교과목번호 Course No.	459.732	강좌번호	-	Title	전산암반공학 Numerical Methods in Rock Engineering	credit	3
	Name: Min, Ki-Bok				Hamanaga , http://www.ang.org/		
	Department of Energy Recourses Engineering			ina II	Homepage : http://fockeng.shu.ac.kr		

담당교수 Instructor	Department of Energy Resources Engineering E-mail : kbmin@snu.ac.kr	Tel : 880-9074
	Office Hours : Through prior appointment	

	- This course intends to provide essential concepts of various numerical methods applied in rock
강의목표	mechanics/geomechanics for geo-environmental, civil, mining, and petroleum applications.
	- This course will cover a wide variety of numerical methods but focus will be given to the finite
	element and discrete element methods.
Objective	- Much emphasis is placed on the hands-on experience of applying numerical methods to rock
	engineering applications of students' own choice.
	- Students are expected to improve their oral and written communication skills through the preparation of term papers.

	- Lecture notes are the main textbook with the following supplementary references.				
	- Jing, L., 2003, A review of techniques, advances and outstanding issues in numerical modelling for				
교재	rock mechanics and rock engineering. Int J Rock Mech Min Sci, 40 (3): p. 283-353.				
Textbook and	- Burnett DS, 1987, Finite Element Analysis - from concepts to applications, Addison-Wesley				
references	Publishing Company, 844p				
	- Jing, L. and O. Stephansson, 2007, Fundamentals of Discrete Element Methods for Rock Engineering:				
	Theory and Applications. Elsevier Science				

평가방법 Evaluation	Participation	Home Assignment Final Exam		Term-paper	Sum
	10 %	50 %	20 %	20 %	100%
	비고				

	- Lecture will be given in English with some explanations in Korean from time to time.		
수강생	- Students will select their own topics, submit their term papers, and present their work during the		
참고사항	student conference.		
Note to the students	coding of numerical method and modeling exercise using commercial or bespoken numerical codes.		
	- Lectures will be given through ZOOM subject to the situation related to CORONA.		
	- Teaching Assistant: Hwajung Yoo (Building 135)		
	Syllabus last updated: 7 March 2021		

부정행위자에	
대한 처리	- Plagiarism is strictly prohibited.
Note about	- Home assignments and term papers must include 'statement of originality'.
Plagiarism	

	주(기간)	강의내용
	week 1 3/8	- Introduction of the course - Numerical approach in rock engineering/Geomechanics
	week 2 3/15	- Finite Element Method (Gallerkin FEM) - Home assignment #1: Summary of Paper by numerical method
	week 3 3/22	- Finite Element Method (1D)
	week 4 3/29	- Finite Element Method (1D & 2D)
장의 계획 Schedule	week 5 4/5	- Finite Element Method (2D)
	week 6 4/12	- Finite Element Method (2D elastic problem) - Home assignment #2: Coding of FEM program
	week 7 4/19	- Finite Element Method (Exercise, COMSOL)
	week 8 4/26	 Discrete Element Method (Introduction) Explicit Discrete Element Method (Particulate system) Home assignment #3: FEM exercise
	week 9 5/3	- Explicit Discrete Element Method (Blocky system)
	week 10 5/10	- Explicit Discrete Element Method (Blocky system)
	week 11 5/17	- DEM Exercise (PFC, UDEC)
	week 12 5/24	- Discrete Element Method (implicit method: Discontinuous Deformation Analysis and Numerical Manifold Method) by invited speaker (Prof Tomofumi Koyama (Kansai University, Japan, tentative)
	week 13 5/31	- Presentation of progress of term paper & Consultation with instructor
	week 14 6/7	- Outstanding issues in numerical methods for geomechanics
	week 15 6/14	 Presentation of Term Papers Final Exam Home Assignment #5: Submission and Presentation of Term paper