Symmetry

Read
Ott Chapter 6; 10.1
Sherwood \& Cooper Chapter 3.1 ~ 3.7
Hammond Chapter 2.1 ~ 2.3; 12.5.1; 12.5.2
Krawitz Chapter 1.1 ~ 1.3

Use
http://materials.cmu.edu/degraef/pg/pg_gif.html
http://neon.mems.cmu.edu/degraef/pg/pg.html\#AGM

Unit cell

> the smallest unit of volume that contains all of the structural and symmetry information and that can reproduce a pattern in all of space by translation.

Chan Park, MSE-SNU

Intro to Crystallography, 2021

Pecharsky Chap 1

Asymmetric unit

$>$ the smallest part of the unit cell from which the whole cell can be filled exactly by the operation of all the symmetry operations
$>$ the smallest unit of volume that contains all the structural information and that can reproduce the unit cell by application of the symmetry operations.

Chan Park, MSE-SNU

Symmetry

Repetition operation = symmetry operation
\checkmark Translation

- Three non-coplanar lattice translation \rightarrow space lattice
\checkmark Rotation (회전)
\checkmark Reflection (반사)
\checkmark Inversion (반전)

Symmetry

> All repetition operations are called symmetry operations
\checkmark Symmetry consists of the repetition of a pattern by the application of specific rules
> When a symmetry operation has a locus (a point, a line, or a plane) that is left unchanged by the operation, this locus is referred to as the symmetry element

Symmetry operation	Geometrical representation	Symmetry element
Rotation	Axis (line)	Rotation axis
Inversion	Point (center)	Inversion center (center of symmetry)
Reflection	Plane	Mirror plane
Translation	vector	Translation yector

(1) Rotation;
12346
(2) Reflection; $\mathbf{m}(=\overline{\mathbf{2}})$
(3) Inversion (center of symmetry) (= $\overline{\mathbf{1}}$)
(4) Rotation-inversion; $\overline{\mathbf{1}}$ (=center of symmetry), $\overline{\mathbf{2}}$ (= mirror), $\overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{6}}$
(5) Screw axis; rotation + translation $\mathbf{2}_{1}, \mathbf{3}_{1}, \mathbf{3}_{2}, \mathbf{4}_{1}, \mathbf{4}_{2}, \mathbf{4}_{3}, \mathbf{6}_{1},---\mathbf{6}_{5}$
(6) Glide plane; reflection + translation, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{n}, \mathbf{d}$

Symmetry
360°

360°
Rotation
axis

Molecule $A B_{2}$

International notation (Hermann-Mauguin notation)
1, 2, 3, 4, 6, $\overline{1}, \overline{2}(\mathrm{~m}), \overline{3}, \overline{4}, \overline{6}$

Schoenflies notation

$$
\begin{aligned}
& \mathbf{C}_{1}=1, C_{2}=2, C_{3}=3, C_{4}=4, \mathbf{C}_{6}=6 \\
& \mathbf{C}_{i}\left(\mathbf{S}_{2}\right)=\overline{1}, \mathbf{C}_{5}=\overline{2}(m), \mathbf{C}_{3 i}\left(\mathbf{S}_{6}\right)=\overline{3}, \mathbf{S}_{4}=\overline{4}, \mathbf{C}_{3 \mathrm{~h}}=\overline{6}
\end{aligned}
$$

Rotation axis
$>n$-fold axis $n=\frac{360^{\circ}}{\phi}=\frac{2 \pi}{\phi} \quad \phi$: minimum angle required to reach a position indistinguishable from the starting point

> general plane lattice
$>180^{\circ}$ rotation about the central lattice point $\mathrm{A} \rightarrow$ coincidence

- A symbol for 2 -fold rotation axis: digit 2
\checkmark if it is \perp to the plane of the paper
$\checkmark \rightarrow$ if it is // to the plane of the paper
Order (multiplicity) of the rotation axis, $n=\frac{360^{\circ}}{\phi}=\frac{2 \pi}{\phi}$

Ott Chap 6

Equivalent vs. Identical

Two objects are EQUIVALENT

\checkmark When they can be brought into coincidence by application of a symmetry operation.
> Two objects are IDENTICAL
\checkmark When no symmetry operation except lattice translation is involved.
\checkmark equivalent by translation
$>$ All A's are equivalent to one another.
\Rightarrow All B's are equivalent to one another.
A is not equivalent to B.

n-fold axis $n=\frac{360^{\circ}}{\phi}=\frac{2 \pi}{\phi}$
ϕ : minimum angle required to reach a position indistinguishable from the starting point

Axis with $\mathrm{n}>2$ will have at least two other points lying in a plane

 normal to it.$\checkmark 3$ non-colinear points define a plane \rightarrow must be a lattice plane (translational periodicity)

3 -fold axis: $\phi=120^{\circ}, \mathrm{n}=3 \boldsymbol{A}$

4-fold axis: $\phi=90^{\circ}, \mathrm{n}=4$

Ott Chap 6

To be a lattice plane

The points generated by rotation axis must fulfil the conditions for being a lattice plane --- parallel lattice lines should have the same translation period (all the lattice points should have identical surroundings)

3-fold	
rotation axis	$>$ Lattice translation moves $\mathrm{I} \rightarrow$ IV
	>4 points produce a unit mesh of a lattice plane
	$\rightarrow 3$ fold axes are compatible with space lattice

No 5-fold rotation axis in space lattice
$>$ II-V and III-IV parallel but not equal or integral ratio

$$
\phi=72^{\circ}, \mathrm{n}=5 \quad \rightarrow \text { no } 5 \text {-fold axes in space lattice }
$$

$>$ It is impossible to completely fill the area in 2-dimensions with
＞a．almost，near，partially，partly，somewhat，ersatz，imitation， pseudo，synthetic，apparent，seeming，supposed
＞＇유사（類似），의사（擬似），준（準）＇등의 뜻：quasi－cholera（유사 콜레라 ），a quasiwar（준전쟁）．
$>$ 의사（擬似）－false；suspected；para－．

Rotation axis＞why 1，2，3， 4 and 6 only ？
$>$ limitation of ϕ set by translation periodicity

$\vec{b}=m \vec{a} \quad$ where m is an integer

$$
m a=a-2 a \cos \phi
$$

$$
m=1-2 \cos \phi
$$

$$
\cos \phi=\frac{1-m}{2}
$$

m	$\cos \phi$	ϕ	n
-1	1	2π	$\mathbf{1}$
0	$1 / 2$	$\pi / 3$	6
1	0	$\pi / 2$	4
2	$-1 / 2$	$2 \pi / 3$	3
3	-1	π	2

6-fold axis: $\phi=60^{\circ}, n=6$

> In space lattices and consequently in crystals, only $1-, 2-$, 3-, 4-, and 6 -fold rotation axes can occur.

\rightarrow Rotation by 60° around an axis \rightarrow symmetry operation
>6-fold rotation axis is a symmetry element which contains six rotational symmetry operations
$>$ Proper symmetry elements
\checkmark Rotation axes, screw axes, translation vectors
Improper symmetry elements
\checkmark Inverts an object in a way that may be imaged by comparing right \& left hands
\checkmark Inverted object is called an enantiomorph of the direct object (right vs left hand)
\checkmark Center of inversion, roto-inversion axes, mirror plane, glide plane

Reflection

> a plane of symmetry or a mirror plane, m, | (bold line)

A

B

(a)

(b)

Lattice line // m

rectangular
 centered rectangular

Lattice line tilted
w.r.t. m

$m_{y z}\left(m_{x}\right)$

Intro to Crystallography, 2021

- down
- up

Black \& Red; enantiomorphs

- down, left-hand

O up, right-hand

Inversion

$>$ center of symmetry or inversion center, ○ $\overline{1}$
centrosymmetric

All lattices are centrosymmteric

Compound symmetry operation

$>$ link of translation, rotation, reflection, and inversion operation

compound symmetry operation

\checkmark two symmetry operation in sequence as a single event

combination of symmetry operations

\checkmark two or more individual symmetry operations are combined, which are themselves symmetry operations

compound

combination
$4+\overline{1}$
$4 \& \overline{1}$ are present

Compound symmetry operation

Table 5.1. Compound symmetry operations of simple operations. The corresponding symmetry elements are given in round brackets

	Rotation	Reflection	Inversion	Translation
Rotation	\times	Roto- reflection	Roto- inversion	Screw rotation
Reflection	(Roto- reflection axis)	\times	2-fold rotation	Glide reflection
Inversion	(Roto- inversion axis)	(2-fold rotation axis)	\times	Inversion
Translation	(Screw axis)	(Glide plane)	(Inversion centre)	\times

> compound symmetry operation of rotation and inversion
$>$ rotoinversion axis $\overline{\boldsymbol{n}}$
$>1,2,3,4,6 \rightarrow \overline{\mathbf{1}}$ (=center of symmetry), $\overline{\mathbf{2}}$ (= mirror), $\overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{6}}$

$\overline{2}(\equiv m)$

O up, right
Chan Park, MSE-SNU Intro to Crystallography, 2021

$$
\overline{3} \equiv 3+\overline{1} \Delta
$$

Rare case of "compound symmetry operation = combination of symmetry operation"

A $\mathbf{3} \cong 3+1$

Rotoinversion

Rotoinversion
$>\overline{1} \equiv$ inversion center, $\overline{2} \equiv \mathrm{~m}, \overline{3} \equiv 3+\overline{1}, \overline{4}, \overline{6} \equiv 3 \perp \mathrm{~m}$
only rotoinversion axes of odd order $(\overline{1}, \overline{3})$ have an inversion center

Rotoreflection

$$
S_{1}=m \quad S_{2}=\overline{1} \quad S_{3}=\overline{6} \quad S_{4}=\overline{4} \quad S_{6}=\overline{3}
$$

The axes n and $\overline{\boldsymbol{n}}$, including $\overline{1}$ and m , are called point-symmetry elements, since their operations always leave at least one point unmoved.

Ott page $71 ; \overline{4}$ implies the presence of a parallel 2 .

Symmetry elements, Proper vs Improper

> $1,2,3,4,6$--- proper rotation axes
$>\overline{\mathbf{1}}$ (=center of symmetry), $\overline{\mathbf{2}}$ (= mirror), $\overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{6}}$--- improper rotation axes; right $\&$ left hands \rightarrow enantiomorph
$>$ Screw axes (rotation + translation) $2_{1} 3_{1} 3_{2} 4_{1} 4_{2} 4_{3} 6_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{5}$
> Glide planes (reflection + translation) a b c n d
Translation symmetry is not included in $1,2,3,4,6, \overline{\mathbf{1}}, \overline{\mathbf{2}}, \overline{\mathbf{3}}, \overline{\mathbf{4}}$, and $\overline{\mathbf{6}}$.

Proper symmetry elements

Translation 병진
Mirror plane 거울면
\checkmark Rotation axes, screw axes, translation vectors
> Improper symmetry elements
\checkmark Inverts an object in a way that may be imaged by comparing right \& left hands \checkmark Inverted object is called an enantiomorph of the direct object (right vs left hand)
\checkmark Center of inversion, roto-inversion axes, mirror plane, glide plane

Enantiomorphous objects

1 -fold rotation axis

Center of inversion

2-fold rotation axis

$\overline{2}=m$

Rotation axes

4-fold rotation axis

$\overline{4}$

6-fold rotation axis
$\overline{6}$

Start with 2 and $\overline{1}$ (on 2) $\rightarrow m$

New symmetry element " m " emerged as the result of the sequential application of two symmetry elements (" 2 " then " $\overline{1}$ ") to the original object.

$2 \times \overline{1}($ on 2$)=\overline{1}($ on 2$) \times 2=m(\perp 2$ thru $\overline{1})$
$2 \times m(\perp 2)=m(\perp 2) \times 2=\overline{1}(@ m \perp 2)$
$\mathrm{mX} \overline{1}(\mathrm{on} \mathrm{m})=\overline{1}(\mathrm{on} \mathrm{m}) \times \mathrm{m}=2(\perp \mathrm{~m}$ thru $\overline{1})$
When two symmetry elements interact, they result in additional symmetry element(s).

Interaction of symmetry elements

Start with 2 and $m @ 45$ degree angle $\rightarrow m, 2, \overline{4}$

Symmetry group

Complete set of symmetry elements \rightarrow symmetry group
$>$ Limited \# of symmetry elements (ten) \& all valid combination among them
$\rightarrow 32$ crystallographic symmetry groups $\rightarrow 32$ point groups
$>$ Limited \# of symmetry elements (ten) + the way in which they interact with each other \rightarrow limited \# of completed sets of symmetry elements (32 symmetry groups $=32$ point groups)
$>$ Point group \leqslant symmetry elements in these groups have at least one common point and, as a result, they leave at least one point of an object unmoved.

When a symmetry operation has a locus (that is a point, a line, or a plane) that is left unchanged by the operation, this locus is referred to as the symmetry element.

Chan Park, MSE-SNU

7 crystal systems

$>$ Combination of symmetry elements $\&$ their orientations w.r.t. one another defines the crystallographic axes.

- Axes can be chosen arbitrarily, but are usually chosen w.r.t. specific symmetry elements present in a group.
$\checkmark / /$ rotation axes or $\perp \mathrm{m}$
> All possible 3-D crystallographic point groups can be divided into a total of 7 crystal systems based on the presence of a specific symmetry elements or specific combination of them present in the point group symmetry.
$>$ (7 crystal systems) X 5 (types of lattices) $\rightarrow 14$ different types of unit cells are required to describe all lattices (14 Bravais lattices).

New symmetry operations in centered Lattices
> orthorhombic C-lattice

> reflection at $\frac{1}{4}, y, z$

+ translation $\frac{\vec{b}}{2}$
$0,0,0 \rightarrow \frac{1}{2}, \frac{1}{2}, 0$
> glide reflection
> glide plane (b-glide)
> orthorhombic l-lattice

> rotation about $\frac{1}{4}, \frac{1}{4}, z$
+ translation $\frac{\vec{c}}{2}$
$0,0,0 \rightarrow \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
> screw rotation
> screw axis (2_{1}-screw)

Compound symmetry operation

Table 5.1. Compound symmetry operations of simple operations. The corresponding symmetry elements are given in round brackets

	Rotation	Reflection	Inversion	Translation
Rotation	\times	Roto- reflection	Roto- inversion	Screw rotation
Reflection	(Roto- reflection axis)	\times	2-fold rotation	Glide reflection
Inversion	(Roto- inversion axis)	(2-fold rotation axis)	\times	Inversion
Translation	(Screw axis)	(Glide plane)	(Inversion centre)	

Chan Park, MSE-SNU Intro to Crystallography, 2021

Glide plane

i) reflection
ii) translation by the vector \vec{g} parallel to the plane of reflection where $|\vec{g}|$ is called glide component

\vec{g} is one half of a lattice translation parallel to the glide plane

$$
|\vec{g}|=\frac{1}{2}|\vec{t}|
$$

$>$ Glide plane can only occur in an orientation that is possible for a mirror plane.

Glide plane

Orthorhombic $\mathbf{P 2}$ /m2/m2/m

Fig. 6.9 a-f. The orthorhombic crystal system

Mirror planes along (100), (010), (001)

Glide plane // (100)

Reflection plus $1 / 2$ cell translation
> a - glide: $a / 2$ translation
> b - glide: $b / 2$ translation
> c - glide: $c / 2$ translation
$>n$ - glide (normal to a): $b / 2+c / 2$ translation
$>n$ - glide (normal to b): $a / 2+c / 2$ translation
$>n$-glide (normal to c): $a / 2+b / 2$ translation
$>d$ - glide : $(a+b) / 4,(b+c) / 4,(c+a) / 4$
g-glide line (two dimensions)

Glide plane

Orthorhombic cell projected on x, y, o

c c-glide at $\mathrm{x}, \frac{1}{2}, \mathrm{z}$

Glide plane

Orthorhombic cell projected on x, y, o

d n-glide at $x, y, \frac{1}{4}$ with glide component $\left.\left|\frac{1}{2}\right| \vec{a}+\vec{b} \right\rvert\,$

e n-glide at $0, y, z$ with glide component $\frac{1}{2}|\vec{b}+\vec{c}|$

Screw axis

i) rotation $\phi=\frac{2 \pi}{X}(X=1,2,3,4,6)$
ii) translation by a vector \vec{S} parallel to the axis where $|\vec{S}|$ is called the screw component

$$
\begin{gathered}
|\vec{s}|=\frac{p}{X}|\vec{t}| \quad \mathrm{p}=0,1,2 \ldots, \mathrm{X}-1 \\
X_{p}=X_{0}, X_{1}, \ldots . X_{X-1}
\end{gathered}
$$

Screw tetrads

4_{0} is 4-fold rotation axis
4_{1} is a 90° rotation plus $1 / 4$ cell translation (right-handed)
4_{2} is a 90° rotation plus $1 / 2$ cell translation (no handedness)
4_{3} is a 90° rotation plus $3 / 4$ cell translation (right-handed) $=\mathrm{a}$ 90° rotation plus $1 / 4$ cell translation (left-handed)

> Sets of points generated by 4_{1} and 4_{3} are a pair of enantiomorphs (mirror images of one another)

41

42

43

Type of symmetry element	Written symbol	Graphic	symbol
Center of Symmetry	T	-	
Mirror plane		Perpendicular to paper	In plane of
	m	\square	
Glide plane	a b c	$\substack{\text { glide in plane } \\ \text { of paper }}$	arrow shows glide direction
		glide out of plane of paper	
	n	-.-------.-	\square
Rotation	2	0	\longrightarrow
	3	A	
	4		
	6		
Screw Axis	$\begin{array}{lll}21 & \\ 3 & \\ 3 & 3\end{array}$	O	\longrightarrow
		A	
	$\begin{array}{llll}\mathbf{4}_{1} & \mathbf{4}_{2} & \mathbf{4}_{3}\end{array}$		
Inversion Axis	$\begin{array}{llllll}6_{1} & 6_{2} & 6_{3} & 6_{4} & 6_{5}\end{array}$		4
	$\overline{3}$	A	
	$\overline{4}$	-	
	$\overline{6}$	(2)	

Chan Park, MSE-SNU

Symmetry elements of a Cube

> center of symmetry
> nine mirror planes
$>$ six diad axes (2-fold rotation axes)
\rightarrow four triad axes (3-fold rotation axes)
$>$ three tetrad axis (4-fold rotation axes)

Orthogonal : 3

Diagonal: 6

$X=2$

$X=3$

$X=4$
> Octahedron ; the same symmetry elements as a cube - check this out!
$>$ Tetahedron ; 6 mirror planes, 3 inverse tetrad ($\overline{4}$) axes, 4 triad axes check this out!

Coordinate Transformation

Algebraic description of symmetry operations

Ott Chap 11
Pecharsky Chap 4.2

Chan Park, MSE-SNU
Intro to Crystallography, 2021
Pecharsky chap 4

Transformation of coordinates of a point - Rotation

n^{i}; i times of n -fold rotation operation

$$
\checkmark \mathrm{n}^{1} \cdot \mathrm{n}^{1}=\mathrm{n}^{2}, \quad \mathrm{n}^{\mathrm{i}} \cdot \mathrm{n}^{\mathrm{n}-\mathrm{i}}=\mathrm{n}^{\mathrm{n}}=1
$$

$>$ Matrix representation of rotation in Cartesian coordinate
$y^{\prime}=x \sin \phi+y \cos \phi$

$$
\underline{z^{\prime}=}
$$

Linear transformation of coordinates on the plane

Rotation matrix - R

$$
R\left(4_{z}^{1}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad R\left(4_{z}^{2}\right)=R\left(2_{z}^{1}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad R\left(4_{z}^{3}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
R\left(4_{z}^{1}\right) \bullet R\left(4_{z}^{2}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=R\left(4_{z}^{3}\right)
$$

$$
R\left(6_{z}^{1}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \quad R\left(6_{z}^{2}\right)=R\left(3_{z}^{1}\right) \quad R\left(6_{z}^{5}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Inversion

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y \\
& z^{\prime}=-z
\end{aligned}
$$

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$$
R(\overline{1})=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

rotation \quad| $x^{\prime}=x \cos \phi-y \sin \phi$ |
| :--- |
| $y^{\prime}=x \sin \phi+y \cos \phi$ |
| $z^{\prime}=z$ |\(\quad\left(\begin{array}{l}x^{\prime}

y^{\prime}

z^{\prime}\end{array}\right)=\left($$
\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1\end{array}
$$\right)\left($$
\begin{array}{l}x \\
y \\
z\end{array}
$$\right)\)
inversion

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y \\
& z^{\prime}=-z
\end{aligned} \quad\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

rotoinversion	$x^{\prime}=-x \cos \phi+y \sin \phi$
$y^{\prime}=-x \sin \phi-y \cos \phi$	
$z^{\prime}=-z$	\(\quad\left(\begin{array}{l}x^{\prime}

y^{\prime}

z^{\prime}\end{array}\right)=\left[$$
\begin{array}{ccc}-\cos \phi & \sin \phi & 0 \\
-\sin \phi & -\cos \phi & 0 \\
0 & 0 & -1\end{array}
$$\right)\left($$
\begin{array}{l}x \\
y \\
z\end{array}
$$\right)\)

Reflection

$$
\begin{aligned}
& x_{2}=x_{1} \\
& y_{2}=y_{1} \\
& z_{2}=-z_{1} \\
& R\left(m_{z}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \left|R\left(m_{z}\right)\right|=-1
\end{aligned}
$$

$$
\begin{aligned}
x_{2} & =-x_{1} \\
y_{2} & =y_{1} \\
z_{2} & =z_{1} \\
R\left(m_{x}\right) & =\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

old axis unit vector a, b, c new axis unit vector $a^{\prime}, b^{\prime}, c^{\prime}$

$$
\begin{array}{ll}
\begin{array}{l}
a^{\prime}=p_{11} a+p_{12} b+p_{13} c \\
b^{\prime}=p_{21} a+p_{22} b+p_{23} c \\
c^{\prime}=p_{31} a+p_{32} b+p_{33} c
\end{array} \\
\begin{array}{l}
a^{\prime}=P a \\
\begin{array}{l}
a=q_{11} a^{\prime}+q_{12} b^{\prime}+q_{13} c^{\prime} \\
b=q_{21} a^{\prime}+q_{22} b^{\prime}+q_{23} c^{\prime} \\
c=q_{31} a^{\prime}+q_{32} b^{\prime}+q_{33} c^{\prime}
\end{array}
\end{array}\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
b \\
c
\end{array}\right)=\left(\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right)\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right) \\
\quad a=Q a^{\prime} & P Q=I
\end{array}
$$

Transformation of coordinate system

bcc to rhombohedral

$$
\begin{aligned}
& a_{R}=-\frac{1}{2} a_{I}+\frac{1}{2} b_{I}+\frac{1}{2} c_{I} \\
& b_{R}=\frac{1}{2} a_{I}-\frac{1}{2} b_{I}+\frac{1}{2} c_{I} \\
& c_{R}=\frac{1}{2} a_{I}+\frac{1}{2} b_{I}-\frac{1}{2} c_{I} \\
& a_{I}=0 a_{R}+1 b_{R}+1 c_{R} \\
& b_{I}=1 a_{R}+0 b_{R}+1 c_{R} \\
& c_{I}=1 a_{R}+1 b_{R}+0 c_{R} \\
& P=\left(\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) \quad Q=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

fcc to rhombohedral

$$
\begin{array}{ll}
a_{o}=b_{o} \neq \mathrm{c}_{\mathrm{o}} & a_{o}^{\prime}=b_{o}^{\prime}=\mathrm{c}_{\mathrm{o}}^{\prime} \\
\alpha=\beta=90^{\circ} \quad \gamma=120^{\circ} & \alpha=\beta=\gamma
\end{array}
$$

 trigonal R - rhombohedral P

Chan Park, MSE-SNU

Ott page 88, page 267
61
todos
Read
\checkmark Ott Chapter 6; 10.1
\checkmark Sherwood \& Cooper Chapter 3.6
\checkmark Hammond Chapter 2.1 ~ 2.3; 12.5.1; 12.5.2
\checkmark Krawitz Chapter 1.1 ~ 1.3
Use
\checkmark http://materials.cmu.edu/degraef/pg/pg_gif.html
\checkmark http://neon.mems.cmu.edu/degraef/pg/pg.htm|\#AGM
> Symmetry HW (due in 1 week)
\checkmark Ott chapter 6 --- 1, 3, 4, 5, 6, 9
\checkmark Ott chapter 7 --- 1, 2, 3, 4, 5, 9

