

Things that are needed to Derive a Flow Equation (for Reservoir Simulation)

- Reservoir structure
 - ✓1-dimension
- Fluid properties
 - ✓ Single phase
 - ✓ Fluid compressibility (slightly compressible fluid)
- Rock properties
 - ✓ Porosity
 - ✓ Permeability
 - ✓ Rock compressibility (slightly compressible rock)

- Properties of rock and fluid
 - ✓ Capillary pressure
 - ✓ Relative permeability
- Basic equations
 - ✓ Continuity equation
 - ✓ Constitutive equation
 - ✓ Darcy's law
- Boundary and initial conditions

1-dimension

•
$$\nabla \cdot (\rho u) + \frac{\partial (\phi \rho)}{\partial t} = \frac{1}{\partial x \partial y \partial z} \frac{\partial (\rho V_{ext})}{\partial t}$$

•
$$u = -\frac{k}{\mu} \nabla P$$

•
$$\frac{\partial(\rho u_x)}{\partial x} + \frac{\partial(\phi \rho)}{\partial t} = \frac{1}{\partial x \partial y \partial z} \frac{\partial(\rho V_{ext})}{\partial t}$$

•
$$u_x = -\frac{k}{\mu} \frac{\partial P}{\partial x}$$

Constitutive Equations

•
$$C_{\rm r} = \frac{1}{\phi} \frac{\partial \phi}{\partial P}$$

•
$$C_f = \frac{1}{\rho} \frac{\partial \rho}{\partial F}$$

Substitution of Darcy's Law

•
$$\frac{\partial}{\partial x} \left(-\frac{k\rho}{\mu} \frac{\partial P}{\partial x} \right) + \frac{\partial (\phi \rho)}{\partial t} = \frac{1}{\partial x \partial y \partial z} \frac{\partial (\rho V_{ext})}{\partial t}$$

•
$$\frac{\partial}{\partial x} \left(\frac{k\rho}{\mu} \frac{\partial P}{\partial x} \right) + \frac{1}{\partial x \partial y \partial z} \frac{\partial (\rho V_{ext})}{\partial t} = \frac{\partial (\phi \rho)}{\partial t}$$

Flow Rate

•
$$\frac{\partial}{\partial x} \left(\frac{k}{\mu B} \frac{\partial P}{\partial x} \right) + \frac{1}{\partial x \partial y \partial z} \frac{\partial \left(\frac{V_{ext}}{B} \right)}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\phi}{B} \right)$$

- $\partial y \partial z = A$
- $\frac{V_{ext}}{B} = V_{ext}$ at surface
- $\frac{\partial V_{ext} \ at \ surface}{\partial t} = Q$

✓ Surface flow rate: inj +, prod -

•
$$\frac{\partial}{\partial x} \left(\frac{k}{\mu B} \frac{\partial P}{\partial x} \right) + \frac{Q}{A \partial x} = \frac{\partial}{\partial t} \left(\frac{\phi}{B} \right)$$