Chapter 17. Diffusivity and the mechanisms of
mass transport

* Fick’s law of binary diffusion (molecular mass transport)
 Temperature and pressure dependence of diffusivities

* Theory of diffusion in gases at low density, in binary liquids, in

colloids suspensions, and polymers
* Mass and molar transport by convection
* Summary of mass and molar fluxes

* The Maxwell-Stefan equations for multicomponent diffusion in

gases at low density




Behaviour of polymeric liquids
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* At steady state

e Fick’s law of

binary diffusion

Jay = =




Fick’s law of binary diffusion

jﬂ}f = —pgﬂ

Jaye the molecular mass flux

w,, the mass fraction
D ap the diffusivity

p is the density
* Mass average velocity for a binary mixture

'Ul,.' = m.-"l.t}.-"lr,' + WEUEU
e Mass flux

j.f'l.g.-' - pm,ﬂl{vﬂy o Ey}




Dimensionless numbers

mass diffusivity 9 45
thermal diffusiﬁt}r o = k,’pffp

momentum diffusivity » = u/p

o
The Prandtl number: Pr = E = ‘—;:-—
> M
The Schmidt number? Sc = —— =
e Schmidt number 3o 29
The Lewis number? ~ Le= -2 = K




17.2 Temperature and pressure dependence of
Diffusivities

* For gas mixtures at low pressure (kinetic theory)

P g ( T )r
—— i, a
(Peapep) (T AT (1 /M, + 1/Mp)'/? VT T,

e Diffusivities
* areinversely proportional to the pressure
* increases with increasing temperature
e almost independent of composition




17.3 Theory of diffusion in gases at low
density

» Self diffusivity
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* For binary mixtures
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* Chapman-Enskog kinetic theory

P ﬁT( 1,1 ) 1
AB = =
16 T \M, M;j Nﬂﬁaﬂmﬂﬂt/ collision integral



17.7 Mass and molar transport by convection

 Mass and molar concentrations
* Mass average and molar average velocities
 Molecular mass and molar fluxes
e Convective mass and molar fluxes




Vass and molar concentrations

mass concentration of species o

Pa

M
p = 2 p, = mass density of solution
=1

w, = p,/p = mass fraction of species «

C, = molar concentration of species o
N

c= >,

er=1

x, = ¢,/ c = mole fraction of species «

molar density of solution




Mass and molar concentrations
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Algebraic relations:
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Mass average and molar averages velocity

* Mass average velocity
M M
Zﬁ PV, 2“1 PaVa  n

M
; Pa

Vv

 Molar average velocity




17.8 Summary of mass and molar fluxes

* Equivalent forms of Fick’s law of binary diffusion

Table 17.8-2 Equivalent Forms of Fick’s (First) Law of Binary Diffusion

Flux Gradient Form of Fick’s Law

J4 Vo, ja= —pPDsVew,

y Vx, Ji = —cD 4V,

n, Vw, i, = wyln, + ng) — phVw, = pav — p9 sV,
M, Vx, B, = x (M, + Mg — ¢z Vx, =c vt — 9,5V,
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Molecular mass and molar fluxes
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Table 17.8-1 Notation for Mass and Molar Fluxes*

With respect to

With respect to mass

With respect to molar

Quantity stationary axes average velocity v average velocity v*
Velocity of species a v, (A) vV, —V (B} v, —v* (©)
(cm/s)
Mass flux of species a n, = p.v, (D) | o= pulv, — V) (E) in = pulv, — v¥) (F)
(g/cm”s) '
Molar flux of species a N, =cv, (G) J. = c, (v, —¥) (H) Ji = c (v, — v¥) (D
(g-moles/cm’ s)

M N N
Sums of mass fluxes > n, = pv ) ¥ j.=0 (K) > ik = plv ~ v¥) (L)

=] a=1 =]

[y N N
Sums of molar fluxes N, = cv* M) | D =cvt =) (N) >I=0 (0)

w1 a=1 =1
Relations between mass | n, = M N (P) jo = M.J., Q) o = M. (R)
and molar fluxes

N N M
Interrelations among A, = o + Pu¥ S) jo =10, — @, 2 g (T) jn=mn, —x, Z Eﬂ g (L)
mass fluxes A= A=178
N Mﬁ' M

Interrelations among N,=Jr+cvt V) | .=N,~w, v Ne W) n=N,—x, 2, Ng (X)
molar fluxes A=1 e A=l




Maxwell-Stefan equations for multicomponent
diffusion in gases at low pressure

* Maxwell-Stefan equations

"{Iﬁ 3 ﬁ; 1
o Do = D,

e Other cases in multicomponent diffusion

* Reverse diffusion, a species move against its own gradient

* Osmotic diffusion, a species diffuses though its concentration

gradient is zero

 Diffusion barrier, a species does not diffuse through its

concentration gradient is nonzero
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