Physical characteristics of water

1

- All constituents of water other than water and dissolved gases
- Dissolved vs. suspended
 - Penetrates vs. retained on a filter
 - Filter with a pore size of 0.45 2 μ m is used
- Fixed vs. volatile
 - Remains vs. volatilized at $500\pm50^{\circ}$ C
 - Volatile solids are considered to be <u>organic</u>: used to differentiate organics and inorganics

Water constituents

Suspended matter

- Operationally defined as the material that retained on a 0.45 μm filter
- Colloids: 1 nm 1 μ m in size
- Includes mineral colloids, microorganisms and their debris, organic polymers
- Influences:
 - Contaminant transport
 - Light attenuation
 - Disinfection efficiency
 - Aquatic habitat

Solids – content analysis

Solids content analysis – settleable solids

Add 1L in Inhoff cone, wait for 1 hr for settling & record the volume of the thick, bottom layer (reported as mL/L)

Solids content analysis – suspended solids

#2

Solids content analysis

Q: The following test results were obtained for a wastewater sample. All the tests were performance using a sample size of 50 mL. Determine the concentrations of TS, TVS, TSS, VSS, TDS, and VDS.

Mass of evaporating dish = 53.5433 g

Mass of evaporating dish + residue after evaporation at $105^{\circ}C = 53.5794 \text{ g}$ Mass of evaporating dish + residue after ignition at $500^{\circ}C = 53.5625 \text{ g}$ Mass of filter paper after drying at $105^{\circ}C = 1.5433 \text{ g}$ Mass of filter paper + residue after drying at $105^{\circ}C = 1.5554 \text{ g}$ Mass of filter paper + residue after ignition at $500^{\circ}C = 1.5476 \text{ g}$

Solids content analysis

Mass of evaporating dish = **53.5433** gMass of evaporating dish + residue after evaporation at 105°C = **53.5794** gMass of evaporating dish + residue after ignition at 500°C = **53.5625** gMass of filter paper after drying at 105°C = **1.5433** gMass of filter paper + residue after drying at 105°C = **1.5554** gMass of filter paper + residue after ignition at 500°C = **1.5476** g

$$TS = \frac{(53.5794 - 54.5433) g \times 10^3 mg/g}{0.05 L} = 722 mg/L$$

$$TVS = \frac{(53.5794 - 54.5625) g \times 10^3 mg/g}{0.05 L} = 338 mg/L$$

$$TSS = \frac{(1.5554 - 1.5433) g \times 10^3 mg/g}{0.05 L} = 242 mg/L$$

$$VSS = \frac{(1.5554 - 1.5476) g \times 10^3 mg/g}{0.05 L} = 156 mg/L$$

TDS = TS - TSS = 722 - 242 = 480 mg/LVDS = TDS - VSS = 338 - 156 = 182 mg/L

Turbidity

- A measure of clarity of water
- Unit: nephelometric turbidity units (NTU)
- Measured by the intensity of light scattered by a water sample
- Suspended and colloidal matter increases turbidity
 - No general, direct relationship between TSS and turbidity, but at certain conditions, turbidity may be used to estimate TSS

 $TSS, mg/L \cong TSS_f \times T$ $TSS_f = conversion factor, mg TSS/L/NTU$ ex: 2.3-2.4 for secondary effluent; 1.3-1.6 for secondary eff. filtered by sand filter T = turbidity, NTU;

- Turbidity can be measure real-time, on-line (TSS cannot)

Turbidity

- Natural water may have yellowish color
 - Major contributor: DOM
- Fresh wastewater is in light brownish-gray color; as anaerobic condition develops, the water gets darker and eventually turn black (septic water)

#6

Light absorption

Absorbance

- A measure of the amount of light absorbed by the constituents in a solution
- Typically measured at a wavelength of 254 nm using a spectrophotometer
- Function of solute property, concentration, light path length, and light wavelength

 $A(\lambda) = \log_{10}(I_0/I) = \varepsilon(\lambda)Cx$

 $A(\lambda)$ = absorbance at wavelength λ (unitless)

 I_0 = light intensity at light source (mW/cm²)

I = light intensity at distance x from the light source (mW/cm²)

- $\varepsilon(\lambda)$ = molar absorptivity of the light-absorbing solute at wavelength λ (L/mole-cm)
- *C* = concentration of light-absorbing solute (mole/L)

x = light path length (cm)

Light absorption

- Absorptivity $k(\lambda) = \frac{A(\lambda)}{x} = \varepsilon(\lambda)C$ $k(\lambda) = \text{absorptivity (cm⁻¹)}$

Odor

- Offensive odor usually occur in anaerobic conditions
- Most commonly reported as "Minimum Detectable Threshold Odor Concentration (MDTOC)"
- Quite subjective property

Odorous compounds in water

Odorous compound	Chemical formula	Odor quality
Amines	CH_3NH_2 , $(CH_3)_3NH_2$	Fishy
Ammonia	NH ₃	Ammoniacal
Diamines	$NH_2(CH_2)_4NH_2$, $NH_2(CH_2)_5NH_2$	Decayed flesh
Hydrogen sulfide	H ₂ S	Rotten eggs
Mercaptans	CH_3SH , $CH_3(CH_2)SH$, $(CH_3)_3CSH$, $CH_3(CH_2)_3SH$	Decayed cabbage or skunk
Organic sulfides	(CH ₃) ₂ S, (C ₆ H ₅) ₂ S	Rotten cabbage
Skatole	C ₉ H ₉ N	Fecal matter 14

Odor

• MDTOC determination example

mL sample	mL pure water	Odor
100 mL	0 mL	Present
50 mL	50 mL	Present
25 mL	75 mL	Barely detectable
10 mL	90 mL	Absent

MDTOC = 100 *mL* / 25 *mL* = 4

Temperature

- Chemical and biochemical reaction rates increase with temperature
 - van't Hoff-Arrhenius relationship

$$\frac{d(\ln k)}{dT} = \frac{E}{RT^2}$$

$$k = reaction rate constant$$

$$T = temperature (K)$$

$$E = activation energy (J/mole)$$

$$R = ideal gas constant (8.314 J/mole-K)$$

- Modification of van't Hoff-Arrhenius relationship For a practical range of water temperature, $E/RT^2 \approx constant$

$$\frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$

$$k_1 = reaction rate at T_1$$

$$k_2 = reaction rate at T_2$$

$$\theta = temperature coefficient$$

van't Hoff-Arrhenius when E/RT²≈const.

$$d(\ln k) = \frac{E}{R} \cdot \frac{dT}{T^2}$$

$$\int_{lnk_1}^{lnk_2} d(\ln k) = \frac{E}{R} \int_{T_1}^{T_2} \frac{dT}{T^2}$$

$$lnk_2 - lnk_1 = \frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\frac{k_2}{k_1} = exp \left[\frac{E}{RT_1T_2} (T_2 - T_1)\right]$$

$$let \quad \theta = exp \left(\frac{E}{RT_1T_2}\right)$$

$$\frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$

Temperature

- Gas solubility decrease with temperature
 ex) saturated dissolved oxygen DO: 13.1 mg/L @ 4°C, 9.1 mg/L @ 20°C,
 7.5 mg/L @ 30°C
- Most organisms have distinct temperature ranges within which they reproduce and compete
- Slightly higher temp. in domestic wastewater and much higher temp. in cooling water → can damage aquatic ecosystem
 - Low saturation DO, faster oxygen consumption rate by microorganisms
 DO depletion
 - Direct effect of temperature increase on aquatic organisms
- Heat recovery from wastewater of current interest

References

- #1) http://bioaqua.vn/en/marine-shrimp-biofloc-systems-basic-management-practices/
- #2) https://www.youtube.com/watch?v=GJSe_Deo-_0
- #3) https://www.ebsbiowizard.com/total-suspended-solids-tss-volatile-suspended-solids-vss-2-1071/
- *#4) Metcalf & Eddy, Aecom (2014) Wastewater Engineering: Treatment and Resource Recovery, 5th ed. McGraw-Hill, p. 84.*
- #5) https://www.solutionstrak.com/blog/wastewater-definitions/
- #6) https://newsbeezer.com/vietnameng/rushing-the-sewage-black-stink-massively-poured-into-the-sea-danang/
- *#7)* https://www.ssi.shimadzu.com/products/uv-vis-spectrophotometers/faqs/instrument-design.html

Chemical characteristics of water I

1

Major ionic species in water

Cations	Anions
Calcium (Ca ²⁺)	Bicarbonate (HCO ₃ -)
Magnesium (Mg ²⁺)	Sulfate (SO ₄ ²⁻)
Sodium (Na ⁺)	Chloride (Cl ⁻)
Potassium (K ⁺)	

- Derived from contact of water with mineral deposits
- Relatively high in groundwater, low in surface water
- Determining the accuracy of water ion content analysis:

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

* Σ values in meq/L

- Most dissolved inorganics are in ionic form
 - Major nonionic: silica (SiO₂)

Dissolved ion analysis

Q: Determine the acceptability of the following water analysis.

Cations	Conc. (mg/L)	Anions	Conc. (mg/L)
Ca ²⁺	93.8	HCO ₃ -	164.7
Mg ²⁺	28.0	SO ₄ ²⁻	134.0
Na ⁺	13.7	Cl-	92.5
K ⁺	30.2		

Major ionic species in water

Firstly, calculate concentrations in meq/L units:

(conc. in meq/L) = (conc. in mg/L) / (lonic weight, IW) x (oxidation number)

Cations	IW (g/mole)	Conc. in mg/L	Conc. in meq/L
Ca ²⁺	40.1	93.8	4.68
Mg ²⁺	24.3	28.0	2.30
Na ⁺	23.0	13.7	0.60
K+	39.1	30.2	0.77
			∑(cations) = 8.35
Cations	IW (g/mole)	Conc. in mg/L	Conc. in meq/L
HCO ₃ ⁻	61.0	164.7	2.70
SO ₄ ²⁻	96.1	134.0	2.79
Cl-	35.5	92.5	2.61
			∑(anions) = 8.10

Major ionic species in water

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

$$\left|\sum(anions) - \sum(cations)\right| = 0.25$$

$$0.1065 + 0.0155 \sum (anions) = 0.23$$

Therefore,

$$\left|\sum anions - \sum cations\right| > \left(0.1065 + 0.0155 \sum anions\right)$$
 (not acceptable)

Source of error:

- measurement error of one or more ions
- missing one or more significant ions

Minor ionic species in water

Cations		Anions	
Aluminum (Al ³⁺)	Copper (Cu ²⁺)	Bisulfate (HSO ₄ -)	Nitrite (NO ₂ -)
Ammonium (NH ₄ +)	Iron, ferrous (Fe ²⁺)	Bisulfite (HSO ₃ -)	Phosphate, mono- (H ₂ PO ₄ -)
Arsenic (As ⁺)	Iron, ferric (Fe ³⁺)	Carbonate (CO ₃ ²⁻)	Phosphate, di- (HPO ₄ ²⁻)
Barium (Ba ²⁺)	Manganese (Mn ²⁺)	Fluoride (F ⁻)	Phosphate, tri- (PO ₄ ³⁻)
Borate (BO ₄ ³⁻)		Hydroxide (OH ⁻)	Sulfide (S ²⁻)
		Nitrate (NO ₃ -)	Sulfite (SO ₃ ²⁻)

- Mostly derived from contact of the water with mineral deposits
- Some from bacterial and algal activity (ex: NH₄⁺, NO₃⁻, NO₂⁻, CO₃²⁻, S²⁻)

Nutrients

• N & P as major nutrients of interest

- Essential for life
- Most often limiting nutrients in the environment

• Nitrogen (N)

- Exist in various oxidation states: +5, +3, +2, +1, 0, -2, -3
- Important nitrogen-containing compounds for water quality
 - Organic nitrogen, ammonia (NH₃), nitrite (NO₂⁻), nitrate (NO₃⁻), urea [CO(NH₂)₂], nitrogen gas (N₂)

Nitrogen cycle in the environment

Nitrogen cycle

- Uptake by organisms
 - Uptake by microorganisms and plants: NH_3 (most common), NO_3^- , $N_2 \rightarrow$ produce proteins
 - Conversion of N₂ to organic-N by bacteria is called "nitrogen fixation" (by limited number of bacterial species)
 - − Human contribution to nitrogen cycle: Haber-Bosch process $N_2 + 3H_2 \rightarrow 2NH_3$
 - Uptake by animals and humans: nitrogen must be in organic form (protein)
- Release from organisms
 - Animals excrete urea and other forms of organic-N (ex: proteins)
 - Dead organisms \rightarrow release organic-N into the environment

Nitrogen cycle

- Fate of N released into the environment
 - Organic-N is degraded by bacteria to urea and NH₃
 - Urea is easily hydrolyzed to NH₃

Urea hydrolysis

$$\begin{array}{c} 0 \\ \parallel \\ H_2N - C - NH_2 + H_2O \end{array} \xrightarrow{urease} 2NH_3 + CO_2 \end{array}$$

- Ammonia is oxidized serially by certain groups of bacteria:

$$NH_4^+ + 1.5 O_2 \xrightarrow{Nitrosomonas} NO_2^- + 2H_2O + 4H^+$$
$$2NO_2^- + O_2 \xrightarrow{Nitrobacter} 2NO_3^-$$
$$< nitrification >$$

Nitrogen cycle

 Nitrate and nitrite is reduced by various types of bacteria to produce nitrogen gas (N₂) by series of reactions:

 $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$

<denitrification>

- Note nitrous oxide (N₂O) is a potent greenhouse gas (greenhouse gas potential 265-298 time greater than CO₂)
- N₂O may be released as an intermediate of both nitrification and denitrification

Measurement of N in water

- Each ionic species can be measured by ion chromatography or colorimetric methods
- Organic nitrogen is determined by the Kjeldahl method: organic-N is degraded by acid and heat to ammonium and then ammonium content is determined
- Total Kjeldahl nitrogen (TKN) = organic-N + ammonia-N
- To determine organic-N only by the Kjeldahl method, the water is first heated to remove NH₃ by volatilization

General methods for measuring ions

Colorimetric method

- Add chemical agents that will react with the compound to be measured to form products that have a color
- Measure absorbance by spectrophotometer or compare the color with standards

IC at Water Quality & Environment Lab., SNU

Ion chromatography (IC)

- Sample is injected to a column which has ٠ different affinity to different ions
- An eluent continuously flushes the column ٠ and the ions flow out of the column at different times
- Concentration of each ion is determined by • measuring electrical conductivity 13

Phosphorus (P)

- Used..
 - in fertilizers
 - for corrosion control in water supply and industrial cooling water
 - in synthetic detergents
- P-containing compounds relevant to water quality
 - Orthophosphates: PO₄³⁻, HPO₄²⁻, H₂PO₄⁻, H₃PO₄
 - Can be directly utilized by organisms
 - Easily measured by colorimetric methods / ion chromatography
 - Polyphosphates ((PO₃)₆³⁻, P₃O₁₀⁵⁻, P₂O₇⁴⁻, ...) and organic phosphates
 - Needs breakdown to orthophosphates for biological metabolism / analysis

- C, H, O, N, **S**, P, K, ...
- Required in the synthesis of proteins, released when protein degrades
- Reduced biologically under anaerobic conditions

 $Organic matter + SO_4^{2-} \rightarrow S^{2-} + H_2O + CO_2$

- Anaerobic conditions occur in sediment, subsurface, sewers, and anaerobic processes in wastewater treatment
- The sulfide ion (S⁻²) may combine with hydrogen to form hydrogen sulfide gas (H₂S)

$$S^{2-} + 2H^+ \rightarrow H_2 S \tag{15}$$

 $pH = -log_{10}[H^+]$

• Ionization constant of water

 $[H^+][OH^-] = K_w \qquad K_w = 10^{-14} \text{ at } 25^{\circ}\text{C}$

$$p \equiv -log_{10} \rightarrow pH + pOH = 14$$
 at 25°C

Q: pH in pure H_2O at 25°C?

Electrical conductivity (EC)

- A measure of an ability of a solution to conduct an electrical current
- Unit: millisiemens per meter (mS/m) or microsiemens per centimeter (μS/cm)
- Electrical current is transported by ions in a solution → related to the concentration of ions in a solution

Conductivity meter & probe

Electrical conductivity (EC)

- Conversion between EC and ionic concentration
 - Conc. of each ionic species in water and EC

$$EC \cong \sum_{i} (C_i \times f_i)$$

EC = electrical conductivity (μ S/cm) C_i = conc. of ionic species i in solution (meq/L) f_i = conversion factor

Cations	f _i [(μS/cm)·(meq/L) ⁻¹]	Anions	<i>f_i</i> [(μS/cm)·(meq/L) ⁻¹]
Ca ²⁺	52.0	HCO ₃ ⁻	43.6
Mg ²⁺	46.6	CO32-	84.6
K ⁺	72.0	Cl⁻	75.9
Na ⁺	48.9	NO ₃ -	71.0
		SO ₄ ²⁻	73.9

Electrical conductivity (EC)

- Conversion between EC and ionic concentration
 - Applying generic composition of ionic species in water, EC can be used to estimate the ionic strength and TDS of a solution

 $I = EC \ (in \ \mu S/cm) \times (1.6 \times 10^{-5})$

Tchobanoglous & Schroeder (1985) Water Quality

 $TDS (mg/L) = EC (in \,\mu S/cm) \times (0.55 - 0.70)$

Metcalf, Eddy, AECOM (2014) Wastewater Engineering

Alkalinity

- The capacity of water to neutralize acid
- Determined by titrating water with a strong acid to pH=4.5

$$Alk (eq/L) = (HCO_3^{-}) + (CO_3^{2-}) + \dots + (OH^{-}) - (H^{+})$$
$$= [HCO_3^{-}] + 2[CO_3^{2-}] + \dots + [OH^{-}] - [H^{+}]$$

Include B(OH)₄, PO₄³⁻, HPO₄²⁻, SiO(OH)₃, etc. if significant

Most of the time, practically:

 $Alk \ (eq/L) \cong [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}]$

- Most of the time, at neutral pH: $Alk (eq/L) \cong [HCO_3^{-}]$

More common unit for Alk: "mg/L as CaCO₃" <u>Conversion</u> Alk (in mg/L as CaCO₃) = Alk (in meq/L) x 50 mg CaCO₃/meq

Hardness

- The term used to characterize a water that does not lather well (react with soap to form a scum)
- Caused by polyvalent cations in water (+2, +3, ...); mostly Ca²⁺ & Mg²⁺
- These ions are also easily precipitated to produce scales in pipes transporting hot water

$$Ca^{2+} + 2HCO_3^{-} \xrightarrow{\Delta H} CaCO_3 + CO_2 + H_2O$$

#6

#5

CaCO₃ precipitation – temperature effect

Recall:

 $HCO_3^- = H^+ + CO_3^{2-}$, $K_{a2} = 10^{-10.33} = 4.68 \times 10^{-11}$ (at 25°C)

 K_{a2} increases with increasing temperature:

 $K_{a2} = 2.75 \times 10^{-11}$ (at 5°C) $K_{a2} = 6.03 \times 10^{-11}$ (at 40°C)

Also recall:

$$K_{a2} = \frac{\left[CO_3^{2^-}\right][H^+]}{\left[HCO_3^{-}\right]}, \quad \left[CO_3^{2^-}\right] = K_{a2}\frac{\left[H^+\right]}{\left[HCO_3^{-}\right]}$$

Higher CO_3^{-2} fraction when water is heated, Ca2+ is more likely to be precipitated as CaCO₃

Hardness

- Total hardness (TH)
 - Technically: the sum of all polyvalent cations

 $TH(eq/L) = (Ca^{2+}) + (Mg^{2+}) + (Fe^{3+}) + (Fe^{2+}) + (Ba^{2+}) + \dots = \sum_{i=1}^{n} (X^{m+})_i$

- Practically (most of the time): sum of Ca²⁺ & Mg²⁺ $TH(eq/L) \cong (Ca^{2+}) + (Mg^{2+}) = 2[Ca^{2+}] + 2[Mg^{2+}]$

"mg/L as CaCO₃" is more common for hardness as well!

- Carbonate hardness (CH) and noncarbonate hardness (NCH)
 - CH: the maximum amount of hardness that can be associated with carbonates (HCO_3^- and CO_3^{2-})
 - NCH = TH CH
 - When **TH > Alk**: **CH = Alk**, NCH = TH CH
 - When $TH \leq Alk$: CH = TH, NCH = 0

Why are we interested in CaCO₃?

Recall for the following precipitation reaction:

 $aA^{x+} + bB^{y-} = A_aB_b(s)$ $K_{sp} = [A^{x+}]^a [B^{y+}]^b$, $pK_{sp} = -log_{10}K_{sp}$

Inspect the pK_{sp} of potential Ca/Mg precipitates:

 $pK_{sp} (CaCO_3) = 8.55$

 $pK_{sp} (MgCO_3) = 7.46$

 $pK_{sp}(Ca(OH)_2) = 5.26$

 $pK_{sp} (Mg(OH)_2) = 10.74$

Sodium adsorption ratio (SAR)

- Related to the agricultural production
 - Important property for irrigation water
- High sodium (Na⁺) content in soil reduces soil permeability!
 - Most clay surfaces are negatively (-) charged
 - \rightarrow Cations are attached to clay surfaces
 - Attachment of Na⁺ ion on clay surfaces
 - → swelling of clay by introduction of water molecules between clay sheets
 - ightarrow soil pore size \downarrow
 - ightarrow soil permeability \downarrow
 - \rightarrow crop productivity \downarrow
 - So, irrigation of water with high Na⁺ content can result in replacement of Ca²⁺ and Mg²⁺ in soil, resulting in low crop productivity

Clay swelling by water addition

Sodium adsorption ratio (SAR)

$$SAR = \frac{(Na^{+})}{\sqrt{\frac{(Ca^{2+}) + (Mg^{2+})}{2}}}$$

Note: Here, () denotes <u>meq/L</u>, not eq/L

SAR < 3: low risk
3 ≤ SAR ≤ 6: slight to moderate risk
SAR > 6: high risk

References

- *#1)* Davies, M. L., Masten, S. J. (2014) Principles of Environmental Engineering and Science, 3rd ed. McGraw-Hill (figure provided by the publisher).
- *#2)* http://stuff.iorodeo.com/docs/ammonia/api.html
- #3) https://derangedphysiology.com/main/cicm-primary-exam/required-reading/acid-base-physiology/acidbase-disturbances/Chapter%20613/sulfate-anion-its-origins-and-its-clearance
- #4) https://www.coleparmer.co.uk/p/oakton-pc-700-benchtop-ph-conductivity-meters/58971
- #5) https://blogs.ubc.ca/communicatingscience2018w112/2018/11/12/is-hard-water-bad-for-your-health/
- #6) https://laundryledger.com/how-hard-water-affects-the-laundry-process/
- *#7) David, S. (2005) The Effects of High Salinity Groundwater on the Performance of Clay Barriers. SKI Report 2005:54, p. 5.*