑋|(𝑎𝑎; 0) = 1 − 2Φ(−𝑟𝑟) and 2νX+(𝑎𝑎) are used instead. 

Furthermore, from the CDF of the global peak, 𝐹𝐹𝑋𝑋τ(𝑎𝑎) = exp �− 1
2π�

λ2
λ0

exp �− 𝑎𝑎2

2𝜆𝜆0
� ⋅ 𝜏𝜏�, 

Davenport (1964) derived the relationship between the statistics of the global peak (µ𝑋𝑋τ and 

σ𝑋𝑋τ) and the standard deviation of the process 𝑋𝑋(𝑡𝑡) as follows: 
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µ𝑋𝑋τ = 𝑝𝑝σ𝑋𝑋 and σ𝑋𝑋τ = 𝑞𝑞σ𝑋𝑋 

The so-called “peak factors” were derived as 

𝑝𝑝 = �2 ln[𝜈𝜈𝑋𝑋+(0)τ] +
0.5772

�2 ln[𝜈𝜈𝑋𝑋+(0)τ]
 

𝑞𝑞 =
π
√6

1

�2 ln[𝜈𝜈𝑋𝑋+(0)τ]
 

Note: 

• For the two-sided peak, replace ν𝑋𝑋+(0) by ν𝑋𝑋(0) = ν𝑋𝑋+(0) + ν𝑋𝑋−(0) 

• These peak factors work relatively well for wide-band processes and high thresholds 

because the CDF was derived based on ____________ assumption. 

• Der Kiureghian (1980) proposed improved versions that work for general cases based 

on Vanmarcke’s formula (discussed later) 

 First-passage probability by Vanmarcke (1975) 

Recall, the first-passage probability was derived in the form 

𝑝𝑝𝑋𝑋(𝑎𝑎; τ) = 1 − 𝐴𝐴 ⋅ exp �−� 𝛼𝛼(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
� = 1 − 𝐴𝐴 ⋅ 𝐿𝐿𝑋𝑋(𝑎𝑎; 𝑡𝑡) 

where 𝐴𝐴 denotes the probability of the “safe start” and 𝐿𝐿𝑋𝑋(𝑎𝑎; 𝑡𝑡) = exp�−∫ 𝛼𝛼(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 � 

represents the conditional probability of the first-passage failure given “safe start” 

When the first-passage probability is described as above, one can show that α(𝑎𝑎; 𝑡𝑡) is 

interpreted as (See L&S) 

α(𝑎𝑎; 𝑡𝑡) = lim
Δ𝑡𝑡→0

𝐸𝐸[No. of crossings in (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡)|no prior crossings up to 𝑡𝑡]
Δ𝑡𝑡

 

In words, α(𝑎𝑎; 𝑡𝑡) in the formulation above should be “                  ” mean crossing rate given 

_______________ 

※ In the Poisson assumption based approach, α(𝑎𝑎; 𝑡𝑡) is approximated by __________, which 

is “                  ” mean crossing rate. This means the Poisson approach neglects __________ 
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___________ between crossing events. This is why the approach works well when the 

threshold is high and the process is ________-band. 

Vanmarcke (1975) took into account the 

statistical dependence between the crossing 

events by introducing the envelope process 

and the “clump” size, i.e. the average number 

of crossings of the original process per a 

crossing of the envelope process. 

For example, the clump size of a stationary 

Gausssian process with zero-mean is 

E[CS] =
1

1 − exp�−√2𝜋𝜋δ1.2𝑟𝑟�
 

where δ is the bandwidth parameter and 𝑟𝑟 = 𝑎𝑎/σ𝑋𝑋 is the normalized threshold. 

• δ ≅ 0 (narrow band): E[CS] large (envelope crossing  many process crossings) 

• δ ≅ 1 (wide band): E[CS] ≅ 1 (one crossing per one envelope crossing) 

As a result, 

𝑝𝑝𝑋𝑋(𝑎𝑎; τ) = 1 − 𝐵𝐵 ⋅ exp�−� 𝜂𝜂+(𝑎𝑎; 𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
� 

𝐵𝐵 = 𝑃𝑃(𝐸𝐸(0) < 𝑎𝑎) = � 𝑓𝑓𝐸𝐸(𝑒𝑒; 0)𝑑𝑑𝑒𝑒
𝑎𝑎

0
 

η+(𝑎𝑎; 𝑡𝑡) =
𝑃𝑃(𝐸𝐸(𝑡𝑡) ≥ 𝑎𝑎)𝜈𝜈𝑋𝑋+(0; 𝑡𝑡)

𝑃𝑃(𝐸𝐸(𝑡𝑡) < 𝑎𝑎)
 �1 − exp�

−𝜈𝜈𝐸𝐸+(𝑎𝑎; 𝑡𝑡)
𝑃𝑃(𝐸𝐸(𝑡𝑡) ≥ 𝑎𝑎)𝜈𝜈𝑋𝑋+(0; 𝑡𝑡)�

� 

For a stationary Gaussian process with zero-mean, using the envelope process by Cramer 

and Leadbetter (1967), the first-passage probability is expressed using 

𝐵𝐵 = 1 − exp(−𝑟𝑟2/2) 

η𝑋𝑋+(𝑎𝑎; 𝑡𝑡) = 𝜈𝜈𝑋𝑋+(𝑎𝑎; 𝑡𝑡)
1 − exp�−√2𝜋𝜋δ1.2𝑟𝑟�

1 − exp(−𝑟𝑟2/2)   
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Note: For two-sided crossings, use ν𝑋𝑋(𝑎𝑎; 𝑡𝑡) instead of 𝜈𝜈𝑋𝑋+(𝑎𝑎; 𝑡𝑡), and �π/2 instead of √2π 

※ η𝑋𝑋+(𝑎𝑎)/𝜈𝜈𝑋𝑋+(𝑎𝑎) for a stationary Gaussian process with zero-mean: 

 

※ See Figure 4(a) in Song and Der Kiureghian (2006) (δ = 0.26) 

To account for the effect of the statistical dependence between crossing events, Der 

Kiureghian (1980) derived peak factors based on Vanmarcke’s formula (for two-sided peak): 

𝑝𝑝 = 1.253 + 0.209νe𝜏𝜏       0 < 𝜈𝜈𝑒𝑒𝜏𝜏 ≤ 2.1 

= �2 ln(𝜈𝜈𝑒𝑒𝜏𝜏) +
0.5772

�2 ln(𝜈𝜈𝑒𝑒𝜏𝜏)
     2.1 < 𝜈𝜈𝑒𝑒𝜏𝜏 

𝑞𝑞 = 0.658    0 < 𝜈𝜈𝑒𝑒𝜏𝜏 ≤ 2.1 

=
1.20

�2 ln(𝜈𝜈𝑒𝑒𝜏𝜏)
−

5.40
13 + [2 ln(𝜈𝜈𝑒𝑒𝜏𝜏)]3.2      2.1 < 𝜈𝜈𝑒𝑒𝜏𝜏 

where  ν𝑒𝑒 = 2𝛿𝛿𝜈𝜈𝑋𝑋(0)     0 < 𝛿𝛿 ≤ 0.1 

                     = (1.63δ0.45 − 0.38)𝜈𝜈𝑋𝑋(0)     0.1 < 𝛿𝛿 ≤ 0.69 

= ν𝑋𝑋(0)     0.69 < 𝛿𝛿 < 1 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r=a/
x
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For the one-sided peak, replace ν𝑋𝑋(0) by ν𝑋𝑋+(0), and δ by 2δ. 

Example: two-sided peak factors for stationary Gaussian with zero-mean  

 

 

Note: When ντ = 10 × 20 = 200 (a rough upperbound for typical earthquake responses), 𝑝𝑝 =

2.93~3.43 and 𝑞𝑞 = 0.37~0.43 
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 First-passage probability concept to multiple stochastic processes 

𝑃𝑃 �max
0≤𝑡𝑡<τ

𝑋𝑋1(𝑡𝑡) > 𝑎𝑎1 ∩ max
0≤𝑡𝑡<τ

𝑋𝑋2(𝑡𝑡) > 𝑎𝑎2� ? 

 

 

 

Song, J., and A. Der Kiureghian (2006). Joint first-passage probability and reliability of systems under stochastic 
excitation. Journal of Engineering Mechanics. ASCE, 132(1), 65-77. 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 25 

 

VI. Introduction to Nonlinear Random Vibration Analysis 

 (Differential equation based) hysteretic constitutive models in structural dynamics 

“Hyteresis” 

- Origin: ferromagnetic materials 

- Memory-based multi-valued relation between an input signal & output (generally only 

“rate-independent” relationship (viscous materials X) 

Mechanical model for description by differential equation based hysteresis model 

𝑧𝑧: Auxiliary variable representing inelastic 

behavior (“internal variable” – Capecchi & de 

Felice 2001, JEM) ~ displacement of inelastic 

spring 

 𝑧𝑧 = 𝑥𝑥: no slide 

 𝑧𝑧 = 0: slide 

(nonlinearity determined by difference between 𝑧𝑧 and 𝑥𝑥) 

Resisting force: 

𝑓𝑓𝑠𝑠(𝑥𝑥, 𝑧𝑧) = α𝑘𝑘0𝑥𝑥 + (1 − 𝛼𝛼)𝑘𝑘0𝑧𝑧 

 

 α: post-to-pre-yield stiffness ratio 

 α = 0: perfect plastic 

 α = 1: linear elastic 

 𝑘𝑘0: initial stiffness 

 

Inelastic 

x, Total Displacement. 

z 
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Evolution of 𝑧𝑧 follows a nonlinear differential equation 

�̇�𝑧 = �̇�𝑥 ⋅ ℎ(𝑥𝑥, �̇�𝑥, 𝑧𝑧) 

Meaning of the nonlinear function ℎ(⋅)? 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

⋅ ℎ(⋅) 

Therefore, 

ℎ(⋅) �= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� determines the slope of 𝑧𝑧 with respect to 𝑥𝑥 at a given time. 

 Bilinear model (Kaul & Penzien 1974 JEMD; Asano & Iwan 1984 EESD) 

Main idea: describe inelastic spring in the mechanical model by Coulomb slider (i.e. no slide 

until it reaches the yield displacement) 

(1) −𝑥𝑥𝑦𝑦 < 𝑧𝑧 < 𝑥𝑥𝑦𝑦: 

      the Coulomb slider does not slide, i.e. 

     𝑧𝑧 = 𝑥𝑥 and �̇�𝑧 = �̇�𝑥 

     𝑓𝑓𝑠𝑠(𝑥𝑥, 𝑧𝑧) = 𝛼𝛼𝑘𝑘0𝑥𝑥 + (1 − 𝛼𝛼)𝑘𝑘0𝑥𝑥 = 𝑘𝑘0𝑥𝑥 (linear) 

(2) 𝑧𝑧 > 𝑥𝑥𝑦𝑦, �̇�𝑥 > 0 or 𝑧𝑧 < −𝑥𝑥𝑦𝑦, �̇�𝑥 < 0: 

      Coulomb slider slides (i.e. �̇�𝑧 = 0) 

(3) 𝑧𝑧 > 𝑥𝑥𝑦𝑦, �̇�𝑥 < 0 or 𝑧𝑧 < −𝑥𝑥𝑦𝑦, �̇�𝑥 > 0:    

     Coulomb slider stops sliding �̇�𝑧 = �̇�𝑥 

Differential-equation model by Kaul & Penzien (1974): 

�̇�𝑧 = �̇�𝑥 ⋅ �𝑈𝑈�𝑧𝑧+ 𝑥𝑥𝑦𝑦� − 𝑈𝑈�𝑧𝑧 − 𝑥𝑥𝑦𝑦�+𝑈𝑈�𝑧𝑧 − 𝑥𝑥𝑦𝑦� ⋅ 𝑈𝑈(−�̇�𝑥) + 𝑈𝑈�−𝑧𝑧 − 𝑥𝑥𝑦𝑦� ⋅ 𝑈𝑈(�̇�𝑥)� 

where 𝑈𝑈(⋅) denotes the step function. 

How to solve the nonlinear system differential equation, i.e. 

E.O.M. with 𝑓𝑓𝑠𝑠 = α𝑘𝑘0𝑥𝑥 + (1 − α)𝑘𝑘0𝑧𝑧 plus �̇�𝑧 = �̇�𝑥 ⋅ ℎ(𝑥𝑥, �̇�𝑥, 𝑧𝑧) 

e.g. Runge-Kutta method (after transforming to state-space formulation �̇�𝐲 = 𝒈𝒈(𝒚𝒚) + 𝒇𝒇 

(2) 

(3) 

(2) 

(3) xy 

fs 

x 

(1) 

mailto:junhosong@snu.ac.kr


Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 
 

  3 

 Bouc-Wen class model 

Bouc (1967) first proposed and Wen (1976) modified to the form 

�̇�𝑧 = �̇�𝑥 ⋅ [𝐴𝐴 − |𝑧𝑧|𝑛𝑛ψ(𝑥𝑥, �̇�𝑥, 𝑧𝑧)] 

where 

• 𝐴𝐴: scale of hysteresis loop 

• 𝑛𝑛: smoothness of transition from pre-yielding to post-yielding 

• ψ(𝑥𝑥, �̇�𝑥, 𝑧𝑧): “shape-control” function 

Reviews are available in Song & ADK (2006, JEM), and Ismail et al. (2009, Archi. Comp. 

Meth. Engrg.) 

1) Bouc (1967, 1971) 

 𝑛𝑛 = 1 

 ψ(𝑥𝑥, �̇�𝑥, 𝑧𝑧) = γ+ βsgn(�̇�𝑥𝑧𝑧) 

2) Wen (1976) 

 𝑛𝑛: generalized 

 ψ(𝑥𝑥, �̇�𝑥, 𝑧𝑧) = γ+ βsgn(�̇�𝑥𝑧𝑧) 

The parameters γ and β in the 

“shape-control” function determine 

the shapes of the hysteresis loops (Song and ADK 2006) 
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3) Baber & Wen (1981): Considered the degradation effect by making the model 

parameters functions of ϵ, “the dissipated energy” 

4) Baber & Noori (1984): Introduce additional parameters to describe “pinching” effect 

5) Wang & Wen (1998): Aim to describe “asymmetric” shape by adding additional terms 

ψ(𝑥𝑥, �̇�𝑥, 𝑧𝑧) = γ + βsgn(�̇�𝑥𝑧𝑧) +ϕ[sgn(�̇�𝑥) + sgn(𝑧𝑧)] 

 Added more DOFs (see the figure above) 

6) Generalized Bouc-Wen (Song & ADK, 2006) 

Generalize the “shape-control” function to describe highly asymmetric behavior 

ψ(𝑥𝑥, �̇�𝑥, 𝑧𝑧) = β1sgn(�̇�𝑥𝑧𝑧) + β2sgn(𝑥𝑥�̇�𝑥) + β3sgn(𝑥𝑥𝑧𝑧) + β4sgn(�̇�𝑥) + β5sgn(𝑧𝑧) + β6sgn(𝑥𝑥) 

 

Six phases can now have all different values, and the values are determined as 

 

The model parameters β𝑖𝑖 , 𝑖𝑖 = 1, … ,6 can be fitted by use of 
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※ Weakness of Bouc-Wen class models: 

 can violate the requirement of classical plasticity 

theory (“Drucker’s postulate”; Bažant 1978); can 

create negative dissipative energy when “loading-

unloading” occurs without load reversal 

 But this problem is not critical if E[𝑓𝑓𝑠𝑠] ≅ 0 (Wen 

1989, Hurtado & Barbat 1996) 

※ Bouc-Wen class models are widely-used in structural dynamics and earthquake 

engineering because 

1) Can describe a wide-class of phenomena (pinching, degradation, etc.) 

2) Facilitates efficient time history analysis (no IF or THEN) 

3) Facilitates efficient random vibration analysis 

e.g. Nonlinear random vibration analysis for Bouc-Wen model by Equivalent 

Linearization Method (Wen 1980) 

 Nonlinear time-history analysis of structural system with Bouc-Wen class models 

𝐌𝐌�̈�𝐱 + 𝐂𝐂�̇�𝐱 + 𝐑𝐑(𝒙𝒙, �̇�𝒙, 𝒛𝒛) = −𝐌𝐌𝟏𝟏�̈�𝑥𝑔𝑔 

where 𝐑𝐑(𝐱𝐱, �̇�𝐱, 𝒛𝒛) uses 𝑓𝑓𝑠𝑠 = α𝑘𝑘0𝑥𝑥 + (1 − α)𝑘𝑘0𝑧𝑧 to describe the resistant force of each B-W 

element. The auxiliary variable follows the nonlinear differential equation �̇�𝑧 = �̇�𝑥 ⋅ ℎ(𝑥𝑥, �̇�𝑥, 𝑧𝑧). 

Transformed to state-space formulation, i.e. 𝐲𝐲 = {𝑥𝑥1, �̇�𝑥1,𝑥𝑥2, �̇�𝑥2, … , 𝑧𝑧1, … , 𝑧𝑧𝑚𝑚} 
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Example: Two connected equipment items in an electrical substation (Song, 2004) 

 

�̇�𝐲 = 𝒈𝒈(𝒚𝒚) + 𝒇𝒇 

where 

𝐲𝐲 = {𝑢𝑢1, �̇�𝑢1,𝑢𝑢2, �̇�𝑢2, 𝑧𝑧}T 

𝐠𝐠(𝐲𝐲) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

�̇�𝑢1

− �
𝑘𝑘1 + 𝛼𝛼𝑘𝑘0

𝑚𝑚1
�𝑢𝑢1 − �

𝑐𝑐1 + 𝑐𝑐0
𝑚𝑚1

� �̇�𝑢1 +
𝛼𝛼𝑘𝑘0
𝑚𝑚1

𝑢𝑢2 +
𝑐𝑐0
𝑚𝑚1

�̇�𝑢2 +
(1 − 𝛼𝛼)𝑘𝑘0

𝑚𝑚1
𝑧𝑧

�̇�𝑢2
𝛼𝛼𝑘𝑘0
𝑚𝑚2

𝑢𝑢1 +
𝑐𝑐0
𝑚𝑚2

�̇�𝑢1 − �
𝑘𝑘2 + 𝛼𝛼𝑘𝑘0

𝑚𝑚2
�𝑢𝑢2 − �

𝑐𝑐2 + 𝑐𝑐0
𝑚𝑚2

� �̇�𝑢2 −
(1 − 𝛼𝛼)𝑘𝑘0

𝑚𝑚2
𝑧𝑧

Δ�̇�𝑢 ⋅ ℎ(Δ𝑢𝑢,Δ�̇�𝑢, 𝑧𝑧) ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝐟𝐟 = �0  −
𝑙𝑙1
𝑚𝑚1

�̈�𝑥𝑔𝑔   0  −
𝑙𝑙2
𝑚𝑚2

�̈�𝑥𝑔𝑔   0�
T

 

Can solve the differential equation by a numerical method such as the fourth and fifth order 

Runge-Kutta-Fehlberg (RKF) algorithm. 
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 457.643 Structural Random Vibrations 
In-Class Material: Class 26 (Final) 

 

VI. Introduction to Nonlinear Random Vibration Analysis (contd.) 

 Equivalent linearization method (ELM; aka stochastic linearization method) 

Among various methods such as Fokker-Planck equation, stochastic averaging, moment 

closure, perturbation (Lutes and Sarkani 2004), ELM is considered as a nonlinear random 

vibration approach with the highest potential for practical use (Pradlwarter & Schuëller 1991) 

- Applicable to both stationary and nonstationary processes 

- Applicable to a wide class of nonlinear behavior 

- Can handle MDOF systems and FE models 

- Takes significantly less efforts than Monte Carlo simulations (especially for low-
probability events) 

Consider an original nonlinear system: �̇�𝐲 = 𝒈𝒈(𝒚𝒚) + 𝒇𝒇: 

One can find an “equivalent linear” system: �̇�𝐲𝑒𝑒 = 𝐀𝐀 ⋅ 𝐲𝐲e + 𝒇𝒇 such that the mean-square error 

(caused by linearization) E[(𝒈𝒈(𝒚𝒚) − 𝐀𝐀𝒚𝒚)T(𝒈𝒈(𝒚𝒚)− 𝐀𝐀𝒚𝒚)] is minimized. 

Note: ELM based on the error definition above is considered “standard” ELM while the error 

measure E[(𝒈𝒈(𝒚𝒚𝑒𝑒) − 𝐀𝐀𝒚𝒚𝑒𝑒)T(𝒈𝒈(𝒚𝒚𝑒𝑒) −𝐀𝐀𝒚𝒚𝑒𝑒)] is called “SPEC-alternative” ELM (Crandall 2001). 

※ Other ELMs: 

 Tail equivalent linearization method (TELM; Fujimura and ADK, 2007): equivalent 

linear system by unit impulse response function based on discrete representation of 

input stochastic process and first-order reliability method (FORM) 

 Gaussian-mixture based equivalent linearization method (GM-ELM; Wang and Song, 

2016): fit the response distribution by Gaussian mixture distribution. Each Gaussian 

density in the mixture represents an imaginary SDOF oscillator. 

 

Crandall, S.H. (2001) Is stochastic equivalent linearization a subtly flawed procedure? Probabilistic Engineering 
Mechanics, 16:169-176 
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 “Standard” ELM – how to find equivalent linear coefficients 

1) In general, the equivalent linear coefficient (minimizing the mean-square error) matrix 

is derived as (Kozin 1987)  

𝐀𝐀 =
E[𝒈𝒈(𝒚𝒚)𝒚𝒚T]

E[𝒚𝒚𝒚𝒚T]  

But, this formula is impractical because (1) the distribution of 𝐲𝐲 is unknown, and (2) it is 

not straightforward to compute the expectation E[⋅] that involves the nonlinear 

responses. 

2) “Restricted” ELM: 𝐲𝐲 is assumed to be nearly Gaussian (e.g. the input stochastic 

process is Gaussian, and the nonlinearity is not strong) 

When �̇�𝐲 = 𝒈𝒈(𝒚𝒚) + 𝒇𝒇 is alternatively formulated as 𝐪𝐪(𝐲𝐲, �̇�𝐲,𝒇𝒇) = 𝟎𝟎, the equivalent linear 

coefficient matrix is derived as (Atalik & Utku 1976) 

𝐴𝐴𝑖𝑖𝑖𝑖 = E �
𝜕𝜕𝑞𝑞𝑖𝑖(𝒚𝒚)
𝜕𝜕𝑦𝑦𝑖𝑖

� 

Example: Application of this approach to standard MDOF system 

𝐪𝐪(𝒙𝒙, �̇�𝒙, �̈�𝒙) = 𝒇𝒇 can be linearized to 𝐌𝐌𝒆𝒆�̈�𝒙+ 𝐂𝐂𝒆𝒆�̇�𝒙 + 𝐊𝐊𝒆𝒆𝒙𝒙 = 𝒇𝒇 where 

𝑀𝑀𝑖𝑖𝑖𝑖
𝑒𝑒 = E �

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕�̈�𝑥𝑖𝑖

� ,𝐶𝐶𝑖𝑖𝑖𝑖𝑒𝑒 = E �
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕�̇�𝑥𝑖𝑖

� ,𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒 = E �
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

� 

For the given type of a nonlinear system, one needs to derive the closed-form 

expressions of these expectations in terms of E[𝒙𝒙𝒙𝒙T] so that one can obtain the 

moments by solving (equivalent) linear random vibration problem iteratively (Details 

shown below for the Bouc-Wen class model). 

3) Unrestricted ELM (Pradlwarter & Schuëller 1991) 

- Not limited to “Gaussian response” assumption 

- Need to identify joint distribution model for the given class of nonlinear problem (and  

how to obtain the moments as well) 
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 Nonlinear random vibration analysis by standard ELM 

 

 

 

 

 

 

 (Standard, restricted) ELM for Bouc-Wen model (Wen 1980) 

Suppose a system with Bouc-Wen element(s) is subjected to a zero-mean Gaussian (filtered) 

white noise. 

1) Derivation of analytical (closed-form) expression for equivalent linear coefficients 

The nonlinear differential equation about the evolution of the auxiliary variable, i.e. 

�̇�𝑧 = �̇�𝑥 ⋅ [𝐴𝐴 − |𝑧𝑧|𝑛𝑛(γ+ βsgn(�̇�𝑥𝑧𝑧))] 

This can be alternatively described as 

𝑞𝑞(�̇�𝑥, 𝑧𝑧, �̇�𝑧) = ż − �̇�𝑥 ⋅ �𝐴𝐴 − |𝑧𝑧|𝑛𝑛�γ+ βsgn(�̇�𝑥𝑧𝑧)�� = 0 

This nonlinear differential equation is linearized to 

𝑎𝑎0�̇�𝑧 + 𝑎𝑎1�̇�𝑥 + 𝑎𝑎2𝑧𝑧 = 0 

From Atalik & Utku (1976), i.e. 𝐴𝐴𝑖𝑖𝑖𝑖 = E � 𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕( )𝑗𝑗

� 

a) 𝑎𝑎0 = E �𝜕𝜕𝑞𝑞
𝜕𝜕�̇�𝑧
� = E[1] = 1 

b) 𝑎𝑎1 = E �𝜕𝜕𝑞𝑞
𝜕𝜕�̇�𝑥
� = E[−𝐴𝐴 + 𝛾𝛾|𝑧𝑧|𝑛𝑛 + |𝑧𝑧|βsgn(�̇�𝑥𝑧𝑧) + �̇�𝑥|𝑧𝑧|β2δ(�̇�𝑥)sgn(𝑧𝑧)] 

One can show that E[|𝑧𝑧|] = �2
𝜋𝜋
σ𝑧𝑧 and 

�̇�𝒚 = 𝒈𝒈(𝒚𝒚) + 𝒇𝒇 𝐀𝐀 =
E[𝒈𝒈(𝒚𝒚)𝒚𝒚T]

E[𝒚𝒚𝒚𝒚T]  

 

�̇�𝒚 = 𝐀𝐀 ⋅ 𝐲𝐲 + 𝒇𝒇 𝑺𝑺 = E[𝒚𝒚𝒚𝒚T] 

Compute 

Linearize 

Linear 
Random 
Vibration 
Analysis 

Update 
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E[|𝑧𝑧|sgn(�̇�𝑥𝑧𝑧)] = E[|𝑧𝑧|sgn(�̇�𝑥)sgn(𝑧𝑧)] = E[�̇�𝑧 ⋅ sgn(�̇�𝑥)] = �2
π

E[�̇�𝑥𝑧𝑧]
𝜎𝜎�̇�𝑋

 

 Here a useful formula for zero-mean Gaussian, introduced in Atalik & Utku (1976), 

E[𝐲𝐲ℎ(𝐲𝐲)] = E[𝐲𝐲𝐲𝐲T] ⋅ E[∇ℎ(𝒚𝒚)] is used for the derivation. 

Finally, 

𝑎𝑎1 = �2
π �
β

E[𝑧𝑧�̇�𝑥]
𝜎𝜎�̇�𝑋

+ γ𝜎𝜎𝑧𝑧� − 𝐴𝐴 

c) 𝑎𝑎2 = E �𝜕𝜕𝑞𝑞
𝜕𝜕𝑧𝑧
� = E[�̇�𝑥sgn(𝑧𝑧)γ+ �̇�𝑥sgn(𝑧𝑧)βsgn(�̇�𝑥𝑧𝑧) + �̇�𝑥|𝑧𝑧|βsgn(�̇�𝑥)2δ(𝑧𝑧)] 

= �2
π �
γ

E[�̇�𝑥𝑧𝑧]
σ𝑧𝑧

+ β𝜎𝜎�̇�𝑋� 

2) Construct an equivalent linear system 

𝐲𝐲 = �
𝑥𝑥
𝑧𝑧
�̇�𝑥
�, and �̇�𝐲 = �

�̇�𝑥
�̇�𝑧
�̈�𝑥
� = �

0 0 1
0 −𝑎𝑎2/𝑎𝑎0 −𝑎𝑎1/𝑎𝑎0

−αω0
2 −(1 − 𝛼𝛼)𝜔𝜔0

2 −2𝜉𝜉𝜔𝜔0

� �
𝑥𝑥
𝑧𝑧
�̇�𝑥
� + �

0
0

𝑓𝑓(𝑡𝑡)/𝑚𝑚
� 

�̇�𝐲 = 𝑮𝑮𝒚𝒚+ 𝒇𝒇 

3) Perform linear random vibration analysis 

e.g. if 𝑓𝑓(𝑡𝑡) is a white noise, the 2nd moment follows the Lyapunov equation (Lin 1967) 

𝐆𝐆𝐆𝐆 + 𝐆𝐆𝐆𝐆T + 𝐁𝐁 = 𝟎𝟎 

where 𝐵𝐵𝑖𝑖𝑖𝑖 = 0 except 𝐵𝐵33 = 2𝜋𝜋Φ0 ( Φ0 is the PSD of the white noise 𝑓𝑓(𝑡𝑡)) and 

𝐆𝐆 = E[𝒚𝒚𝒚𝒚T] = E �
𝑥𝑥2 𝑥𝑥𝑧𝑧 𝑥𝑥�̇�𝑥
𝑥𝑥𝑧𝑧 𝑧𝑧2 𝑧𝑧�̇�𝑥
𝑥𝑥�̇�𝑥 𝑧𝑧�̇�𝑥 �̇�𝑥2

� 

This random vibration analysis approach can be used for filtered white noise case as 

well by introducing the ground displacement 𝑥𝑥𝑔𝑔 to the state-space vector, i.e. adding 

another DOF representing the filter. 
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4) Re-compute 𝑎𝑎1 and 𝑎𝑎2 based on new 𝐆𝐆 = E[𝒚𝒚𝒚𝒚T] 

5) Repeat 1)-4) until the solution converges. 

 

 
References: 
  
Song, J., A. Der Kiureghian, and J.L. Sackman (2007). Seismic interaction in electrical substation 
equipment connected by nonlinear rigid bus conductors. Earthquake Engineering and Structural 
Dynamics, Vol. 36, 167-190. 
  
Ok, S.-Y., J. Song, and K.-S. Park (2008). Optimal design of hysteretic dampers connecting adjacent 
structures using multi-objective genetic algorithm and stochastic linearization method. Engineering 
Structures, Vol. 30, 1240-1249. 
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http://dx.doi.org/doi:10.1002/eqe.620
http://dx.doi.org/doi:10.1016/j.engstruct.2007.07.019
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VII. Random Vibration Analysis by Structural Reliability Analysis Methods 
 
References: 

Der Kiureghian, A. (2000). The geometry of random vibrations and solutions by FORM and SORM. 
Probabilistic Engineering Mechanics, 15(1), 81-90 

Fujimura, K., and A. Der Kiureghian (2007). Tail-equivalent linearization method for nonlinear random 
vibration. Probabilistic Engineering Mechanics, 22:63-76 

 Discrete representation of a random process 

1) Discrete representation (in time domain)  

𝑓𝑓(𝑡𝑡) = µ(𝑡𝑡) +�𝑢𝑢𝑖𝑖𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

= µ(𝑡𝑡) + 𝐮𝐮T𝐬𝐬(t) 

where 𝑢𝑢𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛 are uncorrelated standard normal random variables 

𝐬𝐬(𝑡𝑡) is a vector of deterministic time-varying basis function which is identified based on 

the correlation structure of the process, e.g. Karhunen-Loève expansion  

2) Example: filtered white noise (EQ input) 

𝑓𝑓(𝑡𝑡) = � 𝑢𝑢(𝜏𝜏)𝑠𝑠(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
≅ ∑𝑢𝑢𝑖𝑖𝑠𝑠𝑖𝑖(𝑡𝑡) 

where 𝑠𝑠(⋅) denotes the unit impulse response function of the filter. 

3) Discrete representation (in frequency domain) 

For example (Wang and Song, 2016), a white noise can be discretized as 

�̈�𝑥𝑔𝑔(𝑡𝑡) = 𝜎𝜎��𝑢𝑢𝑖𝑖 cos�ω𝑖𝑖𝑡𝑡� + 𝑢𝑢�𝑖𝑖 sin�ω𝑖𝑖𝑡𝑡��
𝑛𝑛/2

𝑖𝑖=1

 

 Response of linear structure to Gaussian excitation 

𝑥𝑥(𝑡𝑡) = � 𝑓𝑓(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
= � �𝑢𝑢𝑖𝑖𝑠𝑠𝑖𝑖(𝜏𝜏)

𝑛𝑛

𝑖𝑖=1

ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
t

0
 

where ℎ(⋅) is the unit impulse response function of the structure, and thus the response is 
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𝑥𝑥(𝑡𝑡) = �𝑢𝑢𝑖𝑖𝑎𝑎𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

= 𝒂𝒂T(𝑡𝑡)𝒖𝒖 

where 𝑎𝑎𝑖𝑖(𝑡𝑡) = ∫ 𝑠𝑠𝑖𝑖(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0  

In summary, the response of a linear structure to a Gaussian input can be described as a 

linear function of uncorrelated standard normal random variables (owing to the discrete 

representation). 

 Instantaneous failure probability 

The instantaneous failure probability of the linear response is 

𝑃𝑃(𝑥𝑥(𝑡𝑡0) ≥ 𝑥𝑥0) = 𝑃𝑃�𝑥𝑥0 − 𝒂𝒂T(𝑡𝑡0)𝒖𝒖 ≤ 0� 

This is a structural reliability problem with a linear limit state function g(𝐮𝐮) = 𝑥𝑥0 − 𝒂𝒂T(𝑡𝑡0)𝒖𝒖 

From structural reliability theories, the failure probability is obtained by a closed-form solution 

𝑃𝑃(𝑥𝑥(𝑡𝑡0) ≥ 𝑥𝑥0) = Φ[−β(𝑥𝑥0, 𝑡𝑡0)] = Φ�−
𝑥𝑥0

‖𝒂𝒂(𝑡𝑡0)‖�
 

One can also compute crossing rate, first-passage failure probability, etc. by structural 

reliability analysis in the standard normal space (Der Kiureghian, 2000). 

This idea was utilized for efficient topology optimization with constraints on instantaneous 

failure probability (Chun et al. 2016). 

For nonlinear system and/or non-Gaussian process, first-order reliability method (FORM) or 

second-order reliability method (SORM) can be used to compute the probabilities 

approximately. This idea was further developed to propose the tail equivalent linearization 

method (TELM; Fujimura and ADK 2007). 

--- End of Semester --- 

Thanks a lot for your patience and great effort this semester.. J.S. 

“There is no fear in love.” – 1John 4:18a  

Chun, J., J. Song, and G.H. Paulino (2016). Structural topology optimization under constraints on instantaneous 
failure probability. Structural and Multidisciplinary Optimization, 53(4): 773-799. 
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