Convection-Diffusion Equation

Department of Energy Resources Engineering Seoul National University

Transport Equation

- Generic Scalar Transport Equation
- Convection-Diffusion
- Advection-Diffusion Equation
- This describes the transport phenomena of particles, energy, or other physical quantities by convection and diffusion
- In a control volume, the accumulation rate of a physical quantity equals the external source rate of the physical quantity minus the transport (outflow by convection and diffusion) rate of the physical quantity through the neighboring control surfaces

System

Control volume during a very short time, $\Delta \mathrm{t}$

System

- Physical quantity ψ
\checkmark Concentration C_{ψ}
\checkmark Amount per unit mass of a fluid
- Control volume
\checkmark Control volume ($\Delta x \Delta y \Delta z$) during a very short time, $\Delta \mathrm{t}$
\checkmark Control surfaces
- $2 \Delta x \Delta y, 2 \Delta y \Delta z, 2 \Delta z \Delta x$
- Assume the fluid flows along only the x direction (1-dimension)

Source

- S_{ψ}
\checkmark Supply of ψ per unit fluid volume per unit time
- Supply rate to the control volume
$\checkmark S_{\psi} \Delta \mathrm{x} \Delta \mathrm{y} \Delta \mathrm{z}$

Outflow by Convection and Diffusion

- Transport by convection and diffusion
- Through spatially neighboring control surfaces
- Convection
\checkmark Volumetric rate of the fluid $=u_{x} \Delta \mathrm{y} \Delta \mathrm{z}$
\checkmark Mass rate of the fluid $=\rho u_{x} \Delta y \Delta z$
\checkmark Mass rate of $\psi=C_{\psi} \rho u_{x} \Delta y \Delta z$
- Diffusion
\checkmark Diffusivity, D
\checkmark Mass rate of $\psi=-\Delta \mathrm{y} \Delta \mathrm{z} D \partial C_{\psi} / \partial x$
$\checkmark C_{\psi}$ can be different for ψ
- Ex) ψ is thermal energy, C_{ψ} should be temperature

Accumulation Term

- Accumulation of ψ per unit time in a control volume \checkmark Mass of the fluid $=\rho \Delta x \Delta y \Delta z$
\checkmark Mass of $\psi=C_{\psi} \rho \Delta x \Delta y \Delta z$
\checkmark Accumulation rate $=\frac{\partial\left(\rho c_{\psi}\right)}{\partial t} \Delta x \Delta y \Delta z$

Accumulation = Source - Outflow

- $\frac{\partial\left(\rho C_{\psi}\right)}{\partial t} \Delta x \Delta \mathrm{y} \Delta z=S_{\psi} \Delta x \Delta \mathrm{y} \Delta z-\left(C_{\psi} \rho u_{x}-D \frac{\partial C_{\psi}}{\partial x}\right) \Delta \mathrm{y} \Delta z$
- Divide by $\Delta x \Delta \mathrm{y} \Delta z$ and $\Delta x \rightarrow 0$
- $\frac{\partial\left(\rho C_{\psi}\right)}{\partial t}+\frac{\partial\left(C_{\psi} \rho u_{x}-D \frac{\partial C_{\psi}}{\partial x}\right)}{\partial x}=S_{\psi}$
- Expand to 3D
- $\frac{\partial\left(\rho C_{\psi}\right)}{\partial t}+\nabla \cdot\left(C_{\psi} \rho u-D \nabla C_{\psi}\right)=S_{\psi}$
- $\frac{\partial\left(\rho C_{\psi}\right)}{\partial t}+\nabla \cdot\left(C_{\psi} \rho u\right)=\nabla \cdot\left(D \nabla C_{\psi}\right)+S_{\psi}$
- Transient term + Convection term = Diffusion term + Source term

