

Why Compositional Simulation?

- Black oil simulation
 - ✓ Pseudo-compositional
 - ✓ Consider only vapor, liquid, water phases
- Phase envelope changes if the composition changes
- Miscibility
- •

Compositional Mass Conservation

· Single phase

$$\checkmark \frac{\partial(\rho C_{\psi})}{\partial t} + \nabla \cdot (C_{\psi}\rho u) = \nabla \cdot (D\nabla C_{\psi}) + S_{\psi}$$

- Phase $\beta = 1, ..., N_{\beta}$: N_{β} immiscible fluid flows
 - $\checkmark \quad \sum_{\beta} S_{\beta} = 1$
- Component $\kappa = 1, ..., N_{\kappa}$: Phase β contains N_{κ} components
 - $\checkmark \quad \sum_{\kappa} X_{\beta}^{\kappa} = 1$
 - ✓ X_{β}^{κ} : mass fraction of component κ in phase β
- For component κ ,

$$\checkmark \quad \sum_{\beta} \frac{\partial \left(\phi S_{\beta} \rho_{\beta} X_{\beta}^{\kappa}\right)}{\partial t} + \nabla \cdot \left[-X_{\beta}^{\kappa} \rho_{\beta} \frac{k k_{r\beta}}{\mu_{\beta}} \nabla \left(P_{\beta} - \rho_{\beta} gz\right) \right] = \nabla \cdot \left(\rho_{\beta} D_{\beta}^{\kappa} \nabla X_{\beta}^{\kappa}\right) + S_{\kappa}$$

- ✓ Gravity direction is positive
- $\checkmark P_{\beta} = P_{non-wetting} + P_{c,\beta}$
- ✓ Tables for ρ_{β} , μ_{β}
- \checkmark EOS for X_{β}^{κ} ratios
 - Flash calculation
 - Kinetic equilibrium (hydrate)