Introduction

M2794.007900 Advanced Thermodynamics									
Credits	Donartment		Representative Instructor						
	Department			Nan	ne	Email			
3	Mechanical Engineering Major			Kim, Mi	n Soo	minskim@snu.ac.kr			
1. Goals	This course is aiming at extending fundamental knowledge on the laws of thermodynamics to various applications and at understanding statistical approach to diverse problems. Starting from the classical thermodynamics, basic principles and related topics will be dealt with. Statistical modeling of gas, solid, and liquid phases will be made, and behaviors of materials will be intensively studied.								
2. Texts Book	Materials-Materials-Classical and Statistical Thermodynamics-Ashley H. Carter-Prentice-Hall-2001								
3. Evaluation	Attendance	Task	Midterm	Final	Attitude	Others	Total		
	0%	10%	40%	40%	0%	10%	100%		

Introduction

4.Lecture Plan	[1 Week]	Introduction				
	[2 Week]	Equation of State				
	[3 Week]	The First Law of Thermodynamics, Applications				
	[4 Week]	Consequences of the First Law, The Second Law of Thermodynamics				
	[5 Week]	Application of the Second Law, Thermodynamic Potentials				
	[6 Week]	The Chemical Potential, The Third Law of Thermodynamics				
	[7 Week]	Statistical Thermodynamics				
	[8 Week]	The Nature of Thermodynamics				
	[9 Week]	The Classical Statistical Treatment of an Ideal Gas				
	[10 Week]	The Heat Capacity of a Diatomic Gas				
	[11 Week]	The Heat Capacity of a Solid				
	[12 Week]	Bose-Einstein Gases				
	[13 Week]	Fermi-Dirac Gases				
	[14 Week]	Compressed Gases and Liquids				
	[15 Week]	Kinetic Theory of Gases				

