Lattice

Read

> Sherwood \& Cooper 3.1 ~ 3.5
> Ott Chapter 3
$>$ Hammond 2.1~2.5, 5.1~5.5
> Cullity 2.1; 2.2; 2.3
>Krawitz 1.3; 1.4

Lattice

> Lattice (격자) - an infinite array of points in space, where each point has identical surroundings to all others
> Crystal Structure (결정구조) - the 3-dimensional periodic arrangement of atoms in the crystal
> Lattice + Motif (Basis) \Rightarrow Crystal structure
$>$ each atom - its center of gravity - point or space lattice
> pure mathematical concept

the smallest repeating unit = unit cell

\square 4
the smallest repeating unit $=$ unit cell

Lattice points: Identical surroundings

Lattice points: identical surroundings
Basis: patterns of atoms, molecule, ions
Crystal structure = lattice + basis

Lattice + Motif (Basis)
\rightarrow Structure

$>$ What is the structure of the molecules within a crystal? \rightarrow motif
$>$ What is the nature of the geometrical array which defines the way the molecules are arranged in space? \rightarrow lattice
$>$ lattice point \rightarrow line lattice \rightarrow plane lattice \rightarrow space lattice
> Translation

$$
0 \rightarrow 1, \quad 0 \rightarrow 2, \quad 2 \rightarrow 4, \quad \text { etc. }
$$

This repetition operation \rightarrow Translation

> Line lattice; A pattern produced by periodic repetition in one dimension and defined by translation \vec{a},

line lattice

Identical points (points equivalent by translation)

$$
\overrightarrow{\vec{a}}
$$

$>$ A pattern produced by periodic repetition in one dimension and defined by translation vector \vec{a} with lattice parameter (constant) a
$>$ For any translation in 1-D

$$
T=m \vec{a} \quad-\infty<m<\infty
$$

\rightarrow plane lattice, space lattice

Need just 1 vector to describe the line lattice.
Chan Park, MSE-SNU

Plane lattice

$>$ A pattern produced by periodic repetition in two dimension and defined by translations in 2 directions.
$\operatorname{cosbobO}$
03030303 OBOBOBOB

For any translation in 2-D, $\quad \vec{T}=m \vec{a}+n \vec{b}$

$$
-\infty<m<\infty,-\infty<n<\infty
$$

Need 2 vectors to describe the plane lattice.
$>$ A pattern produced by periodic repetition in 3D and defined by translations in 3 directions.

Lattice constants
Lattice parameters

$$
|\vec{a}|=a_{0}, \quad|\vec{b}|=b_{0}, \quad|\vec{c}|=c_{0}
$$

$$
\vec{a}^{\wedge} \vec{b}=\gamma
$$

$$
\vec{a}^{\wedge} \vec{c}=\beta
$$

$$
\vec{b}^{\wedge} \stackrel{\rightharpoonup}{c}=\alpha
$$

Unit cell

the smallest unit of volume that contains all of the structural and symmetry information and that can reproduce a pattern in all of space by translation.

> Various structural units that describe the schematic crystalline structure
> The simplest structural unit \rightarrow unit cell
> The simple cubic lattice becomes the simple cubic crystal structure when an atom is placed on each lattice point

An ASYMMETRIC UNIT
the smallest unit of volume that contains all of the structural information and that can reproduce the UNIT CELL by application of the symmetry operations.

7 crystal systems

System	Conventional unit cell	
Triclinic	$\mathbf{a}_{1} \neq \mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{\mathbf{3}}$	$\alpha \neq \beta \neq \gamma$
Monoclinic	$\mathbf{a}_{\mathbf{1}} \neq \mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{\mathbf{3}}$	$\alpha=\gamma, \beta \geq 90^{\circ}$
Orthorhombic	$\mathbf{a}_{1} \neq \mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{\mathbf{3}}$	$\alpha=\beta=\gamma=90^{\circ}$
Tetragonal	$\mathbf{a}_{1}=\mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{3}$	$\alpha=\beta=\gamma=90^{\circ}$
Trigonal	$\mathbf{a}_{\mathbf{1}}=\mathbf{a}_{\mathbf{2}}=\mathbf{a}_{\mathbf{3}}$	$\alpha=\beta=\gamma \neq 90^{\circ}$
Hexagonal	$\mathbf{a}_{\mathbf{1}}=\mathbf{a}_{\mathbf{2}} \neq \mathbf{a}_{\mathbf{3}}$	$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Cubic	$\mathbf{a}_{\mathbf{1}}=\mathbf{a}_{\mathbf{2}}=\mathbf{a}_{\mathbf{3}}$	$\alpha=\beta=\gamma=90^{\circ}$

STM image of Pt (IBM)

STM image of graphite

> Lattice Point UVW
Every lattice point is uniquely defined with respect to the origin of lattice by vector

$$
\text { ex) 112, 212, } 231
$$

Lattice Lines [UVW] Line : two points ex) I : 000, 231: [231]

II: 000, 112: [112]
II' : 100, 212 : [112]

[uvw]

(1) a lattice line through the origin and point uvw
(2) the infinite set of lattice lines which are parallel to it and have the same lattice parameter

For any translation

$$
\vec{T}=m \vec{a}+n \vec{b}+p \vec{c} \quad-\infty<m<\infty,-\infty<n<\infty,-\infty<p<\infty
$$

> Primitive cell; one lattice point per cell
> Non-primitive cell; I, F, C, R

Chan Park, MSE-SNU Intro to Crystallography, 2021

Primitive

Body-centered
\checkmark Point @ $1 / 2,1 / 2,1 / 2$
\checkmark Multiplicity $=2$

Base(end)-centered (C-centered)

$>$ Face-centered
$\checkmark 1 / 2,1 / 2,0$
$\checkmark 1 / 2,0,1 / 2$
$\checkmark 0,1 / 2,1 / 2$
\checkmark Multiplicity $=4$

$\checkmark 2 / 3,1 / 3,1 / 3$
$\checkmark 1 / 3,2 / 3,2 / 3$
\checkmark Multiplicity $=3$
\checkmark Trigonal system

Lattice positions

Lattice translations connect structurally equivalent positions (e.g. the body center) in various unit cells

Shackelford $6^{\text {th }}$ ed. Fig 3.26

Shackelford $6^{\text {th }}$ ed. Fig 3.27

> Lattice point uvw

$\vec{T}=m \vec{a}+n \vec{b}+p \vec{c}=u \vec{a}+v \vec{b}+w \vec{c}$
point - uvw, integer uv

> Lattice line [uvw] line - two points
I: $000 \quad 231 \rightarrow$ [231]
II: $000 \quad 112 \rightarrow$ [112]
II': $100 \quad 212 \rightarrow$ [112]
family <uvw>

Oft Chap 3

[uvw]

(1) a lattice line through the origin and point uvw
(2) the infinite set of lattice lines which are // to each other and have the same lattice parameter

$>$ smallest integer 210, 420, $\overline{2} \overline{1} 0 \rightarrow$ [210]
> opposite direction $\overline{1} 30$ and $1 \overline{3} 0$

Equivalent Directions = Family

Cubic $\begin{aligned} & {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]}\end{aligned}\left[\begin{array}{llll}0 & 1 & 0\end{array}\right] \quad\left[\begin{array}{llll}0 & 0 & 1\end{array}\right]$

$$
<100\rangle
$$

Lattice directions

Parallel [uvw] directions share the same
notation because only the origin is shifted

Family of directions
<111> represents all body diagonals

Shackelford $6^{\text {th }}$ ed. Fig 3.29
> [10] and [01] do NOT belong to the same family $\rightarrow 4$-fold rotation destroyed in the crystal
$>$ [11] and [$\overline{1} 1]$ belong to the same family \rightarrow related by mirror
$>$ [11] and [$1 \overline{1}]$ do NOT belong to the same family
$>$ [01] and $[0 \overline{1}]$ do NOT belong to the same family

Lattice plane (Miller index, Miller indices)

$\mathrm{m} 00,0 \mathrm{nO}, 00 \mathrm{p}$: define a lattice plane
m, n, ∞ : no intercepts with c axis

Intercepts @ (mnp)	2	1	3
Reciprocals	$1 / 2$	1	$1 / 3$
Miller indicies	3	6	2
(362) plane			

Plane (hkl)
Family of planes \{hkl\}

Miller indicies ; defined as the smallest integral multiples of the reciprocals of the plane intercepts on the axes

$\begin{array}{llll} & a & b & c \\ \text { (1) Intercepts } & 1 & 1 & \infty\end{array}$
(2) Reciprocals $1 / 1 \quad 1 / 1 \quad 1 / \infty$
(3) Reduction $1 \quad 1 \quad 0$
(4) Miller Indices

$\begin{array}{cccc} & a & b & c \\ \text { (1) } & 1 / 2 & \infty & \infty \\ \text { (2) } & 1 / 1 / 2 & 1 / \infty & 1 / \infty \\ & 2 & 0 & 0 \\ \text { (3) } & 2 & 0 & 0 \\ \text { (4) } & (200) & & \end{array}$
(110)

(1) $1 / 2 \quad 1 \quad 3 / 4$
(2) $1 / 1 / 2 \quad 1 / 1 \quad 1 / 3 / 4$
$\begin{array}{lll}2 & 1 & 4 / 3\end{array}$
(3) $6 \quad 3 \quad 4$
(4) (634)

Miller index

(1 12)

Intercepts © 11
(0 1 1)

Lattice plane \& crystal system

Crystal form: A set of equivalent faces is called a crystal form.

- There are approximately 48 unique crystal forms which are divided into either "open," "closed isometric," or "closed non-isometric" form categories.

In a cubic system, \{001\} reproduces (001), (00 $\overline{1}), ~(010), ~(0 \overline{1} 0), ~(001), ~(00 \overline{1})$ and forms a cube resultantly.

In a cubic system, \{111\} reproduces (111),($\overline{1} 11$), ($1 \overline{1} 1$), ($11 \overline{1}$), ($\overline{1} \overline{1} 1$), ($\overline{1} 1 \overline{1}$), ($1 \overline{1} \overline{1}),(\overline{1} \overline{1} \overline{1})$ and forms a octahedron resultantly.

Lattice plane (Miller indices)

(hkl) ; not merely a single plane, but an infinite set of parallel planes with a constant interplanar spacing

	m	n	p	$\frac{1}{\mathrm{~m}}$	$\frac{1}{\mathrm{n}}$	$\frac{1}{\mathrm{p}}$	(hkl)
A	2	4	∞	$\frac{1}{2}$	$\frac{1}{4}$	0	(210)
B	$\frac{3}{2}$	3	∞	$\frac{2}{3}$	$\frac{1}{3}$	0	(210)
C	1	2	∞	1	$\frac{1}{2}$	0	(210)
D	$\frac{1}{2}$	1	∞	2	1	0	(210)
E	$\overline{-}$	-	-	-	-	-	
F	$\overline{\mathrm{i}}$	$\overline{1}$	∞	$\overline{2}$	$\overline{1}$	0	$(\overline{2} \overline{1} 0)$
G	$\overline{1}$	$\overline{2}$	∞	$\overline{1}$	$\frac{1}{2}$	0	$(\overline{2} \overline{1} 0)$
H	3	$\overline{2}$	∞	$\frac{1}{3}$	$\frac{\overline{1}}{2}$	0	$(2 \overline{3} 0)$

* As the indices \uparrow, the spacing between the planes \downarrow, as does the density of points on each plane.
> Rational intercept plane (유리교차면) - 세 축 상에서 모두 격자점과 교차하는 면

> intercept @ m, n, p
> $\mathrm{m}=2, \mathrm{n}=3, \mathrm{p}=6$
$>\mathrm{m}, \mathrm{n}$ 의 최대공약수 $\mathrm{r}(2,3 \rightarrow 1)$
$>\mathrm{n}, \mathrm{p}$ 의 최대공약수 $\mathrm{s}(3,6 \rightarrow 3)$
$>\mathrm{p}, \mathrm{m}$ 의 최대공약수 $\mathrm{t}(2,6 \rightarrow 2)$

Intercepts @ (mnp)	2	3	6
Reciprocals	$1 / 2$	$1 / 3$	$1 / 6$
Miller indicies	3	2	1
(321) plane			

$>$ 이 면과 원점 사이에는 $\mathrm{mnp} / \mathrm{rst}(36 / 6=6)$ 개의 면이 있다
$>$ 이 때 각 면들간의 거리를 $\mathrm{d}_{\mathrm{hkl}}$ 이라 한다
> $\mathrm{np} / \mathrm{rst}=3(\mathrm{~h}), \mathrm{pm} / \mathrm{rst}=2(\mathrm{k}), \mathrm{mn} / \mathrm{rst}=1$ (l$)$
Chan Park, MSE-SNU Intro to Crystallography, 2021

\{hk/\}

Planes of a form or a family of planes
: sets of equivalent lattice planes related by symmetry

Tetragonal
Cubic

$\{100\}$: (100), ($\overline{1} 00$), (010) (010), (001), (00 $\overline{1}$)

A 4-fold rotation axes \perp to all the cube faces
$\{100\}$: (100), ($\overline{1} 00$), (010), (0 $\overline{1} 0)$ $\{001\}$: (001), (001)
A 4-fold axis for the first four planes A 2 -fold axis for the last two

Family of lines
<111> angular bracket

[111] square bracket line, direction

Family of planes
\{100\} braces
(100) on back face
(010) on side face

Shackelford 6 ${ }^{\text {th }}$ ed. Fig 3.32
(001) on bottom face
\{100\}
(100) round bracket (parentheses) plane
$\{100\}$ of cubic $=(100),(010),(001),(\overline{1} 00),(0 \overline{1} 0),(00 \overline{1})$ $\{100\}$ represents all faces of unit cells in the cubic system
cubic

(a)
orthorhombic

(b)

Plans of (a) cubic and (b) orthorhombic unit cells perpendicular to the z-axis, showing the relationships between planes and zone axes of the same numerical indices.

- all points in the plane // to b and caxes which cuts a axis @ $3 / 4$
- not a Miller index
- all points in the plane // to a and b axes which cuts caxis @ $1 / 2$
- not a Miller index

Unit cell of hexagonal

$>$ hexagonal coordinate $\quad a_{1}, a_{2}, a_{3}, c$
\rightarrow Miller-Bravais indices $(\mathrm{hkil}) \quad \mathrm{i}=-(\mathrm{h}+\mathrm{k})$

Chan Park, MSE-SNU

Miller-Bravais indices (hkil): $\frac{1}{\infty}, \frac{1}{1}, \frac{1}{-1}, \frac{1}{\infty} \rightarrow(01 \overline{1} 0)$
Note: $h+k=-i$

Shackelford $6^{\text {th }}$ ed. Fig 3.31

$[$ uvw] \rightarrow [UVTW]

Figure 2-15 (a) The hexagonal unit cell (heavy lines) and (b) indices of planes and directions.

$$
\begin{aligned}
& u=U-T \\
& v=V-T \\
& w=W
\end{aligned} \quad \square \quad \begin{aligned}
& U=(2 u-v) / 3 \\
& V=(2 v-u) / 3 \\
& T=-(u+v) / 3 \\
& W=w
\end{aligned}
$$

[100] becomes [2 $\overline{1} \overline{1} 0]$
[210] becomes [1010]

If the Miller plane (hkl) contains (or is paralle/ to) the direction [uvw] then:

$$
h . u+k . v+l . w=0 \text { Zonal equation }
$$

This relation is valid for all crystal systems (referring to the standard unit cell).

The red directions lie on the blue planes.

$\frac{1}{2}[(1 \cdot \overline{2})+(1 \cdot 1)+(1 \cdot 1)]=0$
$(1 \cdot \overline{1})+(1 \cdot 1)+(1 \cdot 0)=0$

Hammond chapter 5.6 Ott chap 3.5

Zone, zone axis

> Zone ; a set of non-// planes which are all // to one axis (called zone axis)
> Zone ; a set of planes whose intersections are all //.
$>$ Zone axis [uvu]; the common direction of the intersection of a set of planes in a zone

Miller indices (hkl) for all planes in a zone follow $h u+k v+/ w=0$
Example - pencil

> The direction common to a set of planes is called the zone axis of those planes.
$>$ If $\left(h_{1} k_{1} l_{1}\right) \&\left(h_{2} k_{2} I_{2}\right)$ are two planes having a common direction [uvw] \rightarrow according to Weiss zone law:

$$
u h_{1}+v k_{1}+w l_{1}=0 \& u h_{2}+v k_{2}+w l_{2}=0
$$

[001] lies on (110), (1̄10), (010), (100)
Hammond chapter 5.1; 5.6 Ott chap 3.5

Planes belonging to [001] zone in cubic lattice

Zonal equation

$>$ Two lattice lines $\left[u_{1} v_{1} w_{1}\right]$ and $\left[u_{2} v_{2} w_{2}\right]$ lie in the lattice plane (hkl). (hkl) can be determined from the zonal equation.

$$
\begin{aligned}
& h u_{1}+k v_{1}+l w_{1}=0 \quad h u_{2}+k v_{2}+l w_{2}=0 \\
& {\left[u_{1} v_{1} w_{1}\right]} \\
& {\left[\begin{array}{l}
{\left[u_{2} v_{2} w_{2}\right]} \\
\text { ex) } \\
\text { (1011) and }[\overline{2} 2 \overline{1}]
\end{array}\right.}
\end{aligned}
$$

> Two non-parallel lattice lines determine a lattice plane

Two lattice planes $\left(h_{1} \mathrm{k}_{1} l_{1}\right)$ and $\left(h_{2} \mathrm{k}_{2} l_{2}\right)$ intersect in the lattice line [uvw]

$$
h_{1} u+k_{1} v+l_{1} w=0 \quad h_{2} u+k_{2} v+l_{2} w=0
$$

$$
u=\left(k_{1} l_{2}-k_{2} l_{1}\right) ; v=\left(l_{1} h_{2}-l_{2} h_{1}\right) ; w=\left(h_{1} k_{2}-h_{2} k_{1}\right)
$$

> Tons of info in internet including "www.iucr.org/education"

$>$ Read

> Sherwood \& Cooper 3.1 ~ 3.5
> Ott Chapter 3, 4
$>$ Hammond 2.1~2.5, 5.1~5.5
> Cullity 2.1; 2.2; 2.3
> Krawitz 1.3; 1.4
$>$ Lattice Homework (due in 1 week)
\checkmark Ott Chapter 3 --- problem 2, 3, 4, 5, 6
\checkmark Cullity chapter 2 --- 1, 2, 3, 5, 6

