Structure, Morphology Projection

Read

Ott Chapter 4, 5 (5.5, 5.7, 5.8 제외)
Hammond Chapter 5.1 ~ 5.6; 12.1 ~ 12.3
Krawitz chapter 2.5, 2.6, 2.7 (page 48-62)
Cullity 2-13 (page 70-86)

Lattice + Basis = Crystal structure

> Lattice \rightarrow Crystal
\checkmark lattice points occupied by atoms, ions, or molecules
\checkmark lattice points - all identical, collection of objects - ${ }^{\circ}$ must be identical
> Lattice - rectangular unit cell projected on a-b
 plane
> Basis (motif) (arrangement of atoms in the unit
 cell) - molecule ABC
\checkmark A: 0,0,0
B: $x_{1}, y_{1} z_{1}$
$C: x_{2}, y_{2}, z_{2}$

c)

Crystal structure

Crystals - solid chemical substance with a three- dimensional periodic array of atoms, ions, or molecules.
crystal structure

-Lattice is a pure mathematical concept.

> Primitive lattice; one lattice point per unit cell
> Non-primitive lattice; more than one lattice point per unit cell

$$
\begin{gathered}
a=b=c \\
\alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

$P \underset{\text { cubic }}{\text { simple }}$

F face centered cubic

body centered cubic

Structure of $\mathrm{CsCl}, \mathrm{CsI}$

> cesium iodide (Csl)

$$
\begin{aligned}
& \checkmark a_{o}=b_{o}=c_{0}=4.57 \AA, \\
& \checkmark \alpha=\beta=\gamma=90^{\circ} \\
& \checkmark \text { basis } I^{-}: 0,0,0 \quad \mathrm{CS}^{+}: 1 / 2,1 / 2,1 / 2
\end{aligned}
$$

Structure: CsCl type
Bravais lattice: simple cubic Ions/unit cell: $1 \mathrm{Cs}^{+}+1 \mathrm{Cl}^{-}$
Z (number of formula units per unit cell) = 1

Z; number of formula units per unit cell

> Once Z is known, density (ρ) can be calculated using structural data. $(\mathbf{Z} \rightarrow \rho)$

```
\(>\rho=\mathrm{m} / \mathrm{V}\left(\mathrm{g} / \mathrm{cm}^{3}\right)\)
    \(m=(Z M) / N_{A}\)
    \(\rightarrow \rho=(Z \mathrm{M}) /\left(\mathrm{N}_{\mathrm{A}} \mathrm{V}\right)\left(\mathrm{g} / \mathrm{cm}^{3}\right)\)
    \(\checkmark \mathrm{m}=\) mass of the atoms in the unit cell
    \(\checkmark \mathrm{V}=\) volume of the unit cell
    \(\checkmark \mathrm{M}=\) molar mass
    \(\checkmark \mathrm{N}_{\mathrm{A}}=\) Avogadro number
                                \(\varrho_{\text {CsI }}=\frac{1 \cdot 259.81}{6.023 \cdot 10^{23} \cdot 4.57^{3} \cdot 10^{-24}}=4.52 \mathrm{~g} \mathrm{~cm}^{-3}\).
    \(\checkmark \mathrm{M} / \mathrm{N}_{\mathrm{A}}=\) the mass of one chemical formula
\(>Z\) can be estimated from the measured density. ( \(\rho \rightarrow \mathbf{Z}\) )
```


Anatase $\left(\mathrm{TiO}_{2}\right)$

Brookite $\left(\mathrm{TiO}_{2}\right)$

Calcite $\left(\mathrm{CaCO}_{3}\right)$

Quartz (SiO_{2})

Corundum $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$

Ruby ($\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Cr}$ 불순물)

Sapphire $\left(\mathrm{Al}_{2} \underline{O}_{3}\right)$

Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

Morphology

> Morphology - the set of faces and edges which enclose a crystal
> Relationship between crystal structure (internal structure) and morphology (external surface)
\checkmark Every crystal face lies // to a set of lattice planes; parallel crystal faces correspond to the same set of planes.
\checkmark Every crystal edge is // to a set of lattice lines
(hkl) - crystal face
> [uvw] - crystal edge

Fig. 4.1 a, b. Correspondence between crystal structure (a) and morphology (b) in galena (PbS). In a, the atoms are reduced to their centres of gravity (c) shows the atoms occupying the (100), (010) or (001) face.

Morphology - form

> Form (결정형): a set of "equal" faces; 한 결정에서 외형을 이루는 equivalent faces들의 집단, \{hkl\}로 나타냄.

(a)

(b)

(c)

(d)

(e)

(f)

졀정형과 취형
(a) $\{100\}$, 정육면체 (b) $\{111\}$, 정팔면체
(c) $\{101\}$, 능면 십이면체 (d) $\{211\}$, 이십사면체
(e) $\{100\} \cdot\{111\}$, 정육면체와 정팔면체의 취형
(f) $\{100\} \cdot\{111\} \cdot\{110\}$, 정육면체, 정팔면체, 정십이면체의 취형
> Habit (정벽):
\checkmark the characteristic external shape of an individual crystal or crystal group. A single crystal's habit is a description of its general shape and its crystallographic forms, plus how well developed each form is.
\checkmark 결정 성장 속도의 차이로 인하여,다른 결정 외면의 상대적인 발달에 따라 어 떤 특정한 결정형이 두드러지게 잘 나타나는 성질
\checkmark three basic types of habit - equant, planar (tabular), prismatic (acicular)
Fig. 5.2a-c
The three basic habits: (a) equant, (b) planar or tabular, (c) prismatic or acicular with the relative rates of growth in different directions shown by arrows

a) Intro to Crystallography, 2021
Growth

b)
c)

Morphology - zone

> Zone: a set of non-// planes which are all // to one axis (called zone axis)
> Tautozonal: faces belonging to the same zone

- Zone axis: a direction // to the lines of intersection
normals to all the faces in a zone are coplanar \rightarrow zone axis is normal to this plane.
$\left(h_{1}, k_{1}, l_{1}\right),\left(h_{2}, k_{2}, l_{2}\right),\left(h_{3}, k_{3}, l_{3}\right)$ are tautozonal if and only if

Does (hkl) belong to the zone [uvw]?
Check the zonal equation $h u+k v+l w=0$

(100) Belongs to the zones [(101)/(101̄)] = [010] [(110)/(1̄10)] = [001] $[(111) /(1 \overline{1} \overline{1})]=[01 \overline{1}]$ $[(1 \overline{1} 1) /(11 \overline{1})]=[011]$

External morphology

Morphology \leftarrow formation \& growth of crystals

Nucleation \& Growth

>Slower growing faces become more prominent than those growing more rapidly >Faces which eventually develop generally have low Miller indices and are often densely populated with atoms

- Law of constancy of the angle Interfacial angles remain constant

Single crystal vs Polycrystal

Development of a crystal aggregate. a Formation of several nuclei, which initially can grow independently. b Collision of growing crystallites leads to interference and irregularity in growth of the polyhedra. Eventually, the polyhedral shape of the crystallites is entirely lost. c The single crystal domains of the aggregate with their grain boundaries

Particles can be individual crystallites.

Particle size = crystallite size
> Individual crystallites are perfect.
> Boundaries

- Dislocations
- Twin walls
- Anti-phase walls
- Stacking faults

From presentation of Dr. Mark Rodriguez @ DXC 2017 "What usually causes trouble?"

Particles may be imperfect single crystals.
8

8
Particle size > crystallite size

Waseda et al. page 123

Stereographic Projection

1, Krawitz, Page 48 ~ 62 (must read)
2, Hammond, Chapter 12.1 ~ 12.3; 12.5.1
3, Oft, 5.4, 5.5, 5.6
4, Cullity $3^{\text {rd }}$ edition, Page $70 \sim 86$

Projections

3 dimensional objects \rightarrow flat surfaces

Parallel projection

> Stereographic projection- angular relationship between lattice planes and directions
> Gnomonic projection
> Orthographic projection

Stereographic projections

$\mathrm{f}=$ dihedral angle, angle b / w the faces
$n=$ angle b / w poles $=$ angle b / w normals
$\mathrm{n}=180$ - dihedral angle f

Stereographic projection

> place a crystal at the center of the sphere
> draw normal to each face from the center of the sphere
$>$ cut the surface of the sphere in the indicated points \rightarrow poles of the faces
> great circles- circles whose radius is that of the sphere
\checkmark those faces whose poles lie on a single great circle \rightarrow a single zone
\checkmark zone axis \perp plane of the great circle
> Project a line from each poles in the northern hemisphere to the south pole (the opposite is possible)
> Mark the intersection on the equator plane

Intro to Crystallography, 2021

Stereographic projection

project a line from each of the poles in the northern sphere to the south pole
$>$ mark its intersection with the plane of the equator with a point \bullet
$>$ Poles in the southern hemisphere - projected to the north pole $\rightarrow \mathbf{O}$

> those faces whose poles lie on a single great circle \rightarrow a single zone
$>$ zone axis \perp plane of the great circle

Stereographic projection

Chan Park, MSE-SNU

Hammond Chap 12

Stereographic projection

$\{100\}$ poles of a cubic crystal
$>$ Uses the inclination of the normal to the crystallographic plane
> Points are the intersection of each crystal direction with a (unit radius) sphere

Stereographic projection

Stereographic projection - great circle

Krawitz page 51

Stereographic projection - small circle

Great Circles \& Small Circles

> a device to enable the measured crystal angles to
be plotted readily as a stereographic projection.
> stereographic projection of the grid of a conventional globe oriented so that the $\mathrm{N}^{\prime}-\mathrm{S}^{\prime}$ direction lies in the plane of projection
$>$ equator, all meridians \rightarrow great circle
> parallels except equator \rightarrow small circle
> azimuthal angle $\varphi\left(0 \sim 360^{\circ}\right)$ and pole distance ρ
cf. $38^{\text {th }}$ parallel
$\checkmark \rho-0 \sim 90^{\circ}$ for faces in northern hemisphere, $-90^{\circ} \sim 0$ for faces in southern hemisphere

Chan Park, MSE-SNU

Ott Chap 5

Stereographic projections

> "Only arcs of great circles are used when angles are plotted on or estimated from a stereographic projections"
> stereographic projection superimposed on Wulff net for measurement of angle between poles
> direct measurement along great circle

Determination of angle b/w two poles

- Rotate until two poles lie on the same great circle

Intro to Crystallography, 2021

Cullity page 83
> Read
\checkmark Ott Chapter 4, 5 (5.5, 5.7, 5.8 제외)
\checkmark Hammond Chapter 5.1 ~ 5.6; 12.1 ~ 12.3; 12.5.1
\checkmark Krawitz chapter 2.5, 2.6, 2.7 (page 48-62)
\checkmark Cullity 2-13 (page 70-86)

Stereographic Projection
\checkmark Krawitz, Page 48~62
\checkmark Hammond, Chapter 12.1 ~ 12.3
\checkmark Ott, 5.4, 5.5, 5.6
\checkmark Cullity $3^{\text {rd }}$ edition, Page 70~86

Structure Morphology Projection HW (due in 1 week)
\checkmark Ott chapter 4 --- 1, 2, 3, 4, 5, 6, 7
\checkmark Ott chapter $5--1,2,3,4,5,6,10,11,12$
\checkmark Krawitz --- P2.3; P2.4; P2.5; P2.12

