

Constitutive Equation

- Definition
 - ✓ Relation that describes the response of a material that is exposed to external stimuli
- Normally, it is referred to the relation between the deformation of a material and external forces acting on the material
- What are there in rock formations?
 - ✓ Rock
 - ✓ Fluid
 - ✓ Deformation of a rock and a fluid for external forces

External and Internal Forces for Subsurface Rock

- What is the external force for a rock?
 - ✓ Overburden stress
 - ✓ Pore pressure
- What is the internal force for a rock?
 - ✓ Effective stress
 - ✓ The rock is deformed by the internal force
 - $\checkmark \sigma_{eff} = \mathbf{E}\varepsilon$
- What is the relation between the internal and external forces?
 - ✓ Overburden stress = Pore pressure + Effective stress

응력이란?

- 강체는 변형되지 않으므로 강체 내부 힘을 고려하지 않고 단순히 무게 중심에 미치는 힘으로 운동을 모사할 수 있음
- Deformable bodies는 외부 힘에 의해 내부 힘이 발생하고 내부 힘으로 인해 변형이 발생하므로 내부 힘을 고려해야 함
- 응력
 - ✓ 외부 힘에 의해 물질 내부에 발생하는 단위 면적당 내력

$$stress = \lim_{\Delta A \to 0} \frac{\Delta \mathbf{F}}{\Delta A}$$

Rock Deformation By Change of Pore Pressure

- Ex)
 - ✓ CO₂ injection → Pore pressure increases → Effective stresses decrease (total stresses are constant) → Rock deformation
 - ✓ Rock deformation
 - Deformation of rock grains
 - Deformation of pores → Porosity changes
 - Which one is larger?
 - ❖ Pore volume change is significantly larger
 - ✓ Which one of pore pressure and effective stress is easier to measure?
 - Pore pressure
 - Effective stress = Total stress (constant) Pore pressure
 - Easier to express the change of porosity as a function of pore pressure