

Why Numerical Solution?

- Heterogeneous rock
 - ✓ Porosity and permeability are a function of a location
- Multiphase fluid
 - ✓ Liquid, gas
 - ✓ Multi-components
 - ✓ Immiscibility
- Fluid properties change over pressure
 - ✓ Pressure changes over location and time
 - ✓ Fluid properties change over location and time
- Complicated boundary conditions
 - ✓ Variable well operating conditions
 - ✓ Irregular reservoir shape
 - ✓ Faults
 - **√** ...

Flow Equation

•
$$\frac{\partial}{\partial x} \left(\frac{k}{\mu B} \frac{\partial P}{\partial x} \right) + \frac{Q}{A \partial x} = \frac{\partial}{\partial t} \left(\frac{\phi}{B} \right)$$

• We can't move k, μ, B, ϕ out of $\partial/\partial x$ and $\partial/\partial t$ Because k, μ, B, ϕ depends on x and t.

 $\checkmark \phi$, B: functions of P, P(x, t)

- ✓ Heterogeneous : k(x)
- $\checkmark \mu$, B: functions of P(x, t)
- $\rightarrow \frac{k}{\mu B}$ is dependent of $x \rightarrow f(x)$
- Here, we assume a fluid viscosity is constant

How to Numerically Approximate Derivatives?

$$\frac{\partial}{\partial x} \left(\frac{k}{\mu B} \frac{\partial P}{\partial x} \right) + \frac{Q}{A \partial x} = \frac{\partial}{\partial t} \left(\frac{\phi}{B} \right)$$

Taylor Series

Univariate function

$$\checkmark f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

✓ You can approximate the function values near x if you know f(x) and the derivatives

Multivariate function

$$\checkmark f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H}(\mathbf{x}) \Delta \mathbf{x} + \cdots$$

Forward Approximation of 1st Derivative

•
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

- If Δx is small, Δx^2 is very small. So, ignore $\frac{f''(x)}{2!}\Delta x^2 + \cdots$
- $f(x + \Delta x) = f(x) + f'(x)\Delta x$ $f'(x) = \frac{f(x+\Delta x)-f(x)}{\Delta x} + O(\Delta x)$

Backward Approximation of 1st Derivative

•
$$f(x - \Delta x) = f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

$$-f'(x)\Delta x = f(x - \Delta x) - f(x) - \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

•
$$f'(x) = \frac{f(x-\Delta x)-f(x)}{-\Delta x} + \frac{f''(x)}{2!} \Delta x + \cdots$$

•
$$f'(x) = \frac{f(x-\Delta x)-f(x)}{-\Delta x} + O(\Delta x)$$

Central Approximation of 1st Derivative

•
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

•
$$f(x - \Delta x) = f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

•
$$f(x + \Delta x) - f(x - \Delta x) = 2f'(x)\Delta x + O(\Delta x^3)$$

•
$$f'(x) = \frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x} + O(\Delta x^2)$$

Approximation of 2nd Derivative

•
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

•
$$f(x - \Delta x) = f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

•
$$f(x + \Delta x) + f(x - \Delta x) = 2f(x) + f''(x)\Delta x^2 + O(\Delta x^4)$$

•
$$f''(x) = \frac{f(x+\Delta x)-2f(x)+f(x-\Delta x)}{\Delta x^2} + O(\Delta x^2)$$

•
$$f''(x) = \frac{\frac{f(x+\Delta x)-f(x)}{\Delta x} \frac{f(x)-f(x-\Delta x)}{\Delta x}}{\Delta x} + O(\Delta x^2)$$

Smaller Δx is Better?

- No
- Smaller Δx makes $\partial f/\partial x$ more accurate, but if Δx is too small, $f(x + \Delta x) f(x)$ may be zero
- How to decide Δx ?
 - ✓ Not too large, not too small
 - \checkmark 1%, 0.1%, 0.01%, ... of x
 - ✓ Depends on your problem
 - ✓ Central approximation is less sensitive to a perturbation size (Δx) than forward and backward approximations