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457.643 Structural Random Vibrations
In-Class Material: Class 01

0. Introduction

Grigoriu, M. (2004) Research Perspective in Stochastic Mechanics. Engineering Design Reliability Handbook,
edited by E. Nikolaidis, D.M. Ghiocel, and S. Singhal, CRC Press, Boca Raton, FL., Chap. 6

The response and evolution (X (x, t)) of mechanical, biological, and other systems subjected
to an input Y(x, t) can be characterized by equations of the form

DX (x,t)] = Y(x,1), t>0, x €D c R4

where
D: algebraic, integral, or differential operator with random or deterministic coefficients
Y(x, t): random or deterministic input function
X (x, t): random or deterministic output (response) function

There are four classes of problems:
Deterministic systems and input (457.516 Dynamics of Structures)

Deterministic systems and stochastic input (457.643 Structural Random Vibrations)
Stochastic systems and deterministic input (457.646 Topics in Structural Reliability)

P w DR

Stochastic systems and input

For example, consider an SDOF linear oscillator subject to earthquake ground motion:

E.O.M.:

—\/\ .
(@)

Some results of “random vibration analysis”:

DO

e Mean and variance of X (t):
e Instantaneous failure probability:
e First-passage failure probability:

See “Syllabus and Course Outline” handout for course objectives and contents.
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|. Basic Elements

Review on basic theories of probability

Self-review of “Il. Basic Theory of Probability and Statistics” part of the course “457.646 Topics
in Structural Reliability” is required.

Additional basic topics to review for this course:
Characteristic function (L&S Chapter 3)

Alternative (complete/incomplete) description of random variable X

My (0) = Ex[exp(i6X)] = [ dx transform of
Therefore,
fx(x)=—/f ae transform of

% See Appendix B of L&S for a brief review of Fourier transform (if necessary)

Note:
1) My (@) always exists because the condition for the existence of a Fourier transform is
IZ Ifx()]dx < oo (“absolutely integrable”), and we know that [ | (x)|dx =
2) Why use My(6)?
» Useful for analytical development or proof (will be shown later in the course)
» Especially useful for generating

M generating property of characteristic function

Remember My(6) = Ey[exp(i8X)] = ffooo exp(i0X) fy(x)dx

a’ . .
@MX(Q) = i]EX[X] exp(lBX)]
d’

207 Mx(©)

= i/Ex[X/] fx(x)

6=0

> E[X/]

Therefore, My (6)

= Ey[X] =J

1 d/
v apr "

6=0
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% McLauren series of My (8)

» Could approximate the characteristic function using low-order moments?

% “Moment generating function” Ex[exp(—rX)] =

> L transform
» Moment generating equation more simple (because real-valued)
» May not exist mathematically for some probability density function (p. 86 L&S)

Example

1) Derive the characteristic function of X~N(u, 6%)

2) Generate the first and second moment of X using the characteristic function to confirm.
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Log-characteristic function
Lx(6) = In Mx(0)

n™ order cumulant function «,,(X) = 1 d7Lx(6)
n in den lg=g

1dLy(8)
* K1(X)=;—d9 oo
o 1(X) = Ex[(X — w)?]
o k3(X) = Ex[(X — 7]
o Kg(X) = Ex[(X — H)ﬂ

For Gaussian, k3(X) = and k,(X) = .Forn>3,k,X) = because
» Cumulants are useful since they are related to “c " moments

» Another merit: x,,(X) = 0 for higher order, so easier to approximate PDF (through log-
characteristic function)

[0¢] .9 n
Lo =Y O
n=0

Note: ko (X) = 0 (check by yourself)
Importance of moment analysis (L&S 3.8)

“In many random variable problems (and in much of the analysis of stochastic processes), one
performs detailed analysis of only the first and second moments of the various quantities, with
occasional consideration of skewness and/or kurtosis. One reason for this is surely the fact
that analysis of mean, variance, or mean squared value is generally much easier than analysis
of probability distributions. Furthermore, in many problems, one has some idea of the shape of
the probability density functions, so knowledge of moment information may allow evaluation of
the parameters in that shape, thereby giving an estimate of the complete probability
distribution. If the shape has only two parameters to be chosen, in particular, then knowledge
of mean and variance will generally suffice for this procedure. In addition to these pragmatic
reasons though the results in Egs. 3.31, 3.32, 3.35, and 3.36 (i.e. McLauren series expansion

. of characteristic function and log-characteristic functions) give a
theoretical justification for focusing attention on the low-order
moments. Specifically, mean, variance, skewness, kurtosis, and
so forth, in that order, are the first items in an infinite sequence of
information that would give a complete description of the problem.
In most situations, it is impossible to achieve the complete
description, but it is certainly logical for us to focus our attention
on the first items in the sequence.”

For example, if one assumes a random quantity follows a Pearson
distribution, the type is determined by the square of the skewness
(B2 in the left figure) and the kurtosis (B2). The first four moments
completely describe the parameters of the distribution.
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457.643 Structural Random Vibrations
In-Class Material: Class 02

|. Basic Elements (Contd.)
Joint characteristic function

Alternative to PDF

Mx(6) = Ex{expli(6:X; + 0,X, + -+ 6,X,)1} = [ - [ expli(B1x1 + 025 + -+ + O] fx(x)dx

->m variate F transform of PDF
Therefore,
1 .
fx(x) = [ [exp[—i(B1x1 + O,x5 + -+ + O, x)] de

( n

One can show

1 gmattmy

mq ym mp
jmit+my 89m1 gmn = E[Xl 1XZ : "'Xn ]
1

n lg=0

Some observations:
1) Consistency rule: My(64,-+,0,0,--,0) =
2) For statistically independent random variables, Mx(0) =

Joint log characteristic function

Remember My(0) = Ey[exp(i8X)] = ffooo exp(i0X) fy(x)dx

Lx(0) =
1 0"Lx(6
k(X) = qﬁ
im0+ O,l,_,
o k(X =
o K(X, X)) =
o (X, X, Xi) =
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Example: PDF or characteristic function of Y = X; + X, + -+ X,

Multivariate normal (Gaussian) distribution

Joint PDF;

) = ————exp [ 5 (x — M)TE x — )
2m)v2,[|detX| 2

» completely determined by and order moments
» denoted by X~N(M, X)

eg.n=1, X~N(u c?)

1 1 /x — u\2
) = = exp | -5 () |

Can show

1
My(0) = exp (iMTB - EGTZG)
Lx(e) =

> function of 8
» Higher order (n = ) cumulants are zero

Example: k(X;, X;) for bivariate normal random variables
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[l. Introduction to Random Process
II-1. Random Process
Definitions

Random (stochastic) process {X(t)} or X(t)

e.g. earthquake ground motion

20}
Ml‘lh A“ﬂlﬂ l‘\.-...- ﬁ.ﬂ .Ahﬂ.
"‘“Wl"‘h‘ U“"hl"\,.;" AR VA" AN

=5(t)) |

A ANAA b AN AN/ . .
O\J‘-{ ) TJ" A ™ A A A M Definition 1: Random process is an
‘ ' “e " (collection) of possible
2(2) ‘ , . h M), x3(), .

2(1) ‘ [

%

Definition 2: “Continuously indexed” r v , a family of random variables
{X(@0), .. X(tg), .. X(tm), -}

Note: the concept of random process can be generalized

1) Random field X (¢t,u, v) e.g. wind pressure at location (u, v) of the roof at time ¢t
2) Vector random process:
23
X() =4""2 e.g. X (1) = {%4(t)
Xa(0) % (®)
3) Vector random field:
X, (t,u,v)

X(t, u, v) — XZ (tr:uﬁ v)

X, (t,u,v)
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“Average” of random process

(a) “Ensemble” average: average over the ensemble

o4t e
EX(0] = lim - - J dx

(b) “Temporal” average (for a specific time history)

(X(0)) = — J x(O)dt w

+ Temporal averageisar Vv

v

Specification of arandom process
(a) By probabilistic distribution function

¢ fxp(xt): 1% order “m " PDF N
¢ freoxce) (%1t X2, t2): 2™ order joint PDF /

*

¢ frapxce,) (X1t 05 X, ty): N order joint PDF

Theoretically, one needs the " order joint PDF for complete description of a r.p.

(b) By characteristic function
* My (6,t): 1% order characteristic function

*

¢ Myeyxie) (Ot 5 0n, ty): n" order joint characteristic function

(c) By moment functions (i.e. partial descriptors)
- most common (because of lack of i )

*  E[X(t)] = ux(t) or u(t): function
*  E[X(t)X(t2)] = Pxx(tq,t) Or p(ty,t,): auto function
*  E{[X(t) — (DX (t2) — u(t2)]}: auto function

(d) By a function of random variables
e X(t)=At+B
¢ X(t) = XL Aicos(wit + 6;)

(e) Others: log-characteristic function, cumulants, ARMA, etc.
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457.643 Structural Random Vibrations
In-Class Material: Class 03

Central limit theorem (I. Basic Elements)

Consider Z = X; + X, + .-+ X, where X;,i = 1, ..., n are statistically independent, identically
distributed (SIID) random variables. Try

2= ()

where u and o respectively denote the common mean and standard deviation of X;’s.

Xi—u / 1
Let Y, = & Then, Z' = %Z?:OYL

The characteristic function of Z' is then derived as
M4 (0) = E[exp(i62)] = E piggi’ =E|n|;%§l)
exp(i ex - ex
’ “]Lj:1 ! j=1 Vi

- [Telow (G- T (- I )

j=1
statistically independent Identically distributed

Let us consider the characteristic function of Y. Note that its mean is zero and standard
deviation is one. From the moment generating property of the characteristic function,

dMy (6)
=iE[Y] =0
ao |, " ]
d*My (6
SO rye) = —(of + i) = -1
do? P

Therefore, the characteristic function My (6) can be constructed by a Taylor series:

92
My(0) =1 —7+ 0(6?)

MY(%)=1_;+O(§)

62 62\1"
MZI(H) = [1 —%4' 0<7>]

From lim (1 + %)n =e*

n—oo

92
b0 - (%)

The end result is the characteristic function of the standard normal distribution. Thus, we
hereby prove that Z' asymptotically follows the standard normal distribution as n — . Since Z
is a linear function of Z', Z also asymptotically follows a normal distribution.
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II-1. Random Process
First & second order moment functions

E[X(1)] = ux(t) or u(t): Mean function
E[X(t1)X(t2)] = ¢pxx(ty,t,) or p(tq,t,): Auto-correlation function

E(IX(t) — n(tD)]IX(6) — (e)]} = dyx(tr, ) — p(tu(ty)

= kxx(t1,t2) : Auto-covariance function

ox(t) =+ . Standard deviation function

Pxx(ti, ty) = . Auto-correlation-coefficient function
o . |
5 M [ M\/A\ N AN (\” (\/ \/Vk\\ﬁ\ Iy A /\M \ /H/N A
I 2

\{\
v
sy

-15

0 1 2 3 4 5 6 7 8 9 10
Time (secs)

Example: 77 force time histories during “digging” tasks and their moment functions
Note:
If uy(t) = 0 (zero-mean process),
dxx(t1,t2) Kxx(t1,t2)
One can transform a random process to a zero-mean process by
Y() =X(t) —

Why?
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* For a complex-valued random process,
dxx(ty,t2) = E[X(t)X"(t)]
kxx (t1, t2) = E[(X (1) — u(t)) (X" (t2) — p' (t2)]

Note that ¢xx(t,t) and kxx(t,t) are always -valued.

* More than one random process involved

Gxy(ty,t) = E[X(t))Y*(t,)] : correlation function
Kxy (b1, 62) = E[(X(61) — u(t)) (X" (t2) — ()] : covariance function
pxy(ty, ty) = ——mm & correlation coefficient function

e Importance of 15t and 2" order moment functions

1) Most of the time, 1% and 2" order moment functions are all one can get from data

2) For Gaussian, 1%t and 2" order moment functions are all you need for a complete
description.

3) Using Chebyshev bounds, one can get upper bound estimate on the probability

using moments

_E0ZI]
P(|Z| > b) < be
eg.c=2,Z=X—puy

[1X — px|?] _
b2 -

E
P(X —pux| > b) <

Five important properties of ¢xy(t1,t;) and kyy (tq, t3)

1) “Hermitian” (“Symmetric” for a real random process)
bxy(t1,t2) =

Kxy (t1,t3) =

2) Boundedness

Schwarz inequality |E[XY]| < /E[X?]E[Y?]

Thus, |dxy (t1, €)1 < Vdxx (L dpyy( )
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Also, |pxx(ts, t2)| < obxx( , Ipxx( , )

Similarly, [ryy (t1, t2)] < Vrxx(, dryy(, ) =+/02( daZ( )
Note: A

If E[X2(t)] is bounded (< o) for V¢,

| xx(t,s)| <o

v

If 62(t) is bounded (< oo) for V¢,

| xx(ts)| <o

X(t)isa"“ ” random process

v

if is always finite
(Check L&S p.121. Later we will confirm that this means PSD exists)
3) Non-negative Definiteness

For an arbitrary function h(t),

n

Z ¢XX(ti' tj)h(ti)h*(tj) =

n
i=1j=1

Proof:

(LHS) = {h(ty) - h(t)} Pxx(ti tj)]nxn{h*(tl) = h* ()T
= hTE[XXT]h*
= E[hTXXTh*]
=E[YY*]
=E[ ] 0

Why Important?

Fourier transform of non-negative definite function is
(Lin 1967, p.42 — Bochner’s theorem)

| Lin, Y.K. (1967) Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY.

Note:
¢dxy(t1,t2): NOT non-negative definite

-« E[XY] can be
~ Cross PSD can be
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457.643 Structural Random Vibrations
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lI-1. Random Process (contd.)

Five important properties of ¢xy(t1,t,) and kxy(tq, t;) (contd.)

4) For a process containing no periodic
components, A

diminishes as [t; — t;| = o

" —lit‘n|1—)oo Kxx (t1, 62) =
1 2

lim - Pxx(t1,tz) =

[t1—t2]->

5) Continuity property
dxy () (or kxy(+,")) must be continuous at (tq, t,) if
dxx (") and ¢yy (+,+) are continuous at ( , ) and A
( , ) respectively.

i.e.

elir—po Pxy(t1 + €1, t; + €) =

€,-0

v

if

6111210 Pxx(t1 + ety +e) = and
€,-0
elir—po Gyy(tz + €1t + €) =

€,-0

Therefore, if ¢pxx(ti,t,) and ¢yy(t,,t,) are
continuous at all points on the diagonal t; = t,,
dxy (t1,ty) is continuous at all points in the 2D
domain (t1,t;)

v

Special case: Y - X

dxx (") (or kxx(5,")) must be continuous at (tq, t,) if ¢xx(-,7) is continuous at ( , ) and

)
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% Proof of “Continuity Property”

Consider

Gxy(ty + €1, t; + €3) — Pxy (£1, t2) = E[X (&1 + €)Y (t; + €2)] — E[X(¢1)Y (¢2)]
= E[{X(t1 + €1) = X(@)HY (&2 + €3) — Y(£2)]]
FEIX( + ) — X ()Y (8)] W
+E[X ()Y (82 + €2) — Y (£2)]]

Applying Schwarz’s inequality to the first of the three expectations in Eg. (1), one can

get

|[E[{X(t; + €1) = X[t HY (t; + €5) = Y (t2)}]]
< VE[{X(t; + €) — X(t)PIE[Y (t, + €5) — Y (£)}2]

The first term in the square root is expanded to

bxx(t; + €ty +€1) — 2¢xx(tg + €1, t1) + Pyx(t1,t1)

This converges to zero if

Elliglo Pxx(ty + €1, + €) = Pyx(ty, t2)

€,-0

Therefore, the first expectation in Eqg. (1) converges to zero.

Similarly, the other two expectations in Eq. (1) converge to zero if

elir_{lo Pxx(ty +€1,t; + €) = Pxx(ty,t1)
1
62—>0

and

Elliglo Pyy(tz + €1, 65 + €2) = Pyy(t2, t2)

€,—0
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Example
X(t) = Acoswt + Bsinwt
Given: E[A] = E[B] = 0, E[A?] = E[B?] = 62, E[AB] = po?

1) ElX (0]
2) Pxx(t1,tz) and wxx(ty, t2)
Does kyx(ty,t;) diminish as [t; — t;| = ©? Why or Why not?
3) 0% (1)
4) pxx(ty, t2)
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Stationary process (cf. Homogeneous random field)

A R.P. is stationary if its description is invariant to a in the
parameter (time/space)

(Strictly Stationary)

frox e, sty o ty) = frox (o, Xty + Ry ooty + h)

(1%t Order Stationary) /
fx(;t) = fy(x;t + h) = /

Therefore, uy(t) = Lox(t) =

v

(2" Order Stationary)

fx (X1, %25 t1,t5) = fyx (X1, X5; ) )

= fuxx(x1, x2; )

v

Therefore,
bxx(t1,t2) = Pxx(t; + h,t; + h) V(ty,t;)

= Ryx(t) where t =

kxx(t1,t2) = kyx(t; + hty + h) V(ty,tz)
= Ixx(7)

“Weakly Stationary” or “Stationary in a Wide Sense” (Lin 1967)

When a random process satisfies

o ux(®=
o ox() =
o Pxx(ty, ty) =

Various Concepts of “ Stationarity” in L&S

® Mean-value stationary

® Second-moment stationary
® j-th moment stationary

® j-th order stationary

@ Strictly stationary

When ( ) and ( ) conditions above are satisfied, the random process is considered
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457.643 Structural Random Vibrations
In-Class Material: Class 05

lI-1. Random Process (contd.)

Properties of Ryx(7) and I'yx(7)

(i.e. Properties of second motion functions of process)

1) Hermitian (Symmetric) 4
Ryx(7) = Ryx(—7)

Iyx(7) = Ixx(—7T)

v

Real part, Re[Ryx (7)]: function
Imaginary part, Im[Ryx(7)]: function
A
Ryy(7) =
Ty (7) = .

2) Boundedness
|Rxy ()| < vRxx( JRyy( )
|Rxx (T)| < vRxx( JRxx( ) = Ryx( ) = E[ ]

Similarly, >
ITxy (D] < VTxx( )Ly () =
ITxx (D] <

3) Non-negative Definiteness

Z Z Rxx(t: — tj))h(eDh* () = 0
i

i

As the number of discretized points — o, the double summation becomes

f f Ryx(t; — ty)h(t)h*(ty)dtdt, =0
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Substituting t; = t, + 1, the integral becomes

f ) f " Ry DRty + A (6y) drdt, = f Ry (OH@r 2 0

4) Continuity

Ry (1) must be continuous at all t

v

if Ryx(7) is continuous at 7 =

5) kxx(7) diminishes for r.p with no periodic
components as |t| =

llm Fxx(‘[) =
|T| >0

lim Rxx(‘[):

|T|>00

Example

— Izl
Rxx(T)—{l—; O<ltl<ska  o_p<1,a>0

0 elsewhere

Check if the auto-correlation model is valid in terms

A 4

of the important properties.
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Example
Recall X(t) = Acoswt + Bsinwt in an earlier example.

We derived ¢yxx(t;,t,) = o2[cosw(t; — t;) + psinw(t; + t;)] and uy(t) = 0

1) Condition(s) to make X (t) a weakly stationary process:

2) Suppose p = 0, and A and B are jointly Gaussian. Then, the process X(t) is

process

Poisson process

i) Example to demonstrate/review important concepts of random processes

ii) Introduction to an important class of random processes

N(t): Number of in (0, t]

A > C index parameter

> D -valued process

» Inherently stationary/non-stationary
process

» Examples:

v

Basic assumptions of Poisson random process

1) There exists m (o] rate (or intensity function), defined as

Y Average No.of Occurrencesin (¢, t + At)
A%r—r}o At -
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2) “Probability of two or more occurrences in At” «<
Therefore,

Average No. of Ocurrences in (t, t + At)
=v(t) -
[ee]

= Z n- P(n occurrences in (t, t + At))
n=0
=1- P(l occurrence in (t, t + At))+ 2 P(Z occurrences in (t, t + At)) + -

~

3) No. of occurrences in two non-overlapping intervals are

Probability functions and partial descriptors of Poisson process

1) Probability mass function (PMF) of N(t)

Pyery(m;t) =P(N(®) = )

= Pn(t)
=P,(t—-At)-(1—v-At) + P,_1(t —At) -v- At
| | »
“scenario 1" “scenario 2" ' I
Thus,
P,(t) — P (t — At
n(®) A"t( )+v-Pn(t—At) =v-P,_,(t — At)

As At — 0, we get a recursive ODE:

d

2t (O (O - B =v(6) - Py (O)
t t t

Solution: P, (t) - exp (f v(t)dt> = f v(t) - Pp_1(t) - exp <f v(t)dt) dt + C,
0 0 0

= m(t)
)n=20

t
Py(t) - e™(® = f VEP_, (O)e™® dt + ¢,
0
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Py(t) = Cp - e™™®
Initial condition Py(0) = 1. Therefore, Cy =
Py(t) =

iNn=1

t
P,(£) - e™® f V(EPy(D)e™® dt + ¢,
0

Initial condition P;(0) = . Therefore, C;
P (t) =

Solving recursively, one can get

_ [m(@)]"expl-m(®)]
n! ’

P, (t) = Py(n; t) n=01,2,"

PMF of Poisson process N(t) (“Poisson distribution” PMF)
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457.643 Structural Random Vibrations
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II-1. Random Process (contd.)
Probability functions and partial descriptors of Poisson process (contd.)

2) “Homogeneous” Poisson process (HPP)

Definition: v(t) =
t

~m(t) = f v(t)dt =

PMF of HPP:
[ 1"exp(= )

n!

v

pn(t) =

Continuous change of
over time duration length t

3) First-order characteristic function

My(0,t) = E[exp(iGN(t))]

[oe]

=Zexp(19n)-[ 1™ - exp[ ]

n!
n=0
Nl "
= exp[ ]Z — s
=0 : Note: exp(x) = ne0 7
= exp|[ -exp|[ ]

= exp[—m(t) - (1 — exp(if))]

4) Mean
1 dM
E[N(?)] =740 .
=0
dm
do

t

EIN(®)] = u(£) = m(t) = f V(e)dt
0
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5) Standard deviation

1 d*°M
EIN2(0)] = —
i2 doz o0

= m(t) + m?(t)

~ Var[N(t)] =

wone =V =
6) Mean and standard deviation for HPP

EIN@®)] =

E[N?(D)] =

ON@) =

Question: Is HPP a stationary process?
7) 2" order joint PMF

Pyn(ny,np;5 84, t3) = P( )

= P( )

= P(N(tz) = ny) X

v

Note: Sett; > t, and ny = n,

n, . _ The derivation depends on this
[m(tz)]"2 - exp[—m(t;)] convention

n,!
[ ]2 - exp[ ]
(ny —ny)!
[m(t2)]"2 - [m(t1) — m(£)]™ ™" - exp[-m(ty)]

ny! (ng — ny)!

X

8) Joint characteristic function

; - Thisii t th th
Myn (61,023 t1, t5) = E{EXp[l(GZN(tZ) + GlN(tl))]} prlc?dlﬁcr;%f th‘ee?\?ngf;)sethtions

i.e. two marginal characteristic
= E{expl[i(6, + 6,)N(t,)] - exp|i6; (N(t;) — N(t2))]} functions. Why?

= E{expl[i(6, + 0,)N(t,)]} - E{exp[i6; (N(t) — N(t,))]} > why?

= exp[—m(tz) . (1 — exp(i(91 + 92)))]
x exp[—(m(t;) = m(t)) - (1 — exp(i(6,)))]

= exp{—m(tz)[l —exp(i(6; + 92))] = (m(ty) —m(;)(A - exp(iHl))}
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9) Auto correlation function

¢nn(t1,tz) = E[N(E1) - N(t2)]

= E{N(tz) - [N(t1) — N(tz) + N(t2)]}

= E{N(t) - [N(t) — N(£2)]} + E[N?(£5)]

= E[N(t2)] - E[N(t2) — N(t;)] + E[N?(£,)]
=m(ty) - [m(ty) —m(tz)] + m?(t;) + m(ty)
=m(tz) + m(ty) - m(ty)

- Violating symmetry?

10) Auto covariance function

knn (1, t2) = Gy (tr, t2) —

=m(ty) + m(t,) - m(ty) —
— - Violating symmetry?

11) Auto correlation coefficient function

pun(ty, t2) = =\/—‘\/—= ’ <

Waiting time until the n** occurrence of a Poisson process W,

W,,: Waiting time until the n™ occurrence

T, =W, — W,_q: time

v

1) Probability function of W,

fw,(®)dt = P(t < W, <t + dt) ~ Definition of PDF

Therefore,
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2)

3)

P(t <W, <t+At)

fw, (8) = Jimy At

=1i

- Py(n—1,t) xv(t) X At + o(At)

Instructor: Junho Song
junhosong@snu.ac.kr

At—0 At
n=1.ex
=v(t)_[ | pl ], £50
( )! Note: (n — 1) occurrences up to
time t and occurrence
during
PDF of W, for HPP
fw, () = , t>0
— ” PDF: n is a real number
ﬂ‘ n=1: distribution
fw, (©) =
PDF of waiting time until occurrence = PDF of time, T,, (will be shown

below)

Distribution functions of interarrival time T,, = W,, — W,,_;

CDF

Fr,(®) =P(T, <)
=1-P(T,>1t)

=1 _f P(Tn > t|Wn—1 = W)an—l(W)dW
0

Here,

P(T, > t|W,,_y =w) = P(

events in (w,w +t)) | |

v
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Using Poisson distribution,

P(T, > t|W,_; = w) = exp[-m(w + t) + m(w)]

Therefore,
® n—2 _
Fr®)=1-— -fo exp[-m(w + t) + m(w)] X v(w)[m(wgl _ 2e)x!p[ m(w)] i
_ Pv(w)mw)"? exp[-m(w + 1)]
-1 J;) (n—2)! dw
For HPP,
0 n-2 _
Fr () =1 _f v(vw) (SXE[Z)T(W +1)] dw = 1 — exp(—v)
0 .

dF.
@ = 8 v = £ 0
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lI-1. Random Process (contd.)
Normal (Gaussian) process (Read L&S 4.10)

X(t) is a Gaussian process
if, for any n, and any {t,, t,, -, t,},

the random variables X (t,), -, X(t,) are

- The process is completely defined by specifying for vVt and kyx(t,s) for V(t,s)
- For a Gaussian process, being “weakly stationary” implies stationarity in the
sense
- Any linear function of Gaussian processes is a process
e.g. X(t) is Gaussian if X(t) is Gaussian (why?)
e.g. X(t) and X(t) are
- Why useful?

1) Convenient to handle

2) theorem

- Hard to justify Gaussian process assumption if
1) the distribution is not symmetric, or
2) is not equal to 3
- Textbook focusing on non-Gaussian processes: M. Grigoriu (1995), Applied Non-

Gaussian Processes

Jointly Gaussian processes

X1(0), X, (t), -, X (¢) are jointly Gaussian processes
if, for any n, and any {t, t,, -+, t,,}, the random variables
{Xl (tl)l o :X1(tn):X2 (tl)l Tty XZ (tn): o ;Xm(tl): Tty Xm(tn)} are

- The processes are completely defined by specifying Mx(t) = { 1T and
Zas) = [ |
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I1-2. Stochastic Calculus

| Lin, Y.K. (1967) Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY.

Motivation

X({t+h)—=X(t)
h

g X® = lim

The conventional “limit” cannot be applied to

random processes

Limit of a random process?

Need to consider the convergence of a sequence of random variables, i.e.
llm {XIIXZ! b ,Xn}
n—-oo

v

= Converging to the distribution of a random variable (not a particular value)

> Convergence”

Definitions of stochastic convergence

1) Convergence with probability 1 (“almost sure” convergence)

P (lim X, =X) =

n—-oo

2) Convergence in probability

lim P(|X, — X| =€) = ,ve> 0
n—-oo

3) Convergence in distribution

lim Fy (x) =
n-0 T
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4) ** Convergence in the mean square
lim E[|X,, — X|?] =
n—-oo

- requires E[X?] < o, i.e. “ " process

Throughout this course, we use the fourth definition with the notation
l.tl_.)gl.X(t) =X

to describe “Limit In the Mean-square”

Two theorems for limit in the mean square

Theorem 1:

fLimX(t)=XandlLim.Y(s) =Y,then lim E[X(t) -Y(s)]=
t—ty S—So t—ty,S—Sg

Proof:
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Using Theorem 1, we can show thr? E[X(t)] =E [l.ti. gn.X(t)]
—lo —lo

Namely, E[-] and l.i.m. are c or exchangeable

Proof:

Theorem 2:

l.ti. p.X(t) =X bxx(t,s) is continuous at (ty, ty) no matter how (t,s) approaches (t, ty)
—lo

- See Ex4.9inL&S
- Of course, for “second-order process”

Proof:
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Mean-square derivative (derivative of r.p. in mean square sense)

x(t+h)—x(t)
h

Note: Deterministic: x(t) = }lir%
Definition of “mean-square” derivative of a random process:

X({t+h)—X(t)
h

X(t) = lhl;rgl

When is a random process “mean-square differentiable”? (or when does the limit exist in the

mean square sense?)


mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.643 Structural Random Vibrations
In-Class Material: Class 08

II-1. Random Process (going back)

Artificial generation of Poisson process

Niw)

5 - —

4t e

Ik [

1 ~—

04l ] NI IR AL JEK IR S
—_  JNE AR

- Actually, we generate waiting times (arrival times) forn = 1,2,3, ..., i.e. W, W,, ...

- For a homogeneous Poisson process, we can generate W, using T,

- We know T; follows distribution

- In Matlab®, one can generate random variables using exprnd(u,M,N)
1) p: mean =1/v
2) M,N: size of the output matrix

- To generate non-homogeneous Poisson process, need to use a theorem,

W, =m~1(S)),i = 1,2, ..., are arrival times of the non-homogeneous Poisson
process with m(t) when S;,i = 1,2, ..., are arrival times of the homogeneous

Poisson process withv =1

Cinlar, E. (1975). Introduction to Stochastic Processes, Dover Books (reprinted in 2013)

7
/ O ] e ‘ m(t)
1
Generate from ¥ gl o 1
Poisson with v=1 ! !
Sl fmm e ‘ l :
| ! 5 Find from m=%(t)
r,(‘u) Tsz) Tgfo,) T“(u)
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- Example: Generating NHPP with m(t) = 13 - In(0.5t + 1)

1) Three random samples:

junhosong@snu.ac.kr

20r,

10 |

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

3500

2) Comparison between exact m(t) and estimated one using 1,000 samples

60

50 |

40 L

30 |

m(t)

20 |

10

.......... Estimated

Exact

0 20 40 60 80 100 120 140 160 180

** Check “NHPoissonGenerationTest.m” at eTL website for details

200
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[I-2. Stochastic Calculus (contd.)

Mean-square derivative (derivative of r.p. in mean square sense) (contd.)

Definition of “mean-square” derivative of a random process:

X(t+h)—X()
h

X(t) = lhl;}l(’)l’l

When is a random process “mean-square differentiable”? (or when does the limit exist in the

mean square sense?)

Recall Theorem 2 with X(t) replaced by Y(t):

Theorem 2:

l.ti. m. Y (t) = Y iff dyy (¢, s) is continuous at (t,, t,) no matter how (¢, s) approaches (t,,ty)
—lo

Substituting Y (¢) = w

above, we need to check the limit of ¢y (t,s) at the diagonal,

i.e.t =s. Consider

lim éyy(6s)= lim E [X(t +h) = X(©) X(s+h)=X(s)

h—0,h' >0 h—0,h'—>0 h h'
_ 1[pxx(t +hs+h') —pxx(t+hs) ¢xx(t,s+h')—pxx(t,s)
= lim - -
h—0,n’'-0 h h' h'
52
9 0
Therefore, X(t) is mean-square differentiable iff ¢pxx(t,s) is - att=s

In summary,

*  ¢xx(t,s) iscontinuous at t = s = t,, iff l.ti.th(t) = X (Theorem 2)
—lo

*  ¢yx(t,s) is second-order differentiable at t = s = t, iff X(t) exists at t = t,

(mean-square differentiable)
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Properties of X(t)

; _ . X(t+R)—-X (D)
1) E[X(t)]—E[l.f{._)rgl.—]

h

= limE

h—-0

X(t+h)—X(t)
G

= lim
h—-0

The mean of the (mean-square) derivative of a r.p. is the derivative of the mean

function

2) E[X(t) - X()] = byx(t,)
X(s+h)—X(s)

=E [X(t) . 1.}}._{51.

h
= im| ]
0
"9
, 9]
“E[XO - X($)] = bax(69) = 5—

3) E[X(®) X()] = 3zt )

. X(t+h)—-X®) . X(s+hy)—X(s)
=E|Lim. -Lim.

Mean-square derivative X (t) for a stationary r.p. X(t)

¢ ux(@®)=u
¢ ¢xx(t,s) =Rxx(1), t=t—s

1) X(t) is mean-square continuous iff Ryx(7) is continuous at t =

2
2) X(t) is mean-square differentiable iff % = is unique and finite at T =
o 9Pxx(s) _
ds
. Zoxx(ts) _
dtds
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3) ux(t) =E[X()] =7—=
The mean of the time rate of a stationary r.p. is

4) Cross correlation between X (t) and X (t)

Ryp() = 209
Riy(e) = 22200
att=20
Ryx(0) =E = d R
xx( ) =E[ : 1= _E xx(T) o
R;+(0) =E = d R
xx( ) =E[ : I= E xx (T) o

“ Rxx(0) = Ryx(0) =
When X(t) is stationary r.p. and mean-square differentiable,

s X(t)and X(t) are ,i.e. E[XX]=0

+ X(t) and X(t) are as well because
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[I-2. Stochastic Calculus (contd.)

Mean-square derivative X (t) for a stationary r.p. X(t) (contd.)

5) Ryx() = E[X(t+1)-X(1)]
Ryx(-1) = E[X(t — 1) - X(t)] = E[X(©) - X (¢t + )]
Therefore,

Ryx(=7) = Rxx(7)
= —Ryx(7)

Ryx(7) is an function ( symmetric around 7 = )

Note: Ryy(t) = dRyxx(t)/dt and Ryx(t) = —dRxx(t)/dT

v

2 .
Example: Ryy (1) = 2% . 228

2 wT

v

1) Is the random process X(t) mean-square continuous?
llm RXX(T) =
-0

Ryx(7) is att = . Therefore, X(t) is
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2) Is the random process X(t) mean-square differentiable?

dRyx(1) no’w wt-coswt —sinwrt
dt 2 (w7)?

(Is Rxx (1) anti-symmetric around t = 07?)

1 1
dRyx(7) I nolw wT (1 - i(wr)z + ) - (wr — g(a)r)3 n )
m——— = I1im .

li = <
TS0 dt -0 2 (wT)?
d*Ryx(r)  no’w® (w1)?sinwt + 2wt cos wt — 2sin wt
dr2 2 (w1)3
~ d?Ryx(7) no?w?
lim = — <
-0 dt? 6

Therefore, X(t) is

Integration of a random process

Deterministic

b n
y=fx(t)dt=%i_r)1302xj'Atj
a =

Note: Integral is a limit. Therefore the integral of a random process needs to be defined as a

stochastic limit.

Stochastic

Y = be(t) dt

n
Yo = ZXj (i1 — )
=1

Mean-square convergence of the stochastic integral, denoted by L.i. m.Y,, =Y, is achieved
n—->oo

when lim E[(Y,, = Y)?] =0

n—-oo

From Theorem 2, if Li.mY, =Y exists, lim E[Y,,Y,] should exist.

n—oo n—oo,m—co
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That is, the following should exist.

n—00,m—co

n m b b
lim E Z X;(tj41 — t;) Z Xi(tgrr — ) | = j f Pxx(t1, tz) dty dt,
j=1 k=1 a va

In summary, the stochastic integral Y = f;’X(t) dt exists in the mean-square sense if

b (b )
fa fa bxx(ti,t,) dty dt, exists

1) Mean of the stochastic integral

b b
E [f X(t) dt] = f E[X(t)]dt Note: Theorem 1 >
b

[ a
a

2) Mean square of the stochastic integral

b 2 b b
E{U X(t)dt] }=j jE[X(tl)X(tz)]dtldtz

b b
=j f(pxx(tptz)dhdtz
a a
3) Generalization (“r.p. > r.v.” or “r.p. > r.p.”)
b
y = f X() - F(O)dt
a

or

b
Z(w) = f X(O(t, w)dt

+ Example of f(t): shape (envelope) function
+ Example of h(t, w): exp(iwt) ~ Fourier transform

%  For the existence of Z(w) in the mean-square sense, it should be satisfied that
< [ ] pxx(ts, t)h(ty, )h*(tz, @) <

Then,
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b
17(0) = E[Z(w)] = f dt

¢zz(w) = E[Z(w1)Z" (w,)]

b b
= EU- X(t1)h(t1;w1)dt1f X*(E2)h* (t2, wz)dt,

a
b b
=f f h(ty, wi)h*(t,, wy)dtdt,
a a

Spectral decomposition of a random process

Characterization of a random process in domain

b
Z(w) =j X(t)h(t, w)dt

How about using Fourier transform of the random process? That is, using the following filter in

the above equation?
h(t, @) = o= exp(—iat)
@) = o—exp(—iw

As a result,

X(w) = %me(t) exp(—iwt) dt

Fourier transform of X(t) = represents/describe X(t) by harmonic components

Inverse relationship:
X)) = f X(w) exp(iwt) dw
¥ X(w) exists in the mean-square sense iff E[X(w;)X*(w,)] exists.

_ _ 1 © r® -
E[X(w))X"(wy)] = Wf f dxx (ty, ) exp[—i(wit; — wyty)] dt dt, = P(w, w3)

= This is called “Generalized Power Spectral Density Function”

If this exists,
Pxx(t1,t2) = f f D (w1, wy) expli(wity — wyty)] dwidw,

However, X(w) does NOT exist when X (t) is stationary, i.e. E[X(w)X*(w;)] = ®(wq, w;)

blows up.
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[I-2. Stochastic Calculus (contd.)

Spectral decomposition of a random process (contd.)

Fourier transform of X(¢t), i.e. X(w) = %f_ooooX(t) exp(—iwt) dt can be considered as a spectral

decomposition of the random process.

It is noted that the stochastic integral X (w) exists in the mean square sense if and only if

E[X(w)X"(w)] = 1)2 fjooo fjooo Pxx(t1, ty) exp[—i(w;t; — wyty)] dtydt, = Pyy(wy, w,) exist.

2

However, the generalized PSD ®yy (w4, w,) does not exist when X (t) is a stationary random

process. Therefore, X (w) is not useful for the purpose of spectral decomposition.

To show this, consider a “truncated” Fourier transform of a stationary process X(t),

1 T
R(w,1) = f X(b) exp(—iwt) dt

_ _ 1 T T
E[X(wq, T)X" (w2, T)] = WJ._T f_TRxx(ﬁ —tp) exp[—i(w t; — wyty)] dtydt,

Let us check the case w; = w, = w, i.e. (after changing variable t; = 7 + t;)

_ 1 (T
BRI = Gz || Rux® explion) dedy
-T

(2m)?
N

A Flip & Rotate A

v
v
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_ 1 o (T
E[IX(w,DI*] = > f j Ryx (1) exp(—iwT) dt,dt
(2m)? J_or )7

1 2T (T-t
+ (zn)Z_fO J-T Rxx (1) exp(—iwt) dt,dt

1 0
= e ( )Rxx (7) exp(—iwT) dt
—2T
1 2T
+Wf ( )Rxx (7) exp(—iwT) dt
0
_ 1 2T
EIR@ D) = Gz | QT Rie(@) explian) e
—2T

E[X(01)X"(w2)] = E[IX(@)I*] = lim E[|X(w,T)|?]

This because as T — o, T - Ryx (1) in general

Therefore, the generalized PSD @, (w;, w,) may not converge to a finite value in general, and

thus the mean-convergence of X (w) is not guaranteed.

Then, how about... introducing % prior to taking the limit? That is,

m) Ryx (1) exp(—iwt) dt

T 1 2T
. - 4 2 — i i _
Th_{glo TE[IX(w, )|%] Tllm <1 5T

—00 2T —oT

One can show that the limit above is equal to the following (Lin 1967):

1 [00]
Pxx(w) = ﬁj Ryx (1) exp(—iwt) dt

Thisis a transform of Ry (7). Thus, the integral exists when Ry (1) is “absolutely

integrable” i.e. [ |Rxx(7)|dr < oo

Note: Being “absolutely integrable” is not the same concept as being a second-order process,
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Power spectral density (PSD) function of a stationary process X(t)

Fourier pair involving the power spectral density function and auto-correlation function:

T 1 (®
Dux(@) = Jim ZEIR@. 1)) = o | Rex(@) exp(-ian) dr

Ryx(7) = j Dy y(w) exp(inT) dw

* This is often called “Wiener-Khintchine formula.”

+ The PSD exists when the auto-correlation function is absolutely integrable

*  Ryx(0) = f_oooo dw=E[ ]
This indicates that @y (w) describes the distribution of * ” process, i.e. X2
over domain. That is why it is called power spectral density function.

v

Properties of PSD ®yx(w)
1) Non-negative
v Oyx(w) < E[| 7]

(Rxx(7) is )

2) Symmetric and Real

byx(—w) =

* Ryx (1) is and @y (@) < E[|  |?]
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3) Tail behavior of PSD tells us about whether the process is a 2" order process or not.
If lim_|w] - dxy(w) = 0, the integral JZ @yx(w)do =E[ ]is , thus X (¢)
w|—00
is a 2" order process.

4) Behavior of PSD at w = 0: Note that

[oe]

1
Pyx(0) = Ef_ Ryx(t)dr

Therefore, @44 (0) diverges if lim Ryx(7) # 0
T—>00

If the process has non-zero mean or include periodic component, the PSD diverges at

w=0

v

X Alternative definition of PSD (e.g. L&S)

1 (o]
D (@) = f I (2) exp(—iwr) do

(Reasoning of the alternative definition)
Since Illim Ryx (1) = u? (even without periodic components in the process), @ (0) diverges in
T|—00

general. By contrast, if Iy (7) is used in the definition of PSD, @, (0) may not diverge even if

the process has non-zero mean p.

Of course, there is no problem if u = 0 (since Ryx (1) = Ixx (7))
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One-sided PSD (Using symmetry of PSD)

Gxx((,()) = z(bxx(a)), w = 0

v

Note:
1 )
Dex(@) = 5 | Rux(@ exp(—iwn)dr

1 [e0]
= ﬁf Ryx(1)(cos wt — sin wt)drt

1 (o]
= —f Ryx(7) coswt dt
TJo

Therefore,

2 oo
Gyx(w) = Ef Ryx(t) coswtdrt
0

Inversely,

Ry (D) = f Dy (@) exp(iwr) dow

= j cos(wt) dw
0

Instructor: Junho Song
junhosong@snu.ac.kr
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457.643 Structural Random Vibrations
In-Class Material: Class 11

[I-2. Stochastic Calculus (contd.)

Example: “Random Telegraph Process”
X(t) = Xo - (DO

where X,~N(0,02) and N(t) is a homogeneous Poisson process with the mean occurrence

rate v

v

One can show the auto-correlation function of a random telegraph process is

Ryx(1) = 02 - eVl

v

The PSD of X(t) is derived as follows:

1 (00
Pyx(w) = %f Ryx (1) exp(—iwt) dt
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1 o]
=5 o? - e Il . exp(—iwt) dr

— 00

1 o9}
=—f dt

=2VT
= 2V cos wT + w sin wt
[41/2 +w ( )]

= 0 <O<® ‘

Note:

A cX

[ e*cosbx dx = (cze-l-—bz) (¢ - cosbx + b - sin bx)

v

One-sided PSD:

Gy (@) = ————— L@ >0

Example
X(t) = Acos(wyt) + Bsin(wyt) where E[A] = E[B] = 0, E[A%] = E[B?] = 62, and py = 0

It was shown that uy (t) = 0 and ¢yx(t1,t;) = Ryx (1) = 62 cos w,t ( ” process)

\ 4
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1 (00
Pyx(w) = ﬂf Ryx (1) exp(—iwt)dt

o? [*®
= —f COS W(T * COS WT AT
2m J_o

2 001

o
:E _OOE[ ]dT

2 (o]

________________________________________________________________________________________
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Therefore,
a? a?
Pxx(w) = E[ﬂ“w — wo) + S (w + wo)] = 7[5@0 — wg) + 6(w + wo)]
A A
I @xx(w)do =E[ ] = Iy Gyx(w)dw =E[ ]=

Special processes

1) Narrow-band process (Example above is the ideal narrow-band process)

v

v

v
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2) Wide-band process

v

v

v

3) White noise (ideal wide-band process)

v
v

o)

Ryx (1) = foo Dyy(w) exp(iwt)dw = j ®, exp(iwt) dw = 21D, (1)

— 0o

Note: 1 = ffooo §(t)e” T dr and thus §(t) = if_moo 1-elTdw

2T


mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

> “Shot Noise”

ux(t) = 0 and

Kxx (1, t2) = Pxx (tr, 62) = 1(81) - 6(t; — t2) = 1(t1) - 6(7)
Here I(t) is time-varying “intensity function.”

Therefore, a shot noise is a

Thatis, I(t;) =1 = 2nd, for WN

4) “Banded” white noise (more realistic WN)

v

v

5) “Filtered” white noise

h(t)
B o |

v

v

e.g. SDOF oscillator (Kanai-Tajimi filter)
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457.643 Structural Random Vibrations
In-Class Material: Class 12

[I-2. Stochastic Calculus (contd.)

Cross PSD
Consider jointly processes X(t) and Y (t), i.e.
$xy (t1,t2) = Rxy (7)

Cross PSD of X(t) and Y (t) is defined as
s — —
Dyy(w) = Tlim TE[X(w, TY*(w,T)]

One can show

1 [oe]
Py (@) = o f Ry (2) exp(—iwt)de

1

[00] 1 [00]
= %J-_mey(T) dT - lﬁﬁmey(T) dT

“co-spectrum” “quad-spectrum”

v

Properties of Cross PSD @y (w)
1) Hermitian
Pyy(w) = Pyx(w)

Note: Re ®yxy(w) = Re@yy(—w), Im Oyy(w) = —Im Oy (—w)
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Note: E[X(t) - Y(t)] = Ry () = [,
cf. E[X?(t)] =

2) If (Li_r%w -Re Dyy(w) =0, E[X(t) - Y(t)] is

3) Im Py (0) =
1 r® )
Re @y (0) = Ef Ryy(t)exp(—=i-0-17)dt =

> Application example of cross PSD

Der Kiureghian, A. (1996). A coherency model for spatially varying ground motions. Earthquake Engineering
and Structural Dynamics, 25:99-111.

Coherency function of ground acceleration processes a,; (t) and a;(t) at stations k and [:

Gakal ((1))

JGer (@) - Gy @)

Yi(w) =

Using the coherency function, one can characterize

(1) Incoherence effect: scattering of waves in the heterogeneous medium and differential

superpositioning of waves
(2) Wave passage effect: delay in the arrival of the wave

(3) Attenuation effect: amplitude decreases due to geometric spreading, material damping

and wave scattering

PSD of derivative process
Ryx (1) =J Dyx(w)e“Tdw

dRxx ()

Ryx (1) = dr

- f () Oyy(w)e@idr
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Comparing the two equations above, we note

Pyx(w) =

It is also seen that

Dy x(w) =

We also know that

Ryx(7) = —%
- _foo( )2 Dy (w)e@Tdr
= foo el@Tdr
Therefore,
Dyy(w) =
In general,

D, myym () = (lw)™(—iw)" Pxy(w)

Generation of artificial time histories by PSD

e.g. “Spectral representation” method
Shinozuka & Deodatis 1991: Stationary & Gaussian
Deodatis & Micaletti 2001: Non-Gaussian

n

X(t) = 2 a;cos(w;t + 6;)

i=1

+ qa;: contribution from the frequency w; ~ determined by
+ w;: closely-spaced frequency values (>0)
+ §;: random phase angle ~ U(0,27]

*+ 6; and ¢; are statistically independent (i # j)

Instructor: Junho Song
junhosong@snu.ac.kr
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Check
1) E[x(@®)]
21
E[cos(w;t + 6;)] = j cos(w;t + 6;) do
0
Therefore, X(t) is a - process

2) Pxx(ty,ts)
Pxx(ti, ty) = Z Z al-ajE[cos(a)itl +6;) - cos(a)jtz + Oj)]
i=1i=1
@#J)

E[cos(w;t; + 6;) - cos(w;t, + 6;)] = E[cos(w;t; + 6;)] - E[cos(wjtz +6;)]

=7
1
E[cos(w;t; + 6;) - cos(w;t, + 6,)] = E{E[cos(a)i(tl +t,) +26)] + E[cos(wi(tl - tz))]}

= %cos(wi(tl - tz))

= %cos(wi ) > X(t)isa process

Therefore,

n

1
Rex(1) =5 ) aFcos(w;r)

i=1

D) =7 ) a2[6(w+ ) + (@ — )]

i=1

Recall Ryx (1) = 62cosw,t 2> Pyx(w) = %2[6((4) — wy) + 6(w + w,)]
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=

v

v

Given PSD Spectral Representation

How to determine q;?
... such that the powers E[X?] in the corresponding intervals are equivalent
WitWitq

Pyy(w)dw =

wWi_1+wj
2

When Aw is small,

Wit1 — Wi-1

Dyx(w;) - )

Therefore,

i+1 — Wi—1

®
- a; = 2\/q)XX(wi) : >

= 2/ Pxx(w;) -

The generated process has Gaussianity and Ergodicity (proof: Deodatis 2001)

Spectral moments
¢+ VanMarcke (1972, ASME JEM): first introduced

+ Michaelov et al. (1999, Structural Safety): a good summary and extension to

nonstationary case
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The m-th order spectral moment is defined as

Am =f WMGyx(w)dw
0

1) Help compute variances easily

v

Ao =J Gxx(w)dw =
0

Az = J O)ZGXX((J))dﬂ) =
0

A4 = f O)4GX)((O))d0) =
0

Aan =J W Gyx(w)dw =
0

2) Capture frequency-related characteristics of a random process
(in analogy to spectral moments E[X™] capturing characteristics of a random process)

+ Central frequency

M fom wGyx(w)dw
— fooo Gxx(w)dw A

In analogy to the mean

Jox - fx(dx

E|X] = —%
- f_mfx(x)dx

v

Geometric “center” of probability

density function
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+ Normalized radius of gyration of PSD

A_z_(h)z
Zo Zo A
S=—-—7-—
a)C

1
=

Agh >
= |2 -1| 0<s<oo

A

+ Bandwidth factor

S

5=
N

Ifs— 0,86 =

s> 00,8 =

Therefore, 0 <6 <1

Ifs = |22 — 1is substituted,
1
A
§= |1-
Aol
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457.643 Structural Random Vibrations
In-Class Material: Class 13

II-2. Stochastic Calculus (contd.)

Ergodicity

:‘{t}l A
A A

M A ALARA
WA T Y T
=2(t)f |
°\p.{ﬂuﬁumr kb U"'un\f'ﬁvnwnvﬂu‘/ ; Ensemble Average: E[X(t)] =

0! ' [

%

Temporal Average: my =

Average over the time domain is actually a variable. Consider

1 T
My = Tjo X(t)dt = (X(t))

1 T—-t
dr(@) = ﬁfo X(t+1)X(t)dt

These are random because the results depend on random outcome (selection) of a time
history.

1) “Ergodic” process: If X(t) is an ergodic process, one can use the temporal average

from a time history x(t) as an substitute for an expectation.
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2) Basic condition for ergodicity: stationarity
Stationary Ergodic

What if X(t) is NOT stationary? u(t;) # u(t,)
3) Condition for ergodicity in the mean My
° T“TO E[M;] = ux(t) = E[X(t)] ~ automatically satisfied for process

° Tlim Var[M;] =

o, 2
Var[M;] = E (TJO X(t) dt—#x)]

o 2
—E _{7 fo IO dt} ]

1 T 0T
= ﬁf f Tyx (6, — tz)dt dt;
0o Jo

2 T “Flip and Rotate” trick used
J, @
0

T
T - T) FXX (T) dt

 lim Var[Mz] = 0 & lim ~J Tx(2)d = 0 (See Lin 1967, p. 64)

T—oo

This is the condition for “ergodicity in the mean”
4) Condition for ergodicity in the correlation function ¢ (1)

° Tlim E[¢+(7)] = Rxx(7) ~ automatically satisfied for process
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® lim Varlgr(r)] = 0

The latter is equivalent to (Lin 1967, p. 65)

T
Tll_t)g%f E{[X(t + T)X(t) — Ryx(D][X(t + T+ wX(t + u) — Ryx(7)]}du =0
0

Example: Telegraph Random Process
Iyx(7) = 0% exp(—2v|t|)

Is the process ergodic in the mean?

Example: Y(t) = A + X(t) where X(t) is the random telegraph process, and E[A] = 0 and

Var[A] = o2. Is Y(t) ergodic in the mean?
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I1l. Random Vibration of Linear Structures

Stochastic response of “linear” structural system

Recall the system equation introduced in 0. Introduction

D[X(x, )] = Y(x, ), t=>0, x €D c R®

Deterministic systems and input (457.516 Dynamics of Structures)

Deterministic systems and stochastic input (457.643 Structural Random Vibrations)
Stochastic systems and deterministic input (457.646 Topics in Structural Reliability)
Stochastic systems and input

P wbdPR

We consider the second case in this course. The system is “linear” when the differential

equation is linear, i.e. s principle works.

e.g. if x;(t) is the response to y, (t), and x,(t) is the response to the input y,(t), the response
toy1(t) +y2(t) is

IlI-1. Response Functions of Structural Systems

Characterization of linear systems

1) Time-domain: “Impulse Response Function”

2) Frequency-domain: “Frequency Response Function”
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Impulse response function of a linear system

Consider the differential equation (DE) of a general linear system

d™x d* 1x

dx
a"dt"+ "1dt"1+ +a1d +ay =p(t)

Impulse response function of a linear system h(t) is the solution of the DE when p(t) = §(t),

i.e.

d™h d"1h dh
andt"+a"1dt"1+ +a1d +a,=956() - (»)

h(t) = hyp(t) + hy(2)
where hj, (t): homogeneous solution and h,, (t): particular solution

Strategy: Model the dirac delta input function by a triangular function for t € (—¢, €). Then,

h(t) = hy (t) with the initial conditions caused by the impulse.

v

From (*), it is clear that only the est term can be dirac delta function because if an

non-highest-order term is dirac delta, the higher-order-terms will blow up.

an =0, 07 <t< ot
n-15(0" ot n-1
d"'h J 5(6)dt d"'h
Un 7= ~ = 2 an o1 =
datn o - datn ot

Therefore, the initial conditions att = 0™ are

dn—lh dn—Zh

=T =
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457.643 Structural Random Vibrations
In-Class Material: Class 14

IlI-1. Response Functions of Structural Systems (contd.)

Characterization of linear systems (contd.)

Example: IRF of an SDOF oscillator

A
ﬁ 0O —
//////////////////// _ 7/ffffff9ffffff9fff/,|

DO

Equations of Motion:
1) External force: p(t)
mx(t) +cx(t) + kx(t) = p(t)
2) Ground acceleration: X, (t)
mi+cu+ku=0
» x. total displacement, u: relative displacement
» Thus, x =
mil + cu+ ku =
Divide the equation by m,

§(0) + 28wos(t) + wis(t) = f(t)

where wy = |<, §=——=-—°_ and
0 m’ 2mw,  2vVkm'’

f© =B or —%,(6)
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IRF of the system is obtained from
h(t) + 28woh(t) + w3h(t) = 6(t)
Initial conditions at t = 0*:

d"1h
dt"_l

1 dh
> &

ot _-an dat

— — h'(0+) —

ot

+ Lower-order derivatives are zero - h(0%) =
Find the homogeneous solution hy (t) from the equation of motion
h(t) + 28 woh(t) + wih(t) =0
Setting h(t) = e and substituting it into the equation,
r2. e + 28wor- et + wi et =0

r2 4+ 28wer + w5 =0

r=—fwy /fzw% — w3

For 0 < § < 1 (most practical situation),

r= o, * [£20F — 0} = —Ewo % iwp

where wp = wo. |1 — 52 (damped natural frequency)

h(t) = Ale(—fwoﬂwp)t + Aze(—fwo—iwD)t
= e $@ot(A e'@nt + A, e~iwnt)

= e~$®t(B, cos wpt + B, sin wpt)

Determine B; and B, by the IC’s, i.e. h'(0*) = 1 and h(0*) =0

h(0) = B, =

Instructor: Junho Song
junhosong@snu.ac.kr

h'(t) = e $@ot (=B wp sinwp t + Bywp cos wpt — EwgBy cos wpt — EwgB, sinwpt)

~ h'(0) = Bywp =
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Finally,

1
h(t) = w—e‘f‘”ot sinwpt, t >0 (0 otherwise)
D

v

Note: This is the IRF when the mass-normalized force f(t) is given as 8(t). Therefore, if the

force p(t) is given as §(t), the IRF is

h(t) = e $@lsinwpt, t >0 (0otherwise)

mwp

For &£ = 0 (no damping; undamped system), A

1
h(t) = —sinwyt, t>0
Wo

v

For &€ = 1 (“critical damping”),
¢+ Trye™ and r-e" in solving the DE; or W

. 1
© O =ln A

e~$@ot sin wpt

v

Either way, the IRF is derived as

h(t) =t-e @t t>0
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Response of a linear system to general loading (by IRF)

v

e

Loading att =t: f(t)6(t — t)dt
= Response at time t caused by f(7): f(t)h(t — T)dt
x(t) = x () + x,(2)
t
=x,(t) + f f(@h(t —1)dr
0

Note:

¢+ Homogeneous solution x,(t) is determined by

¢ Particular solution x,(t) is alternatively obtained by fot f(t —t)h(r)dr (convolution

integral or Duhamel’s integral) = works because of the rule (linear
system)

+ The force and the IRF in the integral should be consistent in terms of by
mass

e.g. Standard SDOF oscillator

t
x(t) =x(0)g(t) + x(0)h(t) + fof(‘r)h(t —1)drt

where

h(t) = —e~$@otsinwpt, t> 0 and
wp

g(t) = e~$@ot .| coswpt +

sinwpt |, t>0
1-¢2
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Frequency response function of a linear system

For a “stable” system subjected to a harmonic input £(t) = e'“t, its “steady-state” response is
x(t) = H(w)e'wt
t

t
x(t) = x,(t) + f f(t —1)h(r)dr = x,(t) + f el p(7)dr
0 0

Then, for a stable system, i.e. tlim xp(t) =0,

tlim x(t) = el@t. f e Th(t)dt = et H(w)
— 00 0

Therefore, the relationship between IRF and FRF is

H(w) = fooh(t)e_i“”d‘r = fooh(t)e_iwfdr
0 —00

1 (° .
h(t) = —f H(w)e'"dw
21 ) _ o

FRF and IRF form a Fourier pair and describe the linear system in the and

domain respectively.
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457.643 Structural Random Vibrations
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IlI-1. Response Functions of Structural Systems (contd.)

Direct derivation of H(w)
Assume f(t) = e'? and find the particular solution in the form xp(t) = H(w)elwt
Example 1
¥+ 28wox + wix = 28w, f
H(w) for the response x(t) to the input f(t)?
+ f(H)=e™"andf(t) =
+  x(t) = Hw)e'?t , x(t) = and ¥(t) =

Substituting these into the equation, one finds

H(w)eiwt[ ] — elwt
Therefore,
2ifwow
Hw) =—————
wi — w* + 2ifwyw

Example 2: Standard SDOF oscillator
¥+ 28wex + wix = f

H(w) for the response x(t) to the input f(t)?

s f(t) =e™t

o x(t) = Hw)et , x(t) = and x(t) =
Hwe | ] = elox
H(@) = ————

w§ — w? + 2ifwow
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Note: Derivation of H(w) for “state-space” formulation

Chen, C.T. (1999). Linear System Theory & Design, Oxford University Press.

z(t) =A-z(t) + B-w(t)
y(t) = Cy - z(¢t) + Dy - w(t)

For example, consider the standard SDOF oscillator #(t) + 28wyx(t) + w3x(t) = f(t). If the

system is described by a state-space formulation,
z(t):{ },A:[ ],B:[ ]andw(t)=[ ]

If one is interested in the responses x(t) and x(t), y(t) = , thus Cy, and D, are

and respectively.

As shown in Chen (1999), the frequency response function vector is in general obtained by
h(w) = Cy(inwl — A)™'B + Dy

(Derive the transfer function by Laplace transform and replace "s" by "iw"

Response to a general loading by H(w)
x(t) = j f(t—1h(r)dr
= foo f(t—r)ifooH(w)eimdwdT

oo 21 )_o

© o1 (™ .
=J H(a))el“’tﬁf f(t—1)e =D drdw
For the green-colored integral, we change the variable, i.e. t = t — 7, then it becomes
f@ =5 [ reota

2w )_o

i.e. Fourier transform of the input time history.

Finally, the response time history is obtained by

x(t) = foof(a))H(a))ei“’tda)
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Derivation of h(t) from H(w)

1 (® .
h(t) = —J H(w)e*tdw
21 J_o

= Need to use “Residue Theorem” — appears in textbooks on complex analysis, e.g.

Advanced Calculus for Applications (Hildebrand, 1976)

Residue Theorem

Consider z = a + ib is a complex value. Let f(z) be “analytic” i.e. single-valued and finite
derivative on contour C, and its inside except at a finite number of points, z4, z,, -+, z,,, ("poles”)

inside C. Then,

f(z)dz = 2mi ) Res f(z;)
T

(counter-clockwise)
where Res f(z;) is the “residue” of f(z) at z = z;
For example, f(z) = 1/(z — z;)(z — z,) has two poles,

For a single pole, i.e. (z — z;) appears in the denominator of f(z),

Res f(zj) = le_gl](z - Zj) - f(2)

For a n-th order pole, i.e. (z - zj)n appears in the denominator of f(z)
Res f(z) = le_gl](z - zj)n - f(2)

Application of the residue theorem to a line integral, e.g. ffooo f(w)dw

ﬁ.f(z)dz = f_rrf(Z)dZ + J;f(z)dz A

v
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Provided [, f(z)dz vanishes as r — o

J-_o:of(z)dz = £f(z)dz = 27Tijz:Res f(z)

(upper half-plane)

What if we need to use the lower half-plane to make fs f(z)dz vanish?

»
>

if(z)dz = fr_rf(z)dz + J;f(z)dz

»

Therefore, for the lower half-plane,

f_o:of(z)dz = —if(z)dz = —ZHiEReS f(z)

Example: Derive IRF of an SDOF oscillator from its FRF

Note its FRF is

1
H(w) =
(@) wé — w? + 2ifwyw
=— w
21 )_ o w3 — w? + 2i wow
1 eizt

dz — %fsf(z)dz

T2 c WE— 2%+ 2ifwyz
Which half-plane should be used to make the second integral vanish?

Consider poles of the analytic function f(z), i.e. roots of the equation w? — z2 + 2ifwyz = 0
. Z]_:(A)o(_ﬂl_fz‘}‘if)
. Zz=(1)0(ﬂ1_fz+if)

When z = a + ib,
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izt _ el(a+Lb)t iat , e—bt

e =e

Instructor: Junho Song
junhosong@snu.ac.kr

When b 0, the %fsf(z)dz vanishes as r —» o. Therefore, we should use the ( ) half-

plane.

v

2
h(t) = %ﬁf(z)dz = % . Zni;Res f(zj) =i- (Res f(z1) + Res f(zz))

eth

—(z—-21)(z—2,)

fz) =

an{eosfie)

. _ eizlt _
¢ Resf(z)=lim@z-2) f(2) = 5="—0
' eizzt e—wo(f—i 1—52 t
* = — . = =
Res f(2,) = im (z = 2,)  f(2) = =~ 5 = 5.

Finally,

h(t) =1i- (Res f(z1) + Res f(zz))

1
=—e$@lsinwpyt (t>0)
Wp

llI-2. Random Vibration Analysis of Linear Structures
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457.643 Structural Random Vibrations
In-Class Material: Class 16

[1I-2. Random Vibration Analysis of Linear Structures (contd.)

Response of a linear system to a stochastic input process

Deterministic input

d™x dx
anW+ ---+a1a+ ap =p(t)
n-1 .
£ = ) xOOg(0) + [ p@hy(e - Do
i=1 0

n-1 t
(x(t) = Y xOgi0) + [ F@hy(e - r)dr)
o 0

=1
Stochastic input

drx

ax
anW+"'+a1E+a0 =P(t)

n-1 t
X(t) = Z XD (0)g(t) + f P(1)hy(t — T)dr
i=1 0

Example: stochastic response of standard SDOF oscillator

¥(t) + 28wox(t) + wix = f(t)
¢

x(t) = x(0)g(t) + x(0)h(t) + f f(@h(t —1)dr
0

§ = sin a)Dt) -U(t) 2 g4(t) above

= p—$wot . —_—
¢ g(t)=e*% (costt+ﬁ

* h(t) = wLDe‘f“’Ot -sinwpt - U(t) 2 g,(t) above

When there exists randomness in the initial conditions and the external force, the response is

a stochastic response
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t
X(t)=S8,-gt)+S, h(t) +J F()h(t — t)dt
0

Question: py(t), dxx(ty, t2), ...?

Assuming the integral () exists in the mean-square sense, we can derive the moment

functions as follows.

1) ux(®) = E[X(8)]

~g(@) + ~h(t) + f h(t —7)dt

0

2) bxx(ti,tz) = E[X(t)X(t2)]
= -g(t)g(t) + -h(t)h(ty) + {g(tDh(ty) + g(t)h(t)}

+f 1 2¢FF(T1:T2)h(t1 —1h(t; — 1p)dr,dTy
o Jo
ts
+E {[Slg(tl) + Syh(t1)] -fo F(z)h(t; — Tz)de}
ty
+E {[Slg(tz) + S;h(t2)] -fo F(t)h(t; — Tl)dT1}

3) kxx(ty,ty) = COVIX(t)), X(t,)] = E[(X(t1) - HX(Q)) (X(t) - Hx(fz))]
= ftl ftZKFF(TLTz)h(H — 1h(t; — 12)dt,dTy
o Jo

+03,9(t1)g(t;) + 05, h(t)R(¢;) + COV[Sy, Sp] - [g(ty) - h(t2) + g(t2) - h(t1)]
+ terms involving covariances between S; and F, and those between S, and F

(usually zero)

Response of a linear system under multiple stochastic inputs

Assuming zero IC’s for simplicity, suppose a linear system

is subjected to multiple stochastic loads

Fl(t)lFZ(t)J'“

Then, the stochastic response and its moment functions

are
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o X(0) =YL, f, F(h(t - 1)dr
o ux(®) = X [y up, (Ot — )dr
¢ Pxx(ty, ) = Xiny fotl fotz Gr,r, (11, T2)h(ty — T)h(t, — T2)dTdTy

ty (t
v rxx(tut) =2 ) ) Kror; (T1, T2)h(t — T)h(t, — 12)dTRd T

If F;(t) and F;(¢t) (i # j) are statistically independent of each other, the double integral

becomes

Cross covariance between response and excitation

kxp(ty, tz) = E[(X(t1) — Y(F(t) — )]

t t

1F(‘L’)h(t1 —17)dt — f 1;11;(‘r)h(t1 —17)dt =

0

X(t) —ux(ty) = f

0

ty

~ Ky p(ty, ) = J E{[F() —urIF(t2) = DAty —1)dr

0

Therefore,

ty

Ky r(t1,t2) =jo kpp(, Dh(ty —T)dT

fort; = t,

When tl < tz, KXF(tl'tZ) =

Example: Response to shot noise (Delta-correlated process)

Recall: Shot noise is white noise with time-varying intensity

4
¢ pup) = o
¢ kpp(ty,ty) = 1(8)6(t — ty) e
When I(t) = I, i.e. constant, the shot noise becomes - >

noise
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Assuming zero IC’s

Kyx (1, t2) = f f krp(T1, T2)h(t; — T)h(t; — 15)dT,dT,
o Jo
ty, rty
== J J h(tl - Tl)h(tz - T2)dT1dT2
o Jo

min(tq,t,)
= f I(t)h(t; — T)h(t, — T)dT
0

Example: Massless SDOF oscillator under shot noise
Equation of motion:
cx + kx = p(t)
X+ ax = f(t)

where a = k/c and f(t) = p(t)/c

Chracterization of the system: impulse response function?
h(t) + ah(t) = 8(t)

Initial condition: h(0%) = % =

Homogeneous solution:

Set h(t) =e™

r=

Therefore,

h(t)=A-e™*

Applying IC, the impulse response function is h(t) = for t

Instructor: Junho Song

junhosong@snu.ac.kr

0
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Suppose the intensity function of the shot noise F(t) is

given as
I(t) =1 for 0 <t < t, and 0 otherwise

Then,

min(ty,t;)

o (t1, £5) = f I(h(t; — Dh(ts — Ddr

0
min(to,tl,tz)
_ 7 f e-a(ti=D) . p=a(t=D) gy
0

t_*
=]. e—a(t1+t2)J eatqr
0

I
=5 e~ it [exp(2at™) — 1]

Kkyx(t,t) = of =7
Fort <ty ie.t' =t
2 —

Ox

Fort >ty ie.t* =t

o2 =

v

Instructor: Junho Song
junhosong@snu.ac.kr

v
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457.643 Structural Random Vibrations
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[1I-2. Random Vibration Analysis of Linear Structures (contd.)

Response of a linear system to weakly stationary input
kpp(ty, t2) = Ipp(T) Where t=1¢; — ¢,

Assuming zero initial conditions,

Kyx (1, t2) = f f kpp(T1, T2)h(t; — T)h(t; — 12)dTodTy
o Jo

= f f Iep(D)h(ty — T)h(t; — 12)dT,dTy
o Jo
where 1 =1, — 1,
NOte that FFF(T) = f_oooo q)pp(ﬂ))eiwrda)

Thus,

(o0} tl tz .
o (1) ) = f f f O ()h(ty — TR(E, — 15)e“ drydr; dw
—o00 V() 0

co ty pty ) ) )
= J f f q)pp(ﬂ))h(tl - Tl)h(tz - Tz)e_lw(tl_rl)elw(tZ_TZ)elw(tl_tZ)dedTl dw
—00 Y0 0
By changing variable u = t; — 74, one can show

ty ty
J h(ty — 1y)e @tri—m) gy, = J h(uw)e~“%du
0 0
tl i
= h(u)e '““du

— 00

=H(w,t1)

This is so-called “incomplete” Fourier transform of the impulse response function.

cf. “complete” FT of IRF gives the FRF

H(w) = fooh(t)e_i“’tdt



mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

Therefore, kxx(t1,t;) for a weakly stationary input F(t) is expressed as

o (t1, £5) = f () H (@, 0)H* (@, £)e“ doo

Note:

+ The response of a linear system to a stationary input is stationary
necessarily.

+ However, as t,, t, — oo, the incomplete FTs becomes independent of ¢t; and t,,

Therefore, kyx(t;,t;) depends onlyont=t; — t,
Observations:

1. tlim H(w,t) = H(w) for a “stable” system

Therefore, the response of a linear system to a stationary input becomes
e

2. ¥xx(0,0) must be and it means 6%(0) = . This makes sense because we
assumed IC’s

3. For the stationary response, i.e. t;,t, = ©

texx (t, t2) =f Ppp(w) H(w, t)H*(w, t;)e" dw
=f ®pp(w) |H(w)|?e dw

That is,

T () = f (@) | H(w) 2T dao

4. From this result, for a stationary response, it is found that

byx(w) =
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v
v
v

For example, let us consider...
H(w,t) and H(w) of standard SDOF oscillator

Recall
¢ h(t)= wie_f‘”ot sinwpt
D

1 _ wi-w?-2ifwyw

: = 2
w3-w?+2ifwow (wE-w2) +(2fwow)"2

¢ H(w)=

1

H(w)|* =
LIC (0 — w?)? + 482 w3 w?

v
v

t
1 )
H(w,t) = f w—e‘f“’ot sinwpt - U(t) - e~ @tdt
—oo YD

Ewo +iw

v

= H(w) [1 - (cos wpt + sin th) . e—Swot . e—iwt]

Wp
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From this result, the terms in () has the same order as 1, and e~ oscillates. Therefore, the

rate of the convergence of the termsin[]to is determined by

In other words, “sufficient” time to achieve stationarity depends on §wgt = & ZT—”t
0

Suppose we set Ewot = anTi =1 (note e™™ = 4%) and solve it for ¢, i.e. time to make the
0

exponentially decaying term as 4%, t,o, = ZT—"
e.9.§ = 0.1 2 ty, = 5T, § = 0.05 > ty, = 10T,

% Alternative (empirical) method:

Wang, Z., and Song, J. (2016) Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear
random vibration analysis, Structural Safety, http://dx.doi.org/10.1016/j.strusafe.2016.08.005

3.1.1. Remark 1: Selecting sample points

One issue in selecting sample points in the aforementioned
algorithm is that the nonlinear response takes a certain amount
of time to achieve stationarity, thus using the whole time series
including a nonstationary part will introduce errors to the esti-
mated PDF. To reduce this error, for each of the M response histo-
ries obtained from the first step of the algorithm, we need to select
N stationary response values as the sample points.

Here we provide a method to crudely estimate the time that the
system would take to achieve stationarity. To begin with, the stan-
dard deviation of the response at a sequence of time points,
denoted as std[Z(jAt)], in whichj = 1,2, ... and At is the time step
of the nonlinear analysis, is estimated using the recorded M
response histories, and then a sigmoid function expressed as

Fae () S — (12)

1 4 e-wAr+b

is employed to fit the std[Z(jAt)] curve. Note that fg(-) € (0, 1), thus
the std[Z(jAt)] curve should be scaled by a factor j/zj_lstd[ZUAr)l

(JAt is the duration of the excitation) so that it approximately
ranges from O to 1. The parameters a and b in Eq. (12) can be deter-
mined from a least-square regression analysis. A typical scaled
std[Z(jAt)] curve and its corresponding fitting function fg(-) is illus-
trated in Fig. 3. With fg (t) available, the time the system takes to
achieve stationarity, denoted by j,.At, can be estimated via

Jns = argmin{j|1 — f(jAt) < Tol.j=1,2....} (13)

where Tol denotes a specified tolerance. With j,, determined, for
each of the M response histories, N = ] — j,. time points correspond-
ing to the stationary responses are selected to be the sample points,
and the total number of sample points is N=M-N=M- (] —j,.).
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Figure 3. A typical scaled std[Z(jAt)] curve and the fitting function

Stationary response of standard SDOF oscillator to “white noise”

Useful for linear random vibration analysis of MDOF systems using modal combination, i.e.

each mode is represented by a standard SDOF oscillator (will be shown later)
Ppp(w) = P
PSD of the stationary response

Dyx(w) = Pol|H(w)|?
(w2 — 0?)? + 4820k w?

v

Thus,
Ixx(7) = f Dyy(w)e dw
oo eiw‘r
=0 d
0 f_oo (w3 — w?)? + 482wl w? @
How? We can use theorem
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457.643 Structural Random Vibrations
In-Class Material: Class 18

[1I-2. Random Vibration Analysis of Linear Structures (contd.)

Stationary response of standard SDOF oscillator to “white noise”

Useful for linear random vibration analysis of MDOF systems using modal combination, i.e.

each mode is represented by a standard SDOF oscillator (will be shown later)
Ppp(w) = P
PSD of the stationary response

Dyx(w) = o|H(w)|?
(wE — 0?)? + 48208 w?

v

Thus,

Ixx(7) =J Dyx(w)e™ dw

oo eiwr
=@ dw
0 J_oo (w3 — w2)? + 482w3 w2

How? We can use theorem

d)oeLZT d)oeLZT

2V rafrwis? | (a-2)(a-23) (2-23)(2-24)

Poles? f(z) = 7

Solve (w3 —z2)? + 48%2w3z% = 0 for z
w3 —z? = +2ifwyz

7?2 + 2iwez— w3 =0

v
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First consider t > 0, note z =a + ib

izt _ pila+ib)t — plat . ,—bt

e
Therefore, the function insider the integral vanishesasr - wif b 0.

That is, we should use upper/lower half-plane for the residue theorem.

| r@wao=§ re
—o0 C
= 2mi(Res f( ) +Res f( ))

_, ( q)oei T N CDOeL T )
“C =2 2 —z) " —z)( —z)( —z)

As aresult,

nd
Iyx(7) = — 0 gdwr <cos wpT + sin a)D‘r),T >0

§
i

28w}

From , for vt

Ixx () = 0o e~$@ltl | cos wDT+Lsin wp|T|
28w Ji—é&2

1) Variance of the stationary response of standard SDOF oscillator to “white noise”

nd,

ok = Txx( )=2€?
0

2) Mean-square continuous?
3) Mean-square differentiable?
4) Cross-covariance of the response and its time derivative

dlxx(r) D,
dt 2&wwp

Tix (1) = —Txx(7) = e~$®oT sin wpt fort>0

Therefore, for VT,

td,

—— e %@l sinwpt
2§wowp

Tix () = —
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5) Auto-covariance of the time derivative

d*Tyx (1) _ g
dr? 28wy

Txx(7) = - e~ Swoltl <cos wpT — sin a)D|1:|>|

§
i

6) Note that the time derivative of the SDOF response to white noise is

differentiable (in the mean-square sense).
Setting Y(¢) = X(t), Iyy () = Ixx ()
dr‘;—‘;(ﬂ does notexistatt=0

7) PSD of the time derivative (velocity)

Dyy (W) = 0*Oyy(w)
3 dyw?
(W — 02)? + 48208 w?

8) Note

wzel(ur

wi — w?)? + 482 wiw?

Iy (1) = CDOJ ( dw = Resultin (5)

The term inside the integral is o(w?)/o(w*): decays faster than 1/w
How about X (£)? @33 (w) = w*®xy(w)

Therefore, Ty (7) is the integral of the term proportional to o(w*)/o(w*): does NOT

decay faster than 1/w. Thus I'y3(t) = o

9) Variance of the time derivative X (t)

md,
28 wg

0% =Txx( ) =

Non-stationary response of standard SDOF oscillator to “white noise”

(b1, = [ @I, @, 6)e 0= do
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Supplementary Materials: SDOF responses to WN

I. “Stationary” responses of the standard SDOF oscillator to white noise: X (t) and its
derivative Y (t) = dX (t)/dt

(Plots generated for o, =2n, {=0.05and ®,=1.0)

(1) Autocovariance function of X (t):

@ ¢ . '
Ty, (1) = ~—0 g Coold COS T+ ———=SiNw, | 1| Il
T 2 -t VLI
. 10, S ALY \Ul L[ \UI VAAVANZ
I (0)=0c% = ZC(DS 7411 U U
(2) Crosscovariance function of X (t) and Y (t):
|
Ly (T):_drxx © = iad e =l sinoyT S ﬂ\ n\ \\ {A\ N a
dt 200, S ANANANARAR AN ANAA
I, (0)=0 S AVAY \v \\ \l \\ \\/ Ay
e v
(Note: A stationary r.p. and its derivative are V
always orthogonal, i.e. R, (0)=0.) e e o e oo s
(3) Autocovariance function of Y (t):
Jxs
__ 4T (i
b (=42 o I
WA N A
= Po oo COS®LT— 5 sine 7] VY ‘\/’ \”’ l\ ;I \\}’ l\;’ v
" %o, -7 NEEASY A
qu)o : | A
Ly (0)— 2(; , oA 2 a0 e s e
(4) Crosscorrelation coefficient function of X (t) and Y (t): ] n\
T, (1) 1 . /‘\A\l\\ln\\zﬂ\/\
Py (T) = xr 1T —e M __—__sinwyt o e A
T T Oy (0) -7 S AVAVATARARANARRTATA
_ o VAL LY
Py (0)=0 VALYV
: \Ul U

7777777777777777
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I1. “Nonstationary” responses of the standard SDOF oscillator to white noise: X (t) and
its derivative Y (t) =dX (t)/dt

(1) Autocovariance function of X (t):

© min(t;,ty)
K (toty) = [ @oH (0,1)H (0,1,)e" do =210, [ h(t, ~0)h(t, ~1)dt

0

eC(’”’tltz{COS(DD(Ll -t,)+ 6 sinop |1, —t, ]
nd, V1-C°

2w;

2
ecmo(tﬁtz)lﬁcost(tl_tz)-k 11;2 sian(t1+t2)—157coswr,(tl+t2)}

o, | ¢ . ¢
Ko (E1) = G2 (t) = ——0 J1 _ g2Codt + $in 20t ——2 0520t
X)(( ) GX ( ) Zcmg 1—@2 M D 1_@2 D

0.4 T T T T T T T T T

0.35} .
¢=0.001

0.1F /PP L L ]

0.05F e e .

o o —h m  f S 2 s s ]
-

Note:

. . ()
1) Eventually approaches to the variance of the stationary response, ; 0
0

2) The “sufficient” time to achieve stationarity depends on (o,.
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(2) Autocovariance function of Y (t):

82Kxx (t,ty)

Ky (1) = otot
10L,

g

———sinw, |t -t,||-
N

200, 1 i
ec“’“tﬁt{—zcoSmD(tltz)LsinwDaﬁtz)C—zcosw[)(tﬁtz)

1-¢ J1-¢2 1-¢

e =l cosa, (t, —t,) —

D,

Ky (41) = 5\2( ®

2
_ 1% 1e24°"°t[11 5 SiﬂZthC—ZCOSZth}

20w, -¢* - 1-¢

1 I ' T T T T T T T
B ¢=0.001 7
12 :
il ,/"‘_E: 0.01 -

//’-—
<\\?> 8 ,’,_ - |
[ iy
//
6 /- |
- ¢=0.05

l’-- .......................................
T -”/ .................. |

4777 e o1
2 _— _______________________________________________________ ]

0 I , . . 1 ] ] ] ]
0 0.5 1 15 2 25 3 35 4 = g

t
Note:
i i nd,
1) Eventually approaches to the variance of the stationary response,
(’00

2) The “sufficient” time to achieve stationarity depends on (o,.
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(3) Crosscovariance of X (t) and Y (t):

aK XX (tl ' t2)
at,

el sing, |t —t, |-

Ky (b, 1) =

_ 1P,
20wy, |67 " ) sinw, [t —t, |-

g
J1-¢2

(4) Crosscorreltion coefficient function of X (t) and Y (t):

g

-

cosmp (t, —t,) + cosmp (t, +1,)

K (tl’tz)
P (b)) = =
e \/Kxx (t,t)ey (t,t,)
Ky (1)
Py (t,1) = X
XY \/Kxx (t, Dy (t,1)
in which
()
Ky (1) = %efzq‘”“ (1-cos2m,t)
D
1 T T T T T T T T T
0.9 =
0.8 i
07} i
0.6F i
‘C’; osF ! =
0.4 =
03F 1 ¢=0.001 .
0.2F C: 0.01 -
) £=0.05
0.1 f/ \':, =01 ]
0 0.5 1 >1.5/ 2'—'- T s 35 4 4.5 5
t
Note:

1) p,y(t) is not zero due to the nonstationarity.
2) Therefore, p,, (t) can be used as a criterion for checking stationarity.
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Stationary response of standard SDOF oscillator to wide-band inputs: approximation

by “white-noise” response

Pyx(w) = Ppr(w)|H(w)|? A
=d|HI1*>

Where q)o = q)FF(wO)

v

The accuracy of the WN approximation depends on

e & Bandwidth of |H(w)|? (accurate if it is narrow
band, i.e. £ = 0)

e Bandwidth parameter of F(t) (e.g. §,s, &)

accurate if it is wideband, e.g. Eg >0

v

Spectral moments of stationary response of SDOF to white noise input
Ap = f WG yy(w)dw
0

= ZQ)OJ w™|H(w)|*dw
0

D 2 Y N P 1 2 ~
. Al——xn tan ; _mx(l 7)for§_0

2

=» Useful for identifying the bandwidth of the process, e.g. § = |1 — %
042

.2 {0)
. ;\2=E[X (t)]zaf-(:;—w(;

o Ap—oifm>3
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457.643 Structural Random Vibrations
In-Class Material: Class 19

[1I-2. Random Vibration Analysis of Linear Structures (contd.)

Spectral representation of nonstationary process

Used PSD @4y (w) for spectral representation of a stationary process X (t). What to use if X(t)

is non-stationary?
Main purpose: describe the change of the frequency content over time

1) Generalized PSD ®yy (w4, w,): Fourier transform of ¢y (t;, t5)
Assuming X(w) = if_(’ooo X(t)e~'tdt exists in the mean-square sense,
Dyx(wy, wz) = E[X(w1)X*(02)]

1 (e (" .
= Wf_m f_mE[X(tl)X*(tz)]e‘l(wltl‘“’ztz)dtldtz

1 ® r® ,
= Wf_oo J_Oo e—l(w1t1—w2tz)dt1dt2

Can show (from the formulation for ¢y x(t1,t,) of a linear system)

a’xx(“’v wy) = a)FF(wli wo)H(w1)H" (w7)

It is also noted that

Pxx(t1,t2) =J J el@iti=02t) gy, dw,

Question: Practical? No, because
® |t is difficult to assign physical meaning (two w's)

® The time term does not appear in the PSD although it is important for

nonstationary process
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2) Instantaneous PSD ®!(w,t) (Page 1952)

¢i(r,t) = E [X(t —%)X(t +%)]

. 1 (* . .
(Dl(w’ t) = Ef d)l(Tr t)e‘“‘”dr

3) Physical PSD (Mark 1970)

foo w(t — )X (1)e @Tdr

2
(o, t)W=E[ ]
where w(t — 1) is the “window” function that captures PSD around the time t
4) Evolutionary PSD (Pristley 1965, 1967)
Consider two different versions of inverse FT
o X(t)=[" X(w)etdw Riemann integral

[oe]

® X(t)=J__e“dS(w) Stieltes integral

~ generalization of Riemann integral by use of “increment process” dS(w)

> Increment Process dS(w)

(1) Can use Fourier integral even when X(w) = % does not exist, i.e.
dS(w) is smoother

X(@) = fooei“’tdS(a))

-- Fourier-Stieltjes integral

(2) “Orthogonal” increment process dS(w)

E[dS(w1)dS™ (w)] = ®(w1)6(w1 — wp)dwidw,

It has been proved that (Lin & Cai 1995), for an orthogonal increment
process,

[oe]

X(@®) = [__ e™tdS(w) exists & X(t) is weakly stationary
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Note that X(w) does not exist for stationary process i
Proof for (=): :
bxx(ty, t2) = E[X(6)X"(t2)] i
= [ [ ctontrtontsplastoyas* o) §
= J-°° fooei“’ltl_i“’ztzcl)(wl)(ﬁ(wl — w,)dw;dw, E

= f eloti=t2)p(w,)dw,

— 0o

a) Priestley’s idea (toward “evolutionary” PSD)

X(t) = J OOA(a), t)eltdS(w)

where
® A(w,t): frequency-time modulating function

® dS(w): orthogonal increment process representing a stationary “base”

[oe]

process Xs(t) = [__ e™dS(w)
b) In this case, the auto-correlation function is derived as

Pxx(t1, t2) = E[X(t)X"(t2)]

- j j Awr, t)A" (@) £5)e @192 E[dS (w01)dS (w5)]

- f Alw, t) A" (w, 15)e 1~ dgs(w)dw
Note, for a stationary process:

Rxx(7) =f ei“”tbxx(w)dw
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c)

d)

For t; = t,,

BCO1 = [ 1A, 0F G ()i
Note, for a stationary process:
E[X?] = f_ " b (@) dw

Comparing the two equations, |A(w, t)|*®ss(w) seems to describe the evolution of

the spectral representation of the non-stationary process at time t, so we can...

Define “Evolutionary” PSD (EPSD) as

v

P (0, t) = Pss(w)|A(w, D)2

to describe the evolution of the frequency
content over time using the frequency-time

modulating function A(w, t)

Special case: uniformly modulated evolutionary \
process g
A(w, t) = A(t)

In this case, it is noted

o)

X(t) = j A(t)e®tdS(w) = A(t) f Ooei“’tdS(a)) = A(t)X,(t)

Pyx(w, 1) = [A(t)|*Pss(w)
E[X?(0)] = [A®)PE[XZ (D] = |A®)IPE[XZ]
How to determine A(w, t)? Examples:

® Kubo & Penzien (1976): Identified A(t) by statistical analysis of San

Fernando earthquake records (Clough & Penzien 1993)

X,(0) = At) - Xs(t)
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The “envelope function” A(t) was identified in the form a;t - exp(—a,t)

® Jangid (2004, EESD): provided an extensive survey of envelope functions
and investigated SDOF nonstationary responses

A(r) A A(DA
Aplei— e
N (a+a,fe "
(@) In I (b) In i
A A Alr)
Ay
Ay
Iy
Ay
(c) 7"' 1 (d fy i
A(n Al A
1
Ayll )
4” 0 A”r_;—rl.'—r_ll
] Iy t () I
Figure 1. Different modulating functions: (a) exponential—I; (b) exponential—Il; (c¢) box-car;

(d) triangular—I; (e) triangular—II; and (f) Amin and Ang type.

® Other ways for spectral representation of nonstationary processes:
Wavelet transform (Kareem, Spanos, ...), Hilbert-Huang transform (with
empirical model decomposition; Wen & Gu, 2004, 2009 in JEM)

08 IMF Functions of 1940 El Centro Record IMF Functions of 1994 Northridge Newhall Record
By

| ] 1000
O fom/ [;l“‘\‘\\"“’ﬁnl'""" ) A s T 0 F__.. Wmn ek

— . . : . -1000

. 500 i ,
- . . i e e e e
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Fig. 2. Intrinsic mode functions (IMFs) of E1 Centro record and Newhall record
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Fig. 3. Hilbert spectra of El Centro record (top) and Newhall record
(bottom)

f) Input-output relationship when evolutionary PSD is used (to be continued)
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457.643 Structural Random Vibrations
In-Class Material: Class 20

[1I-2. Random Vibration Analysis of Linear Structures (contd.)

Spectral representation of nonstationary process (contd.)

4) Evolutionary PSD (Pristley 1965, 1967; contd.)
f) Input-output relationship when evolutionary PSD is used?

In general, it was shown (see Class 16)

Kyx (b1, t2) = f_‘: J_O:OKFF(TpTz)h(tl — 11)h(t; — 12)dT1d7;

If the input process F(t) is modeled as an evolutionary process, i.e.
Kpp (T, T2) = J‘_°° b (w)Ap(w, 1) AR (w, 7,)el (172 g

Substituting this into the equation above and exchanging the order of the integrals,

Kyx (t1,t2) =f by (w) X J Ap(w,71)h(t, —T1)e_im(tl_rl)df1]

X f A;(w,rz)h(tz—Tz)eiw(tz—fﬂdrz]eiw“l-fz)dw

Here we define
m(ew, t) = f Ap(w, T)h(t — T)e " @EDgy

It is noted that the lower boundary value can be replaced by 0 because Ap(w,T) =
for vt < 0 and the upper boundary value can be replaced by t because h(t — 1) =

fort—1t 0.

Using the function m(w, t), the auto-covariance function is determined as

Kyx (£, t2) = f Pgs(w)m(w, t)m" (w, t,) et dw

Note that, for a stationary input, the auto-covariance function is
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:' """"" o o TTETTETTm T T |
Ikyx (8, 62) = f Ppp(w)H (w, t)H ™ (w, t3) eiw(tl_tZ)dw:
—oo I
e e e e e e e e e e -

That is, we use
e H(w,t)= f_too h(u)e~“%du for stationary input

o m(wt)= [ Ap(w,h(t —T)e =D dz for nonstationary input

(= information regarding the nonstationary added)
If Ap(w,t) =1, m(w, t) H(w,t)

Note: The mean-square of the nonstationary output is derived as
B O] = | @s(@)im(,0Pdo

Evolutionary PSD of the nonstationary response?

Pyx(w,t) = Im(w, )*Pss(w)

It is found that the response is evolutionary if the input is evolutionary (because
Dyx(w,t) = |Ax(w, t)|? P4 (w)). The frequency-time modulating function of the

response is
Ay(w,t) = = f Ap(w, T)h(t — 1)e”@EDqr

For the stationary input and output, the PSD is

Oyy(w) = [H(w)|[*Prp(w)

Example: (Consider again) nonstationary response of standard oscillator to WN

1 .
h(t) = —e $@ot sin wpt
Wp

If WN input is modeled by use of the evolutionary model,
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0, t<0
Ap(w,0) = {; £>0

Dy ((U) =@,

t
m(w,t) = J Ap(w,t)h(t — T)e—iw(t—r)d_[
0

= H(w,t) - stationary input
Therefore,

byx(w,t) = |m(w, t)lzq)ss(w)
= |H (w,)]?D,

Ast - o, Dyy(w,t) = |H(w)|?P,

Instructor: Junho Song
junhosong@snu.ac.kr

Describe X (t) as an evolutionary process? What is the frequency-time modulating function in

Dyx (0, t) = |Ax (@, ) Pss(w)?

Comparing this with the equations above, it is clear in this example that

t
Ax(w,t) =m(w,t) = H(w,t) = f h(u)e~“%du
0

1

- (w3 — w?2) + 2iwow

[1 — e~ Gwotin)t (cos wpt +
Wp

IV. Random Vibration Analysis of MDOF Systems
e State-space approach (Section 8.6, 9.8 & 10.6 in L&S)

e Modal approach (discussed in this course)

Modal analysis of MDOF system (Review)
1) Equation of Motion

Mx + Cx + Kx = PF

Ewy + iw

sin th>]
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2)

3)

where M, C and K are (n X n) mass, damping and stiffness matrices; X,x and x are
(n x 1) vectors of acceleration, velocity and displacement; P is (n X m) matrix that
determines the contributions of the external forces to the DOFs; and F is (m x 1)

vector of the forces
Let x = ®q(t)

where ® = [¢; ¢, -+ ¢,]is the matrix containing n modal shape vectors, and

q(®) = [q1(t) q2(t) - g, ()" is the vector of scales of the modes at time t
=> Superposition of multiple modes, each of which is scaled by q;(t) at time t
Thus, x = ®q(t) and % = ®g(t)

We select @ to be the solution to an eigenvalue problem

K®d = AMP

where A = diag[};] = diag[w?], i.e. the diagonal matrix of the eigenvalues (real &
positive because M and K are symmetric and positive-definite), and & is the

eigenmatrix

(Pre-)multiply E.O.M. by ®T

®"MPG + PTCPq + PTKPq = ®TPF
where

¢+ ®TM® = diag[M;]: Modal masses
+  ®TK® = diag|w?M;]: Modal stiffnesses (w; = \/§ modal frequency)

+ ®TCc® = diag[C;]: Modal damping coefficients (= diag[2&;w;M;] for classical

damping; ;: modal damping ratio)

When F(t) = [F(t)], i.e. single input process,

: T
TP = {YiMi} andy; = ¢nf1_P, so-called “modal participation factor”
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4)

The i-th de-coupled (thanks to the orthogonality) equation is
G + 28 wiG; + 0fq = YiF (), i=1,..,n

Recall

t
M0=m@m®%HMmMm+waﬁMﬁ—ﬂw
0

= gi(t)q;(0) + h;(£)q;(0) + y;s: (1)

where h;(t) is the unit impulse response function of the i-th mode (per-unit-mass

force), i.e.

1 _&.wit s
h;(t) = o€ §iwit gin wp;t and wp, = h — & wy;
L

Recall x = ®q(t), for zero IC’s,

x = PI's(t)

5)

where T = diag[y;] and s(t) = {s;(t) - 5,,(£)}T
Generic response

y = Qx = Q®TI's(t) = As(t)

(scalar version) y, = X7, ay,;s;(t)

where

+ A: “effective” participation matrix (participation of each mode to each generic

response)
+ s(t): vector of normalized modal responses

Examples:

(1) The relative displacement of x; (t) and x, (t)

X1 (t)}

y=ox=l1 -1

(2) Resisting force: Q = [ks —kq]
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457.643 Structural Random Vibrations
In-Class Material: Class 21
IV. Random Vibration Analysis of MDOF Systems (contd.)
Modal analysis of MDOF system (Review; contd.)
6) Derivation of h(t) and H(w)
h,q(t): u.i.r.f of the p-th response to the loading applied at the g-th DOF
To derive hy,(t), set
e Q=[0--010--0] (1" atthe p-th elementonly):y =y = x,

e P={0--01 0--0}T("1" at the g-th element only): (impulse) load applied at
the g-th DOF

o F=F() =8 > s;(t) = [, F@h(t — D)dr = hy(t)

9P _ fai
L M; M;

Then, obtain the generic response y = Q®I's(t) to obtain hy, (t)

hpe(©) =y
= Q®rI's(t)
. ¢qi {hl.(t)}

=[0:-010 --0]ddiag|—- :
_ o T ding [P (O
- [d)pl ¢p2 ¢pn] dlag [Wl] {hn.(t)
Thus,
hoa(® = D (P20 1o

i=1 t

Hyg (@) = 2 (Pet) b

i=1
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7) Multiple inputs (m # 1): By superposition,

n
y= Z Agsi(t)
k=1

[Pk
where Ay = Q®Ty, I, = diag [=1-

], se(t) = [ F(h(t — D)dr

Scalar version:

AOEDIDYCHEAG
k=1i=1

where sy (t) = [ F(Dh(t — )dt
MDOF response to stochastic input: moment functions

When the inputs are modeled by a vector of “random” processes F(t) = {F,(t) F,(t) -+ E,,(t)}T

Y(0) = ) ASi(®)
k=1

1) Mean response:

BIY(O] = ) AE[S, ()]
k=1

where

t t

E[S, (8)] = f E[F, ()]h(t — 1)dr = f we(OR(t - Ddr
0 0

2) Auto- and cross-covariances of the responses:

m m

YEDY(E)T = > ASi(t)ST (6)AT

k=11=1

Zyy(t ) = EV(EDY(E)TT = ) ) AyZs,s, (61, ) AT
k=1

=1

(single input case: Zyy(ty,t,;) = AXgs(ty,t,)AT)
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Typical element (i, ) in the matrix Xg, g, (tq, t;):

. ty rta
Kg(]s)l (ti, t2) = f f kr, r, (T1, T2)hi(t1 — T)h;(t; — T2)dTdT
o Jo

3) PSD of stationary response to stationary input:

m m
Pyy(@) = ) > Ars,s,(@)A]
k=11=1

Typical element (i, j) in the matrix @, g (w):

DD () = gy, (0) Hy (w)Hf (@)

(single input case: ®yy(w) = Adgg(w)AT)
4) Response to evolutionary excitation, i.e.

@p, (0, 1) = A (o, )A; (0, f)‘b}gk}:l (w)

Note 4, (w, t) is not the effective participation matrix, but the frequency-time
modulation function; and q’ngz (w) is the cross-PSD of the base stationary process
FZ (t) and F7(t) that appear in the evolutionary process of F, (t) = Ay (w, t)F; (t) and
Fi(t) = Aj(o, F (1)

of ) = my(w, )mjy(w, )PF, (@)

where
t

m;, (w,t) = f Ar(w,t — T)h;(T)e 1 ®Tdr
0

“Stationary” response to of MDOF system to (single) WN —important for CQC

Generic response (displacement, stress, internal forces, etc.)

n

yp(t) = Z apisi(t)

i=1

- the p-th element of y = As(t) = Q®TIs(t)
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1) PSD of the stationary response:

n n
(D:prq (0)) = 2 Z apiaqjcbsisj(w)

(Dsisj (w) = Ppp(w)H; ((‘))Hj* (w)

For white noise F(t), i.e. ®pp(w) = P,

& Dy, (0) = OoHy(W)H] () and Hy(w) = ——

_w2+2iiwiw
2) Cross-correlation functions of modal responses (needed to derive spectral moments
Am,ij):
Rij(r) = E[Sl(t + T)Sj(t)]

- f P, (0)e ™ doo

[oe]

= Cbof Hi((o)Hj*(o))ei““da)
= thbo[aijgi(r) + Bijhi(‘t)], T > 0 (use || for V1)

where

1
Wp

o hy() =

e %%t sinwp,t (for t > 0)

i

i

o gi(t) =e %% [coswp,t + i §in wp,t

_ Hwigi+w;E)) B, = 2(wf-f)
= By =

o Qi
Y Kij Kij

Using R;;(t), we can derive

0
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3)

4)

5)

6)

7)

8)

Zeroth order spectral moment:

K,

Mo = E[Si(0)S;(D)] = Ri;(0) = ndyay; =

ES@S;(0] = Ry @] _ = ~E[S®$0)]
2" order spectral moment:

d2
dr?

4T[CDO(1)i(1)j ((,L)lz] + (,L)le)
K,

R;(M| =E[S®S;®)] =Ny =

=0

1%t order spectral moments
0

Aojiis Az,iir Mijy At S€€ the summary

Cross-modal correlation coefficient:

Pmij = Amyij/ ’lm,iiim,jj

See the summary for p,;; and p,;; ~ correlation between S;(t) and S;(t), and between

S(t) and S;(t), respectively

See the summary for p, ;;
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Spectral moments of stationary modal responses s, (t) and s; (t) to a white noise input whose
. power spectral density function is @,

==

Mmij = 2jcomd)sisj (0)dw :2d)OJ.oamHi (0)H  (0)de
0 0

Prmij = Mmij [/ Amiih

m,ii ¥ m, jj

Note: K; = (oai2 —co?)2 +40,0, (0,6 +0,5;)(0,C; +;C;)

4nd, (o,C; +(’0jCj)
K

() Ry = EI5,0) 5,0 =

(2) Ay = E[8,(®)-$;®)] = 4“q’°°°imjf<“f_icj +,6;)
_ 2 _ Tliq)o
(3) Aoy = E[S7 ()] = o

(4) 7\‘2,ii = E[S'i2 (t)] - 22&

|0‘)i

2 2 1 4 1-¢7 ) ) i
2@0 [((Di +(0j)c.>i +20)i(,0jgj:| 1_(;I2 tan {C—Ij(m' _(Dj)|n[ooj_jJ

1 -1 1_C?
tan
N ¢

(5) Ay =

@ + 02, +20,0,8,]

) by 2| S

' 20,07 1 1—§i2 G

(7) Po,ij :[SNICiCj(‘Oi(’Oj (o, +mjcj)(’)imj]/Kii
(8) Pajij :[8\/C.>i€j0)i0‘)j (migj +COjgi)c‘)i@j]/Kij
(9) Incase ¢; =¢; =¢,

8C2r3/2
A+)[@-r)* +45°r]

Poij = Pajj = inwhich r =, /o,

2 C.siCj '|:((Di +(’Oj)2(Ci +Cj)_i((’0i _mj)2:|

4o, _O)j)z +(G; +Cj)2(wi +O‘)j)2

(10) Pij =
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457.643 Structural Random Vibrations
In-Class Material: Class 22

IV. Random Vibration Analysis of MDOF Systems (contd.)

Spectral moments of MDOF generic response y, = YiL; a,;s;(t)
Am = J;)oomeCDypyp(w)dw
Note
Gy, y, (@) = z Z ApiGy;Ps;s; (W)
i

Thus,

Am = 22 apl-apjjo a)mZCDSiSj(a))dw
i j

= 0, ) it
TG

In words, the m-th order spectral moment of the generic response y, can be obtained by the

weighted sum of the m-th order (cross) spectral moments of the modal responses s;(t),i =

1,..,n

If WN approximation is made, the spectral moment is approximated as

i
WN

Can use the closed-form formulas provided in the previous classnotes for Ay, ;;

47t<I>0(03iKCi +03jcj)’ Ny, —ELS (1) -5, (0] = 4nq)oa)imjl(<oai§j +0;C;)

1 1

;(1,ii = 2}((1)0 {[(wiz +wf)§i +2wiwjgjj|\/ = 2 tanl{ 1_§iz ]_(a)iz _wj'z)ln[a)iJ+[(wiz +a)jz)§j +2wiwjé,i]\/1 14,2 tanl[ 1_§j ]}

ij 1-¢; S ; Cj

}\‘O,ij = E[s; (1) - S )] =
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1) and small damping (¢§4,&, 1)

The ground acceleration process is assumed to be a white noise with the intensity ¢,

Question: the mean square of the displacements E[x#] and E[x3]

M=[0 0]

K=[ak (1+a)k]

E.O.M.

MXx + Cx + Kx = MR(—#;)

Here P = and F(t) = F(t) =
Eigenvalue analysis

IK—2AM| =0

‘ak—lam ‘_0
1+ o)k —Am|

k 2
P-Q2+a)=1+—==0
m m

a 1 k
/1:(1 +Ei5\/a2+40()%

For small ¢ « 1,
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The corresponding modal vectors are

1
1
1
1
Modal masses:
M; = ${Md; = 2m
M, = ¢§M¢2 =2m
Modal participation factors:
L P ¢
LM, M;
14V
_1-va_
Effective modal participation factor:
[ 1 1 -
A=Q®r = H ” =|l2\1/E 21\/EJ|
P
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Recall

E[xf] = 47 = Z 2 Apittpjdo,ij = Z 2 @pittyjPoij [Roiiho
i i

WN modal responses:

[k
where w, = —

— 8§2r%
Porz =T = 1 482 (1 + 1)

where r = w;/w,, and

Therefore,

.4
Po,12 = 452 o

1 1
Finally, from A = Z‘f i‘/a and E[xzz,] = X Xj ApiQpjPo,ij+/ Ao,iito,jj» the mean square
2 2

responses are finally derived as

2 1 1 2

1
Jons +2(5=) (- 52) porevaritos + (- 5=) 2
0,11 2\/& 2\/3 Po,12 0,11740,22 2\/5 0,22
_ndy 1 L 482

2803 2a 482+ a

Td, 1 482
E[x2] = —2.—.(1
[x2] 280} 2 ( +452+a>

E[x?] = (%)

For & = 0.05, the standard deviations of the displacements normalized by n®,/2¢w} are
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/ Td, / td,
1 28w} 2 28w}
Po,12 0 Po,12 0
Exact neglected Error (%) Exact neglected Error (%)
a=0.01 5 7.07 41 0.866 0.707 —18
a =0.001 6.71 22.4 233 0.975 0.707 —27

Random vibration theory behind modal combination rules

Recall y, =

max _— max _ .
yr max|y-(t)| ands; max |s;(8)]

1) Modal combination rules

SRSS (Rosenblueth 1951):

yes = (Z aZ (s )

i=1

1/2

CQC (Der Kiureghian 1981, EESD)

iays; and ()2 = (Ya,; sTP)% where

1
n o n 2
yImax WN max .max
EEarLaTJpOU S]
i=1 j=1
1/2
maxy2 WN cmax gmax
Z(an) (") +ZZ Z AriQrjPo,ijSi  Sj
i=1 j=i+1

2) Random vibration theory

Recall

Am = z Z AriQriPm,ij /Am,iilm,jj
i
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For example, consider m = 0

—RIV2] — A2 — f
=E[Yf] =0y = Zz ari@rjPo,ij [Ao,iito,jj
i J
= ZZ AriQrjPo,ijOs;Ts;
i

That is,

2
§ E ariarjpo,ijo'sio-sj
iJ

Assume E[y"**] = poy_and E[s]"*] = pay,, E[sm“x] = pas;

max] E [smax]

ax] Sl ] ]
AriQrjPo,ij p p

Inspired by this, CQC rule is proposed as

n n
max ~ WN max max
2 2 aTLaT]po l] S]

i=1j=1

This actually means

yrr] = z z aTlaT]pO L] max E[Smax]

i=1j=

Herein E[s{"**] and E[s***] are obtained from spectrum.

3) SRSS works well when modal frequencies are well-separated, say r = — < 02
w; 0.2+&;+&_j

(w; > w;) because py;; = 0.10
4) Approximation introduced in CQC for practicality

~ WN
Po,ij = Po,ij
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457.643 Structural Random Vibrations
In-Class Material: Class 23
V. Crossings & Failure Analysis
Failure probabilities
1) Instantaneous failure probability

P(IX(t)| > a) or P(X(t) > a)

e.g. Gaussian with py(t) and ox(t)

X(£)~N(ux (t), 0% ()

v

P(X(t) > a) =1 = Fx(y(a)

=1-o

2) First-passage failure probability

P (max | X(®)| > a) = P(at least crossing in (0, 7))

o<tst
can be estimated by checking the probability distribution of values, or
by deriving from rates and other characteristics

3) Accumulated damage

e.g. Fatigue damage index
(L&S 11.8~11.11, 12.9)

v

D(t): damage measure (counts)

Crossing statistics
1) N*(a;t): Number of upcrossings of level a in (0, t)

p*(a; t): Probability of an uncrossing of level a in (t, t + dt]
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Upcrossing event at (t, t + dt]

Conditions:
« X® a
e X@® 0
o X(t+dt)=X(@)+X(t)dt a >

Therefore, A

pt(a;t) = P[{ <X@®< }
n{X@® 0}

=J:offxx(x,5c; £) dxdi

v

=f fxx(a, x; t)xdtdx

0

= dtj Xf xx(a, x;t)dx
0

For the bottom figure, the third condition is interpreted as a — xdt < x and thus x >

1 1
—Ex + Ea
+(q-
2) dN*(a;t)(= on a(ta’t) dt): Number of crossings in (t, t + dt]

E[dN*(a;t)] = 0 x P(0 crossings) + 1 x P(1 crossing) + 2 X P(2 crossings) + -+
= P(1 crossing in (¢, t + dt])
=p*(a;t)

= dtJ Xf xx(a, x;t)dx
0

3) Average number of upcrossings in (t, t + dt], i.e. “mean upcrossing rate”

dN*(a; t)]

vi(a;t) = E[ R = fo xf yx(a, x; t)dx

S.0O. Rice (1944; 1945) - “Rice formula”

Downcrossing rate?
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4)

5)

6)

0

0
v (a;t) = —J Xf xx(a, x; t)dx =f |%|fxx(a, x; t)dx

— 00

All crossings?

v(ag;t) =vi(a;t) + v (a;t)

- f 11 f g (@, % £)dt

e More rigorous derivation available in L&S (p. 265)

Mean number of crossing in (tq, t;]

[

E[N(a;t,) — N(a; ty)] = f v(a; t)dt

ty
If X(¢) is stationary,
o fyz(0%:t) > fyg(x, %) (if zero-mean Gaussian, fy(x) - f (%))
e v(a;t) 2 v(a)
e E[N(a;ty) —N(a;ty)] 2 v(a) - (t; —t1)

Relationship between crossing rate and peak

distribution (approximation for narrow-band -

processes)

If X(t) is stationary narrow-band process,

Instructor: Junho Song
junhosong@snu.ac.kr

v

almost every upcrossings over p is associated

with one and only one peak, then...

vi(a)
v ()
=1-F(a)

P(arandomly selected peak > a) =

where F,(-) is the CDF of a local peak
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Example: A stationary Gaussian process with zero-mean

frx (6, %) = fx(x) - f5(X)
1 1,2\ (%)
- 2mOx 0y exp {_E[(g) * <g> ]}
Vi@ = [ #fetaddi
0
(.1 1[/a)* [z}’ "
_fo xZthrXoX exp 5 <c_)2(> +<c_)2~(> X
1 a’?\ . x2 iy
= ZT[GXGX exp <— E) fo X exp <—0—> X

One can show that f x exp( ’2) dx = oX (hint: change variable x2 - t)
X

Therefore,

1 oy a?
+(q) = — X -
vi@ 2moy exp( 20,%)

/12 a?
exp| =57
T 2m o 20y

Some notable results:

° V_(a) =
° V(a) =
o VO =o |2

2w+ Ao

o \/% = 2mv*(0): circular apparent frequency
0

T[CDO

e.g. WN response: A, =

- “Rayleigh” distribution

> and Ao = 2“;)"39\/7 W,

e NB approximation for local peak distribution: f,,(a) = — ——-

Instructor: Junho Song
junhosong@snu.ac.kr
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Distribution of local peaks (NOT NB approximation; L&S pp. 488-490)

E (a;t) = f_mf |%|fxxx(x, 0,%; t)dxdi f@t) = dF,(a; t) f_ |%|fxx%(a,0,%; t)dx
o f_m|x|ij('(0,x; L S da f_oolxlex(O,x, t)di

Example: The PDF and CDF of the local peaks of a stationary Gaussian process X (t):
(Rice distribution; Ex 11.1 in L&S)

l1— Zexp|:— (a-py)’® }_F(x(a—ux) [_(a_“x)z}q) a(a—p,)
Voo, | 20-a’)o, oo,

a—py (a_}'lx)2 a@—py)
F.(a)=® ——=X |- - @
@ [\/1(12ch OLeXp[ 265, } { 10(26)(]

fo(a) =

Note

(1) o =0:wide-band f,(a)=

2
Gx

exp{— (a ; )’ } (Gaussian)

1
J2no,

(2) a =1:narrow-band f,(a) —gexp[ (Z—HX)} (Rayleigh)

Gy Gy

(3) The average fraction of local peaks below the mean value.

l-a
F (“x)— 5

0.5 for . =0 (Gaussian) and 0 for a =1 (Rayleigh)
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* How was it derived?
o fxix(x,X) = fy(x,X) - f;,(%) (~ stationary and Gaussian)

e pxi? Note COV[X,X] = -2,
v Oy (w) = (i) Dyy (w) = —0?* Py (W) = —Dyx(w)

A,
CPxx =TT /—=—«
VAody
+ 14
. a = }\2 — VX(O) — 2m }LO
Vioks v (0) zL ;_4
™ A2

Note: a is another measure of the bandwidth (cf. 0 <s <o and 0 < § < 1)
e 0O<axl1
e a=0:vy(0)>» v§(0) wide-band process

e a=1:vF(0) = v} (0) narrow-band process

v
v
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457.643 Structural Random Vibrations
In-Class Material: Class 24

V. Crossings & Failure Analysis (contd.)

(Upper) bound on first-passage probability using crossing rate

P(at least one failure in (0, t]) = z P(i crossing(s) in (0, t])
i=1

Note

ftv(a; t)dt = E[N(a;t)]
0

= mean no. of crossings in (0, t]

o)

= Zi - P(i crossing(s) in (0, t])

i=1

t
~ P(atleast one failure) < f v(a; t)dt
0

This approximation works well when crossing events are rare, but may not work if it is a

narrow-band process (because if there is crossing, multiple crossings can occur).
Probability distribution of “global” peak and first-passage probability

X, = max X(t) (cf. |X(t)| ~ two-sided)

Relationship between first-passage probability and CDF of the global peak:

px(@;1) = - Fxr(a)
Fy.(a) =P(X(0) <an upcrossings above level a in (0, t])

= Fy(a; 0) - P( upcrossings above level a in (0, t])
Two methods to obtain the probability of upcrossings:

e Poisson assumption

e Vanmarcke’s formula (Prof. Erik Vanmarcke)
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First-passage probability by Poisson assumption

In this approach, it is assumed that upcrossing events form a Poisson process.

This approach works relatively well if the threshold value a is or the process is a
-band process (because correlation between crossing events is in these cases).
m(t)*

P(x crossing(s) in (0,t]) = - exp[—m(1)]

= P(0 crossings in (0, t]) = exp[—m(1)]
= exp [— ft dt]
0

Therefore, the first-passage probability by Poisson assumption is

px(a;7) =1 — Fx(a; 0) - exp [— frv’f(a; t)dt]
0

Note: the first-passage probability takes the form 1 — A - Ly(a;7) =1 — A - exp(— fora(a; t)de).

The approach by Vanmarcke aims to improve the accuracy of A and a(a; t).

Example: Stationary Gaussian process with zero-mean

N 1 A, a?
\Y (a)=£ A—Oexp _Z_AO

Fy(a;0) = P(X < a) = ® (%) - o)

Thus,

(@) =1 q)(a) 1 A, a?
px(a; 1) = o exp =5 )\Oexp 27 T

Note: For two-sided crossing, Fjy(a; 0) = 1 — 2&(—r) and 2vx (a) are used instead.

Furthermore, from the CDF of the global peak, Fx_(a) = exp [—% %exp (— g) . r],
0 0

Davenport (1964) derived the relationship between the statistics of the global peak (ux, and

ox.) and the standard deviation of the process X(t) as follows:
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Wx, = pox and ox_ = qoy

The so-called “peak factors” were derived as

= [2In[v{(0)T] + __05772
P X 21In[vy{ (0)7]
Tt
1= V6. /21n[v; (0)1]
Note:

e For the two-sided peak, replace v} (0) by vx(0) = v} (0) + vk (0)

e These peak factors work relatively well for wide-band processes and high thresholds

because the CDF was derived based on assumption.

e Der Kiureghian (1980) proposed improved versions that work for general cases based

on Vanmarcke’s formula (discussed later)
First-passage probability by Vanmarcke (1975)

Recall, the first-passage probability was derived in the form

T

px(a;T) =1—A-exp <—f a(a; t)dt) =1—-A-Ly(a;t)
0

where A denotes the probability of the “safe start” and Ly (a; t) = exp(— fora(a; t)dt)
represents the conditional probability of the first-passage failure given “safe start”

When the first-passage probability is described as above, one can show that a(a; t) is

interpreted as (See L&S)

E[No. of crossings in (t, t + At)|no prior crossings up to t]

o(@i0) = fm

At
In words, a(a; t) in the formulation above should be “ " mean crossing rate given
#* In the Poisson assumption based approach, a(a; t) is approximated by , Which
is “ " mean crossing rate. This means the Poisson approach neglects
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between crossing events. This is why the approach works well when the

threshold is high and the process is -band.

Vanmarcke (1975) took into account the

statistical dependence between the crossing

events by introducing the envelope process

and the “clump” size, i.e. the average number

v

of crossings of the original process per a

crossing of the envelope process.

For example, the clump size of a stationary

Gausssian process with zero-mean is

1

ElCs) = 1 — exp(—V2m8t2r)

where § is the bandwidth parameter and r = a/oy is the normalized threshold.
e 6 =0 (narrow band): E[CS] large (envelope crossing > many process crossings)
e § =1 (wide band): E[CS] = 1 (one crossing per one envelope crossing)

As aresult,

px(a;T) =1— B -exp <— Jrrff(a; t)dt)
0

B=P(E0)<a)= fafE(e; 0)de
0

c o PEO=©0 [ v (@)
@) =5 <o — &P <P(E(t) > Q)vi (0; t))]

For a stationary Gaussian process with zero-mean, using the envelope process by Cramer

and Leadbetter (1967), the first-passage probability is expressed using

B =1—exp(-1?/2)

1 — exp(—V2m8'?r)
1 —exp(—r?/2)

ng(at) =vg(at)
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Note: For two-sided crossings, use vy (a; t) instead of vy (a; t), and \/1t/2 instead of v2m

¥ nf(a)/vy (a) for a stationary Gaussian process with zero-mean:

45

nv

Poisson
assumption
underestimates

os ¥//

% See Figure 4(a) in Song and Der Kiureghian (2006) (§ = 0.26)

Poisson
assumption
overestimates

To account for the effect of the statistical dependence between crossing events, Der

Kiureghian (1980) derived peak factors based on Vanmarcke’s formula (for two-sided peak):

p=125340.209v,t 0<v,t<21
0.5772

=y2In(v, 7)) + — 2.1 <71
¢ v 2In(v,1) ¢
q=10658 0<v,T<21
1.20 5.40
21 <v,7T

T2 In(v,1) 13+ [2In(v.D)]?2

where v, = 28vx(0) 0<§<0.1
= (1.638%*> — 0.38)v4(0) 0.1 <& <0.69
=vy(0) 069<d<1
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For the one-sided peak, replace v, (0) by v¥(0), and & by 26.

Example: two-sided peak factors for stationary Gaussian with zero-mean

4
|
/,’-"’f
//"‘-" a"’
3.5 ¥
r'/.-’/r’q' )
A7 -7 N
3 - "
o //.’ ’o-" -
g // pal )
3] ~ P
E 2.5 T =
A7 v
(xu ///o /1
[0} A A s
’
o 2 // ‘/ . .
/4/ A D
o 4 . avenport
" i B O —
15 - /““ . ADK, 6 =0.1 ||
====86=0.2
—'T'"8=05
1 0 2 1 1 1 1 11 1 1
10 10 10 10
\%%
1.5 H T T T T 117
Davenport
------- ADK, 6201
====5=0.2
\ —'T'"6=0.5
1
z \
S
2 AN
& N
X o -——b\\-n,
g ~io __\-‘;\"\-;;_
a i~ - .--. v. .
05 IS
0 0 2
10 10 10 10
VT

Note: When vt = 10 x 20 = 200 (a rough upperbound for typical earthquake responses), p =

2.93~3.43 and q = 0.37~0.43
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First-passage probability concept to multiple stochastic processes

P(maXX t) > a,; N max X,(t >a)?
ost<t 1() 1 ost<t 2() 2

Song, J., and A. Der Kiureghian (2006). Joint first-passage probability and reliability of systems under stochastic
excitation. Journal of Engineering Mechanics. ASCE, 132(1), 65-77.

(a) g (b) " © ”
X1 X0 X,(1)
e
a %4 / a
X(1) j
] » ¥ +
X(1) Q X0 Q| X0 al X0
X(0) \ X(0) N X(0)
—-a, -a, -a,
-a a -q a, -a, a
joint failure NOT joint failure joint failure
Fig. 1. Trajectories of a vector process and relation to the joint failure event
1
linear connector
1 2 0.8 R
:-'E 0.6 E
j=
8 £ o4l ]
0.2 J
3 4
linear connector 0
Fig. 8. System with five interconnected equipment items 1
0.8 E
2z 0.6 E
®?
w04
0.2 E
& o
0 il L

0 0.05 0.1 015 02 025 03 035 04 045 05
RMS of Ground Acceleration, g

Fig. 9. Equipment and system fragility estimates by (a) extended
Poisson approximation and (b) extended VanMarcke approximation
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457.643 Structural Random Vibrations
In-Class Material: Class 25

VI. Introduction to Nonlinear Random Vibration Analysis
(Differential equation based) hysteretic constitutive models in structural dynamics
“Hyteresis”

- Origin: ferromagnetic materials

- Memory-based multi-valued relation between an input signal & output (generally only

“rate-independent” relationship (viscous materials X)

Mechanical model for description by differential equation based hysteresis model

x, Total Displacement z: Auxiliary variable representing inelastic
behavior (“internal variable” — Capecchi & de

Felice 2001, JEM) ~ displacement of inelastic
. spring

Inelastic ¢ 7=y noslide

(nonlinearity determined by difference between z and x)

Resisting force:

fs(x,2) = akox + (1 — a)kyz

* . post-to-pre-yield stiffness ratio
v' a = 0: perfect plastic
v« = 1: linear elastic

* ko initial stiffness
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Evolution of z follows a nonlinear differential equation

z=x- h(xx,2)

Meaning of the nonlinear function h(-)?

dz _ dx he)
dt  dt
Therefore,

h(-) (= %) determines the slope of z with respect to x at a given time.

Bilinear model (Kaul & Penzien 1974 JEMD; Asano & Iwan 1984 EESD)

Main idea: describe inelastic spring in the mechanical model by Coulomb slider (i.e. no slide
until it reaches the yield displacement)

m (1) —xy, <z<uxy:

) the Coulomb slider does not slide, i.e.

z=xand z=x

)
fs(x,2) = akgx + (1 — a)kox = kyx (linear)

3)
(3) Xy X (2) z>x,,x>00rz < —xy,% <0:

v

Coulomb slider slides (i.e. Z = 0)

@) (3) z>xy,x<00rz<—xy,x>0:

Coulomb slider stops sliding z = x
Differential-equation model by Kaul & Penzien (1974):
=% {U(z+x))=U(z—x,)+U(z—x)) - U(=%) + U(=z — x,) - U(x)}
where U(:) denotes the step function.
How to solve the nonlinear system differential equation, i.e.
E.O.M. with f; = akox + (1 — )kyz plus z = x - h(x, X, z)

e.g. Runge-Kutta method (after transforming to state-space formulationy = g(y) + f
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Bouc-Wen class model

Bouc (1967) first proposed and Wen (1976) modified to the form

Z=x" [A - |Z|nL|J(X,X,Z)]

where
e A: scale of hysteresis loop
e n: smoothness of transition from pre-yielding to post-yielding
o  Y(x,x,z): “shape-control” function

Reviews are available in Song & ADK (2006, JEM), and Ismail et al. (2009, Archi. Comp.
Meth. Engrg.)

1) Bouc (1967, 1971) ' ' -
¢ n=1 AT
-1 f —= 1
i L|J(x, x’ Z) = y + Bsgn(xz) {a r -2 0 2 4 I3 7{6 - -2 0 2 1 6
2) Wen (1976) ‘Z | . /
+ n: generalized . R /
2 v, 05 / /
‘ . N Ay i
o Y(xh2) =y + Bsgn(iz) % B
[
S 2y 0z 4 6 A4 2 02 4 s
The parameters y and 3 in the
i . Figure 3.3 Hysteresis loops by Boue-Wen model (4=1#n=1) (a}) y=05_p=05_(b) y=0.1,
“shape-control” function determine Fo09. (@ y=03, B=-03 and (@) y =075, =025

the shapes of the hysteresis loops (Song and ADK 2006)

z z

x’,—"""' 4

7+B v+B+20

/ Y-B / Y—B

y-Pp / * —p / X
v+P T+P-2¢

——] ——re|

(@) (b)

\

Fig. 2. Values of shape-control function for: (a) original Bouc—Wen
model: and (b) model by Wang and Wen
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3) Baber & Wen (1981): Considered the degradation effect by making the model

parameters functions of €, “the dissipated energy”
4) Baber & Noori (1984): Introduce additional parameters to describe “pinching” effect
5) Wang & Wen (1998): Aim to describe “asymmetric” shape by adding additional terms
Y(x, %,z) =y + Bsgn(tz) + ¢[sgn(x) + sgn(z)]
= Added more DOFs (see the figure above)
6) Generalized Bouc-Wen (Song & ADK, 2006)
Generalize the “shape-control” function to describe highly asymmetric behavior

W(x, X, z) = Bysgn(kz) + Bosgn(xx) + B3sgn(xz) + B4sgn(x) + Bssgn(z) + Besgn(x)

-4

Lu_?

W

n/’_

/‘7 )
= X

%

Fig. 3. Values of shape-control function for generalized Bouc—Wen

model

Six phases can now have all different values, and the values are determined as

W, L1111 1|y
Wl [-1 -1 1 -1 1 1 ||B,
U3 I -1 -1 -1 -1 1 [|B;
TP I TS T R B |
s | [-1 -1 1 1 =1 —1[|Bs
g 1 -1 -1 1 1 =11 Bs

The model parameters B;,i = 1, ...,6 can be fitted by use of
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B 10 1 I 0 1 s,
5 0O -1 -1 0 =1 =11y
B3 {1 1 0 | | 0 iy
B - Z I -1 0 -1 1 0 Uiy
Ps O 1 -1 0 =1 1 s
B 1 0 I =1 0 =1

% Weakness of Bouc-Wen class models:

+ can violate the requirement of classical plasticity
theory (“Drucker’s postulate”; Bazant 1978); can
create negative dissipative energy when “loading-

unloading” occurs without load reversal

v

¢ But this problem is not critical if E[f;] = 0 (Wen
1989, Hurtado & Barbat 1996)

% Bouc-Wen class models are widely-used in structural dynamics and earthquake

engineering because
1) Can describe a wide-class of phenomena (pinching, degradation, etc.)
2) Facilitates efficient time history analysis (no IF or THEN)
3) Facilitates efficient random vibration analysis

e.g. Nonlinear random vibration analysis for Bouc-Wen model by Equivalent
Linearization Method (Wen 1980)

Nonlinear time-history analysis of structural system with Bouc-Wen class models
MX + Cx + R(x, x, z) = —M1X,

where R(x, %, z) uses f; = akox + (1 — a)kyz to describe the resistant force of each B-W

element. The auxiliary variable follows the nonlinear differential equation z = x - h(x, x, z).

Transformed to state-space formulation, i.e. y = {x, X1, X5, X5, ..., Z1, «ur) Zim }
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Example: Two connected equipment items in an electrical substation (Song, 2004)

()

x b ey !‘
i) ——n
€y ]

(€)

Figure 2.1 Mechanical models of equipment items connected by rigid bus connectors: {(a) RB-

FSC-connected system, (b) Bus-slider-connected system, and (¢) idealized system
with SDOF equupment models

y=90+f
where

y = {ull 1‘:”1' u2l 1‘:”2' Z}T

( Uy 3\
ki + ak ci+c ak o 1—-a)k
_<—1 0)u1_<1 0)u1+—0u2+—0ﬂ2+—( ) OZ
my mq my my my
g(y) =1 Uy .
aky Co . ky, + akg c,+c\. (A—a)kg
tho, g g, (ataky, (ata), (-ok,
ms ms m; ms m;
\ At - h(Au, A1, 2) Y,

T

ms

Can solve the differential equation by a numerical method such as the fourth and fifth order
Runge-Kutta-Fehlberg (RKF) algorithm.
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457.643 Structural Random Vibrations
In-Class Material: Class 26 (Final)

VI. Introduction to Nonlinear Random Vibration Analysis (contd.)
Equivalent linearization method (ELM; aka stochastic linearization method)

Among various methods such as Fokker-Planck equation, stochastic averaging, moment
closure, perturbation (Lutes and Sarkani 2004), ELM is considered as a nonlinear random

vibration approach with the highest potential for practical use (Pradlwarter & Schuéller 1991)

- Applicable to both stationary and nonstationary processes
- Applicable to a wide class of nonlinear behavior
- Can handle MDOF systems and FE models

- Takes significantly less efforts than Monte Carlo simulations (especially for low-
probability events)

Consider an original nonlinear system:y = g(y) + f:

One can find an “equivalent linear” system: y, = A - y. + f such that the mean-square error

(caused by linearization) E[(g(y) — Ay)T(g(y) — Ay)] is minimized.

Note: ELM based on the error definition above is considered “standard” ELM while the error

measure E[(g(y.) — Ay.)T(g(y.) — Ay,)] is called “SPEC-alternative” ELM (Crandall 2001).

Crandall, S.H. (2001) Is stochastic equivalent linearization a subtly flawed procedure? Probabilistic Engineering
Mechanics, 16:169-176

% Other ELMSs:

v' Tail equivalent linearization method (TELM; Fujimura and ADK, 2007): equivalent
linear system by unit impulse response function based on discrete representation of

input stochastic process and first-order reliability method (FORM)

v' Gaussian-mixture based equivalent linearization method (GM-ELM; Wang and Song,
2016): fit the response distribution by Gaussian mixture distribution. Each Gaussian

density in the mixture represents an imaginary SDOF oscillator.
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“Standard” ELM — how to find equivalent linear coefficients

1)

In general, the equivalent linear coefficient (minimizing the mean-square error) matrix
is derived as (Kozin 1987)

_Elg(y’]
E[yyT]

2)

3)

But, this formula is impractical because (1) the distribution of y is unknown, and (2) it is
not straightforward to compute the expectation E[-] that involves the nonlinear

responses.

“Restricted” ELM: y is assumed to be nearly Gaussian (e.g. the input stochastic

process is Gaussian, and the nonlinearity is not strong)

Wheny = g(y) + f is alternatively formulated as q(y,y, f) = 0, the equivalent linear
coefficient matrix is derived as (Atalik & Utku 1976)

Ay = E [aqlm]

Example: Application of this approach to standard MDOF system

q(x, x,X) = f can be linearized to M®x + C°x + K®x = f where

9
Mg = |2, Ce—E— K = B |2
0x; |’ ax]

For the given type of a nonlinear system, one needs to derive the closed-form
expressions of these expectations in terms of E[xxT] so that one can obtain the
moments by solving (equivalent) linear random vibration problem iteratively (Details

shown below for the Bouc-Wen class model).
Unrestricted ELM (Pradlwarter & Schuéller 1991)
- Not limited to “Gaussian response” assumption

- Need to identify joint distribution model for the given class of nonlinear problem (and

how to obtain the moments as well)
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Nonlinear random vibration analysis by standard ELM

. Compute Elg(»)y"]
y=9g+f > A=—22
E[yy']
Update ] .
l Linearize
Linear
Random .
S = E[yy"] [ Vibration y=A-y+f
Analysis

(Standard, restricted) ELM for Bouc-Wen model (Wen 1980)

Suppose a system with Bouc-Wen element(s) is subjected to a zero-mean Gaussian (filtered)

white noise.

1) Derivation of analytical (closed-form) expression for equivalent linear coefficients
The nonlinear differential equation about the evolution of the auxiliary variable, i.e.
z=1%[A—I|z|"(y + Psgn(xz))]

This can be alternatively described as
q(x,z,2) =2—x - [A — |Z|"(y + Bsgn(a’cz))] =0
This nonlinear differential equation is linearized to

apZz+a1x +az=0

From Atalik & Utku (1976), i.e. A;; = E :(q)i]
J

a) a0=E[%]=E[1]=1

b) a; =E [%] = E[-A + y|z|™ + |z|Bsgn(xz) + x|z|B26(x)sgn(z)]

One can show that E[|z|] = \/%cz and
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2 E[x
El|zlsgn(i2)] = El|z|sgn(¥)sgn(2)] = El7 - sgn()] = j; L

Ox

Here a useful formula for zero-mean Gaussian, introduced in Atalik & Utku (1976),
Elyh(y)] = E[yy"] - E[Vh(y)] is used for the derivation.

Finally,

= [ ]

Cc) a, =E [Z—Z] = E[xsgn(2)y + xsgn(z)Bsgn(xz) + x|z|Bsgn(x)28(z)]

2) Construct an equivalent linear system
X % 0 0 1 X 0
y = {Z} andy={z'} = 0 —az/ag —ai/ag {Z}+{ 0 }
X ¥ —awid —(1—-a)w3 —2&wy|\% f®)/m
y=6y+f
3) Perform linear random vibration analysis
e.g. if f(t) is a white noise, the 2" moment follows the Lyapunov equation (Lin 1967)
GS+SG"+B=0
where B;; = 0 except B33 = 2n®, (= @, is the PSD of the white noise f(t)) and

x? xz xx
S=E[yy"l =E|xz 22 zx

xx zx x?
This random vibration analysis approach can be used for filtered white noise case as
well by introducing the ground displacement x, to the state-space vector, i.e. adding

another DOF representing the filter.
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4) Re-compute a; and a, based on new S = E[yy]

5) Repeat 1)-4) until the solution converges.

g=i-iA-|[ wix.3.9]=0 N =+Cx+Cn+Cz=0

” 1| -
g=i-Mi[U(z+Au,)-U(z— Au,) ¥ C,=E o , Oy =
+U(z- Au, WAy +U(—z—- Au, W(AiN]=0 ‘

og
I

=)}
)
=)}
|3

o]

Original nonlinear equation of motion Equivalent linear equation of motion

|

o))
-
s}
v

(1) f{t) : zero-mean Gaussian process (1) minimum mean squared error
(2) g : lstpartial derivatives exist . (2) 2nd order linear ODE

y=Gy+F

(GS+SGT"+B=0)

Linear random vibration analysis State-Space Formulation
Variance/Covariance of Responses 1st order linear ODE
References:

Song, J., A. Der Kiureghian, and J.L. Sackman (2007). Seismic interaction in electrical substation
equipment connected by nonlinear rigid bus conductors. Earthquake Engineering and Structural
Dynamics, Vol. 36, 167-190.

0Ok, S.-Y., J. Song, and K.-S. Park (2008). Optimal design of hysteretic dampers connecting adjacent
structures using multi-objective genetic algorithm and stochastic linearization method. Engineering
Structures, Vol. 30, 1240-1249.
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VIl. Random Vibration Analysis by Structural Reliability Analysis Methods

References:

Der Kiureghian, A. (2000). The geometry of random vibrations and solutions by FORM and SORM.
Probabilistic Engineering Mechanics, 15(1), 81-90

Fujimura, K., and A. Der Kiureghian (2007). Tail-equivalent linearization method for nonlinear random
vibration. Probabilistic Engineering Mechanics, 22:63-76

Discrete representation of a random process

1) Discrete representation (in time domain)

£ = 1) + ) wsi(®) = u(©) + u"s(0)
i=1

where u;,i = 1, ...,n are uncorrelated standard normal random variables

s(t) is a vector of deterministic time-varying basis function which is identified based on

the correlation structure of the process, e.g. Karhunen-Loéve expansion

2) Example: filtered white noise (EQ input)

t

ﬂ0=fu&k@—ﬂw22w&@
0

where s(-) denotes the unit impulse response function of the filter.
3) Discrete representation (in frequency domain)

For example (Wang and Song, 2016), a white noise can be discretized as

n/2
Xg(t) = aZ[uj cos((ojt) + 4, sin(oojt)]
j=1

Response of linear structure to Gaussian excitation

x(t) = ftf(r)h(t —)dr = ftz wis; (1) h(t — 1)de
0 0

i=1

where h(-) is the unit impulse response function of the structure, and thus the response is
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n

x(t) = z way(t) = a"(Hu

i=1

where a;(t) = [} s;(Dh(t — 1)dt

In summary, the response of a linear structure to a Gaussian input can be described as a
linear function of uncorrelated standard normal random variables (owing to the discrete

representation).

Instantaneous failure probability

The instantaneous failure probability of the linear response is

P(x(ty) = x) = P(xo —a"(tu < 0)

This is a structural reliability problem with a linear limit state function g(u) = x, — a (ty)u

From structural reliability theories, the failure probability is obtained by a closed-form solution

P(x(to) = x0) = P[—B (X, to)] = [‘ _||aJ(C:0)||]

One can also compute crossing rate, first-passage failure probability, etc. by structural

reliability analysis in the standard normal space (Der Kiureghian, 2000).

This idea was utilized for efficient topology optimization with constraints on instantaneous
failure probability (Chun et al. 2016).

Chun, J., J. Song, and G.H. Paulino (2016). Structural topology optimization under constraints on instantaneous
failure probability. Structural and Multidisciplinary Optimization, 53(4): 773-799.

For nonlinear system and/or non-Gaussian process, first-order reliability method (FORM) or
second-order reliability method (SORM) can be used to compute the probabilities
approximately. This idea was further developed to propose the tail equivalent linearization
method (TELM; Fujimura and ADK 2007).

--- End of Semester --- o

Thanks a lot for your patience and great effort this semester.. J.

“There is no fear in love.” —1John 4:18a
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