Chapter 8. Polymeric liquids

* Behaviour of polymeric liquids

* Rheometry and material functions

* Non-Newtonian viscosity and the generalised Newtonian models
 Elasticity and the linear viscoelastic models

* The co-rotational derivatives and the nonlinear viscoelastic

models

* Molecular theories for polymeric liquids




Behaviour of polymeric liquids

 Laminar flow in a circular tube
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Behaviour of polymeric liquids

* Remarks:
* Polymeric liquids
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* n=1 for Newtonian liquids

* Velocity profile of polymeric liquids suggests that
viscosity depends on the velocity gradient




Behaviour of polymeric liquids

* Recoil after cessation of steady-state flow in a
circular tube
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Behaviour of polymeric liquids

* Normal stress effects. Rod climbing effect for polymeric
liquids
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Fig. 8.1-3. The free surface of a liquid near
a rotating rod. The polymeric liquid shows
the Weissenberg rod-climbing effect.




Behaviour of polymeric liquids

 Normal stress effects. The secondary flows in a
cylindrical container
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Behaviour of polymeric liquids

* Siphoning continues to occur when the tube is
raised above the surface (tubeless siphon effect)
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Rheometry and Material functions

* Material functions
* Newtonian fluids: Viscosity
* Non-Newtonian: several material functions that
describe the mechanical response of complex fluids
e Steady simple shear flow: y is called the shear rate

Upper plate moves at a constant speed
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Rheometry and Material functions

 Remarks for Steady simple shear flow
* For Newtonian liquids, Normal stresses are all zero
* For Non-Newtonian, the Normal stresses are not
zero and are nor equal
* Three material functions are defined
* Non-Newtonian viscosity n

Tyx = —Ud—y




Rheometry and Material functions

e Three material functions are defined ...
* First normal stress coefficient

2
dv,
Tex ~Tyy = — 11 (d_y>

* Second normal stress coefficient

2
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Tyy = Tzz = —13 <d_y>




Rheometry and Material functions

 Material functions are a function of the shear rate
* There are several other material functions

* For Newtonian liquids

n=u ¥Y,=%=0



Non-Newtonian viscosity and the
generalised Newtonian models

* Three levels
* Generalised Newtonian models. Important in many
industrial applications

* Linear viscoelastic models. For system with small
displacement gradient

 Nonlinear viscoelastic models, include all the cases



Non-Newtonian viscosity and the generalised
Newtonian models

* For Incompressible Newtonian fluids

7= —wVv+ (V)" = —uy

* For the generalised Newtonian fluid model

r=—n(Vv+ (V) = -y  withn=9{®)




Empirical Non-Newtonian viscosity function, n

 Simplest one. Two-parameter power law
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n = my

* Four-parameter Carreau equation
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Laminar flow of an incompressible Power law
fluid in a circular tube

* Mass flow rate for a polymer liquid. Power law model
* Introducing n inthe shear stress
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Laminar flow of an incompressible Power law
fluid in a circular tube

Relation shear stress and pressure difference
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Integrating with no slip boundary condition
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It simplify to Hagen-Poiseuille for Newtonian fluids when n=1



Elasticity and the linear viscoelastic models

Newton: 7= —u(Vv + (Vv)") = —puy
Hooke: 7= —G(Vu + (Vu)") = -Gy

e The Maxwell model
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* The Jeffreys model ) )
THA 5T = _ﬂu(";’ "';‘zﬁ’i’)
* The Generalized Maxwell model

oo

(1) = D 7 () where 7, + A, % T = TNY
=1




The generalized Maxwell model
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(1) = ;;E 7, () where 7, + A, % Te = — MY
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relaxation times A,

Empirical expression reduces the number of parameters to 3.
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Molecular theories for polymeric liguids

* Empirical relations require a lot of work.

* Molecular theories can help to formulate models

for the polymeric liquids.

e Adjustable constant have to be determined by

(Rheometric) experiments.




Molecular theories for polymeric liguids

* Theories. There are two classes
* Network theories

* Single-molecule theories

* Network theories
* Developed to describe rubber behaviour
* Extended to describe molten polymer, concentrated solutions

* Assumptions about formations and rupturing of junctions are

done




Network theories. A polymer network
formed by temporary junctions (circles)
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The single-molecule theories

* Developed to describe polymers in very diluted

solutions

* i.e., infrequent polymer-polymer interactions.

* Polymers are represent by “bead springs”

* Theory can extent to molten polymers and

concentrated solutions




The single-molecule bead spring models.
a) dilute polymer solutions
b) polymer melt without solvent
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