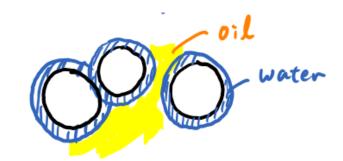
Numerical Solution of Multi-Phase 1D Flow Equation


Hoonyoung Jeong Department of Energy Resources Engineering Seoul National University

Multiphase

- More than two phases that are immiscible
 ✓ What does immiscible flow mean?
 - They flow separately
 - But it doesn't mean they have independent flow
 - \clubsuit Competition
 - ✤ Relative permeability
 - > k_r is a function of saturation
 - ➢ More oil → Higher So → Oil flows better
 - > More water \rightarrow Higher Sw \rightarrow Water flows better

• Wettability

- ✓ Wetting / Non-wetting phases
- In water-wet rock, wettability btn water and rock > wettability btn oil and rock
 Capillary pressure

Oil and Water

Immiscible oil and water
 ✓ Relative permeability
 ✓ Caprillary pressure

Continuity Equations

- $\nabla \cdot \left(\rho \vec{V} \right) + \frac{\partial}{\partial t} (\rho \phi) = 0$
- Both oil and water mass balances are satisfied separately.
- $\nabla \cdot (\rho_o \vec{V}_o) + \frac{\partial}{\partial t} (\rho_o \phi S_o) = 0$ $\nabla \cdot (\rho_w \vec{V}_w) + \frac{\partial}{\partial t} (\rho_w \phi S_w) = 0$

Darcy's Law

- $\vec{V} = -\frac{k}{\mu} \nabla P$
- Oil and water move separately, but their k_r depends on S_o and S_w .
- $\overrightarrow{V_o} = -\frac{kk_{ro}}{\mu_o} \nabla P_o$
- $\overrightarrow{V_w} = -\frac{kk_{rw}}{\mu_w}\nabla P_w$
- $P_c = P_o P_w$ for water-wet rock

 $P_c = f(S_w \text{ or } S_o)$

• $P_c = P_w - P_o$ for oil-wet rock

Constitutive Equations

•
$$C_f = \frac{1}{\rho_f} \frac{\partial \rho_f}{\partial P}$$
, $C_r = \frac{1}{\phi} \frac{\partial \phi}{\partial P}$
• $C_o = \frac{1}{\rho_o} \frac{\partial \rho_o}{\partial P_o} = B_o \frac{\partial}{\partial P_o} \left(\frac{1}{B_o}\right)$
• $C_w = \frac{1}{\rho_w} \frac{\partial \rho_w}{\partial P_w} = B_w \frac{\partial}{\partial P_w} \left(\frac{1}{B_w}\right)$
• $C_w = \frac{1}{\rho_w} \frac{\partial \phi}{\partial P_w}$

- $C_r = \frac{1}{\phi} \frac{\partial \varphi}{\partial P_o}$
- $C_t = C_r + S_o C_o + S_w C_w$

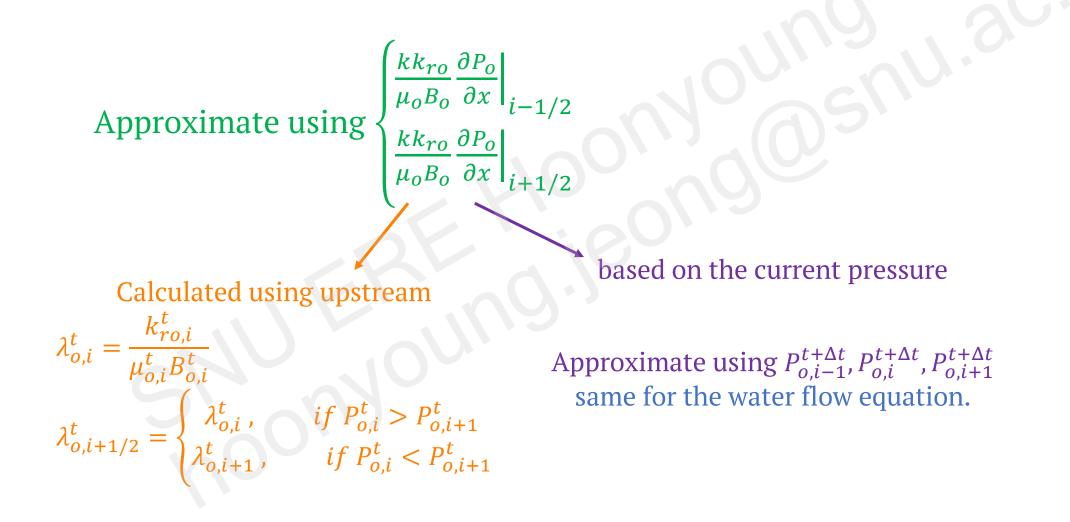
Initial & Boundary Conditions

- Initial pressure : $\rho_o gh$, $\rho_w gh$
- Initial saturation : calculate S_w using P_c

 $S_o = 1 - S_w$

If heterogeneous rock, this calculation might be inaccurate. estimate from core samples, well log data, using geostatistics.

Boundary conditions constant BHP, constant Q \rightarrow BHP, $Q_0, Q_W, Q_0 + Q_W$


Multiphase Equations

S = 1

 $→ S_o + S_w = 1,$ Two assumptions 1) undersaturated reservoir $P > P_b → \text{ no gas}$ 2) gas is liberated in surface

 $k_{ro}, k_{rw} = f(S_o \text{ or } S_w)$ $P_w = P_o - P_c, \qquad P_c = f(S_w)$

1) Approximation of Spatial Term

2) Approximation of Temporal Term

In a single phase,

Using analogy,

 $\frac{\varphi_{i}c_{t,i}}{B_{i}^{t}\Delta t} \left(P_{i}^{t+\Delta t} - P_{i}^{t}\right)$ $\frac{\partial}{\partial t} \left(\frac{\phi S_{o}}{B_{o}}\right)$ $\phi_{i}^{t}, C_{r,i}, C_{o,i}, B_{o,i}^{t}, \Delta t$ $P_{o,i}^{t+\Delta t}, P_{o,i}^{t}$ $S_{o,i}^{t+\Delta t}, S_{o,i}^{t} \text{ are needed.}$

3) Build Oil and Water Equations

Obtain the approximate oil flow eq. Obtain the approximate water flow eq.

 $\begin{array}{l} 2n \text{ unknown}: P_{o,i}^{t+\Delta t}, S_{o,i}^{t+\Delta t} \rightarrow n \ eqs.\\ 2n \text{ unknown}: P_{w,i}^{t+\Delta t}, S_{w,i}^{t+\Delta t} \rightarrow n \ eqs. \end{array}$

4) Combine Oil and Water Equations

Combine the two approximate oil and water flow eqs.

i)
$$P_{w,i}^{t+\Delta t} = P_{o,i}^{t+\Delta t} - \frac{P_{c,i}^{t+\Delta t}}{=} P_{c}(S_{w,i}^{t+\Delta t})$$

= $P_{c}(S_{w,i}^{t+\Delta t})$ unknown, cannot solve
 $\approx P_{c}(S_{w,i}^{t})$

4n unknown and 2n eqs.

→ Water flow eq : expressed in terms of $P_{o,i}^{t+\Delta t}$ and $S_{o,i}^{t+\Delta t}$ 2n unknown and 2n eqs.

 \rightarrow n unknown and n eqs. by cancelling $S_{o,i}^{t+\Delta t}$

Others

5) Build a matrix and calculate P^{t+Δt}_{o,i}
6) Calculate S^{t+Δt}_{o,i} by substituting P^{t+Δt}_{o,i} into the oil flow eq.
7) Calculate S^{t+Δt}_{w,i}, P^{t+Δt}_{w,i} = P^{t+Δt}_{o,i} - P_c(S^{t+Δt}_{w,i})
8) Update B_o, B_w, φ, μ_o, μ_w

→ IMPES (Implicit Pressure Explicit Saturation)