Physical unit processes I

1

Physical unit processes

- Physical unit processes used in wastewater treatment
 - Screening
 - Coarse solids reduction
 - Flow equalization
 - Mixing and flocculation
 - Grit removal
 - Sedimentation (primary/secondary)
 - Flotation
 - Aeration
 - Depth filtration
 - Membrane filtration
 - VOC removal
 - Air stripping
 - Carbon adsorption

Physical unit processes I

Physical processes used for solid/liquid separation

- Simple preliminary treatment methods: screens
- Particle settling
 - Fundamentals: settling types & theory
 - Particle removal in sedimentation basins
 - Practical application: grit removal & primary sedimentation

- A device with openings, generally of uniform size, used to retain solids found in the wastewater treatment plant influent or in the combined sewer overflows
- Goal: to remove coarse materials that could i) damage subsequent process equipment, ii) reduce overall treatment process reliability and effectiveness, or iii) contaminate waterway
- Classification (by opening size)
 - Coarse screens: >6 mm
 - Fine screens: 0.5-6 mm
- Major issue: <u>headloss</u> (more significant for smaller opening size)

Coarse screens (bar racks)

- Used to protect pumps, valves, pipelines, and other apparatus from damage or clogging by rags and large objects
- Manually-cleaned (old and/or small plants) vs. mechanically cleaned screens

Manually-cleaned bar screen

#1

Mechanically-cleaned bar screen

Fine screens – uses

- Additional preliminary treatment following coarse bar screens
- Primary treatment as a substitute for primary clarifiers
- CSO treatment
- Non-point source pollution (surface runoff) control

Fine screens – examples

Typical fine screens for preliminary & primary treatment: (a) Static wedge wire; (b) wedge-wire drum screen; (c) section through wedge wire screen; (d) traveling band screen; and (e) step screen

Fine screens – examples

Sanitary sewer at exit from overflow chamber exit from bypass channel in overflow chamber

Devices used for the screening of CSOs: (a) view of horizontal screen during installation and its operating mechanism; (b) tangential flow device with separation screen

8

Screenings

- Materials retained on screens
- Characteristics
 - Screenings retained on coarse screens
 - Mainly inert materials (rocks, branches, pieces of lumber, leaves, paper, tree roots, plastics, rags, ...)
 - Some accumulation of oil and grease and organic matter may occur
 - Screenings retained on fine screens
 - Small rags, paper, plastic materials, razor blades, grit, undecomposed food waste, feces, ...
 - Slightly lower specific weight, higher moisture content, and high organic matter content than screenings on coarse screens
 - Biodegradable organic matter putrefies to generate odor, so additional care is required

Screenings – handling, processing, disposal

- Screening handling and processing
 - Major goal: volume reduction
 - Dewatering and compaction
- Screening disposal
 - 1) Removal by moving to disposal areas (landfill) most common
 - 2) Burial on the plant site (only for small plants)
 - 3) Incineration
 - 4) Discharge to grinders or macerators and return to the wastewater

Particle settling fundamentals – Types of settling

- Class I settling <u>Discrete particle settling</u>
 - At low solids concentration
 - Particles settle as individual entities, no significant interaction with neighboring particles
 - ex) removal of grit and sand particles
- Class II settling Flocculent settling
 - Particles grow as they settle
 - Settling velocity increases as particles grow in size
 - ex) primary settling & upper part of secondary clarifier

#5

Types of settling (cont'd)

- Class III settling zone (or hindered) settling
 - At higher solids concentration than Class I or II interparticle forces are sufficient to hinder the settling of neighboring particles
 - Mass of particles settles as a unit; a solid-liquid interface develops at the top
 - ex) major part of secondary clarifier
- Class IV settling <u>compression settling</u>
 - When solids concentration is sufficiently high a structure is formed
 - Settling occurs only by compression of the structure by the weight of particles
 - Observed phenomenon is more like squeezing of water out of the structure
 - ex) bottom of deep secondary clarifier, sludge-thickening facilities

Particle settling theory – discrete particles

• Force applied to a settling particle (Assumption: spherical particle)

$$F_B = \rho_w g V_p$$

 $\rho_w = water \ density \ (kg/m^3)$ $g = gravity \ acceleration \ (9.81 \ m/s^2)$ $V_n = particle \ volume \ (m^3)$

$$F_M = \rho_p g V_p$$

 ρ_p = particle density (kg/m³)

$$F_{D} = \frac{C_{D}A_{p}\rho_{w}v_{p}^{2}}{2}$$

$$C_{d} = drag \ coefficient \ (unitless)$$

$$A_{p} = cross-sectional \ area \ of \ particles \ in \ the \ direction \ of \ flow \ (m^{2})$$

Particle terminal velocity

• The terminal velocity of particle is achieved when the three forces are balanced:

$$F_M = F_B + F_D$$

$$rac{1}{1} v_{p(t)} = \sqrt{\frac{4g}{3C_D} \left(\frac{\rho_p - \rho_w}{\rho_w}\right) d_p}$$

 $v_{p(t)}$ = particle terminal velocity (m/s) d_p = particle diameter (m)

Drag coefficient, C_D

• Divide the flow regime into three regions – laminar, transitional and turbulent – based on Reynolds number

• Reynolds number, N_R

- A dimensionless number to describe the relative amount of impelling force to viscous force
- High $N_R \rightarrow$ more turbulence

$$N_R = \frac{v_p d_p \rho_w}{\mu} = \frac{v_p d_p}{\upsilon}$$

 μ = dynamic viscosity of water [N-s/m²]

v = kinematic viscosity of water [m²/s]

Correlation between N_R and C_D

#6

Correlation between N_R and C_D

1) Laminar region: $N_R < 1$

$$C_D = \frac{24}{N_R} \quad \Longrightarrow \quad v_{p(t)} = \frac{g(\rho_p - \rho_w)d_p^2}{18\mu}$$
 "Stokes' Law"

2) Transitional region: $1 < N_R < 2000$

Use following eq. for approximation of C_D :

$$C_D = \frac{24}{N_R} + \frac{3}{\sqrt{N_R}} + 0.34$$

3) Turbulent region: $N_R > 2000$

Assume
$$C_D \approx 0.4$$

Accounting for deviation from a sphere

- For non-spherical particles
 - Use "sphericity" to account for shape variation

 $\Psi = \frac{(A/V)_{sphere}}{(A/V)_{particle}} \qquad \Psi = sphericity \qquad \Psi \approx 0.8 \text{ for sharp, angular sand} \\ \Psi \approx 0.94 \text{ for worn sand}$

- Apply "effective spherical diameter" in the equations
 - $d_p' = \Psi \cdot d_p$ $d_p' = effective spherical diameter$ $d_p = characteristic length$

[Typical sphericity for different shapes]

Particle	Sphericity	Characteristic length
Sphere	1.00	Diameter
Cube	0.806	Height
Cylinder (h=10r)	0.691	Length
Disc (h=r/10)	0.323	Diameter

Q: Determine the terminal settling velocity of a spherical bacterial floc having a density of 1.050 x 10³ kg/m³ when the floc size is i) 10⁻⁴ m and ii) 10⁻³ m, respectively. Assume the flocs are spherical. Assume the temperature is 20°C. ($\rho_w = 0.998 \times 10^3$ kg/m³ and $\mu = 1.002 \times 10^{-3}$ N-s/m²)

i) 10⁻⁴ m = 0.1 mm

a) Determine $v_{p(t)}$ using Stoke's law

$$v_{p(t)} = \frac{g(\rho_p - \rho_w)d_p^2}{18\mu} = \frac{9.81 \, m/s^2 \cdot (1.050 - 0.998) \times 10^3 \, kg/m^3 \cdot (10^{-4} \, m)^2}{18 \cdot (1.002 \times 10^{-3} \, N - s/m^2)}$$
$$= 2.83 \times 10^{-4} \, m/s$$

b) Check N_R

$$N_{R} = \frac{v_{p}d_{p}\rho_{w}}{\mu} = \frac{(2.83 \times 10^{-4} \text{ m/s}) \cdot (10^{-4} \text{ m}) \cdot (0.998 \times 10^{3} \text{ kg/m}^{3})}{1.002 \times 10^{-3} \text{ N} - \text{s/m}^{2}} = 0.028$$

$$\square N_{R} < 1, \text{ so Stoke's law applies as assumed.}$$

So, $\underline{v_{p(t)}} = 2.83 \times 10^{-4} \text{ m/s}$

ii) 10⁻³ m = 1 mm

a) Determine $v_{p(t)}$ using Stoke's law

$$v_{p(t)} = \frac{g(\rho_p - \rho_w)d_p^2}{18\mu} = \frac{9.81 \, m/s^2 \cdot (1.050 - 0.998) \times 10^3 \, kg/m^3 \cdot (10^{-3} \, m)^2}{18 \cdot (1.002 \times 10^{-3} \, N - s/m^2)}$$
$$= 2.83 \times 10^{-2} \, m/s$$

b) Check N_R

$$N_{R} = \frac{v_{p}d_{p}\rho_{w}}{\mu} = \frac{(2.83 \times 10^{-2} \text{ m/s}) \cdot (10^{-3} \text{ m}) \cdot (0.998 \times 10^{3} \text{ kg/m}^{3})}{1.002 \times 10^{-3} \text{ N} - \text{s/m}^{2}} = 28$$

$$\Box > N_{R} > 1, \text{ so Stoke's law cannot be applied.}$$

c) Use the N_R calculated and apply the transient region solution

$$C_D = \frac{24}{N_R} + \frac{3}{\sqrt{N_R}} + 0.34 = \frac{24}{28} + \frac{3}{\sqrt{28}} = 1.76$$
$$v_{p(t)} = \sqrt{\frac{4g}{3C_D} \left(\frac{\rho_p - \rho_w}{\rho_w}\right) d_p} = \sqrt{\frac{4 \cdot 9.81 \, m/s^2}{3 \cdot 1.76} \left(\frac{1.050 - 0.998}{0.998}\right) \cdot 10^{-3} \, m}$$
$$= 1.97 \times 10^{-2} \, m/s$$

The result does not match with the $v_{p(t)}$ used to get N_R (Stoke's solution – 2.83 x 10⁻² m/s)

Have to assume a smaller $v_{p(t)}$

d) Assume $v_{p(t)}$, calculate $N_{R'}$ then calculate $C_{D'}$ then calculate $v_{p(t)}$ until assumed $v_{p(t)}$ = calculated $v_{p(t)}$

Eventually, if you assume $v_{p(t)} = 1.7 \times 10^{-2} m/s$,

$$N_R = \frac{\nu_p d_p \rho_w}{\mu} = \frac{(1.7 \times 10^{-2} \ m/s) \cdot (10^{-3} \ m) \cdot (0.998 \times 10^3 \ kg/m^3)}{1.002 \times 10^{-3} \ N - s/m^2} = 16.9$$

$$C_{D} = \frac{24}{N_{R}} + \frac{3}{\sqrt{N_{R}}} + 0.34 = \frac{24}{16.9} + \frac{3}{\sqrt{16.9}} = 2.49$$

$$v_{p(t)} = \sqrt{\frac{4g}{3C_{D}} \left(\frac{\rho_{p} - \rho_{w}}{\rho_{w}}\right) d_{p}} = \sqrt{\frac{4 \cdot 9.81 \ m/s^{2}}{3 \cdot 2.49} \left(\frac{1.050 - 0.998}{0.998}\right) \cdot 10^{-3} \ m/s}$$

$$= 1.65 \times 10^{-2} \ m/s \qquad (close \ to \ the \ assumption)$$

So,
$$\underline{v_{p(t)}} \approx 1.7 \times 10^{-2} \ m/s$$

You may use computer software (e.g, Excel "find solution" function) to automate the calculation! 23

Assume a rectangular sedimentation basin:

particle 1: $v_{s1} < v_o \rightarrow$ partial removal particle 2: $v_{s2} = v_o \rightarrow 100\%$ removal particle 3: $v_{s3} > v_o \rightarrow 100\%$ removal

- Designing sedimentation basins
 - Select a particle with a terminal velocity v_o and design the basin such that the particle can just be 100% removed
 - particles with terminal velocity greater than v_o will be 100% removed
 - particles with terminal velocity smaller than v_o will be partially removed

Overflow rate

From the diagram in the previous slide,

(time for water to flow through the settling zone) [1] = (settling zone length, L) / (horizontal velocity, v_h) (time for particle with settling vel. of v_o entering at the top, to settle) [2] = (settling zone height, H) / (settling velocity, v_o)

Equating [1] and [2],
$$\frac{L}{v_h} = \frac{H}{v_o}$$

$$v_o = \frac{Q}{A}$$

$$v_o = \underline{overflow \ rate} \ (m/s)$$

$$A = surface \ area \ of \ settling \ zone \ (m^2)$$

Particle removal rates

• Removal rate for particles with settling velocity less than v_o

$$X_r = \frac{v_p}{v_o}$$
 X_r = fraction removed for particles with settling velocity v_p

• Removal rate for particles with a range of different settling

Fraction removed =
$$(1 - x_c) + \int_0^{x_c} \frac{v_p(x)}{v_o} dx$$

 $\begin{aligned} x &= fraction \ of \ particles \ having \ terminal \ velocity \ v_p(x) \\ x_c &= fraction \ of \ particles \ with \ v_p(x) \ smaller \ than \ v_o \\ 1 &- x_c = fraction \ of \ particles \ with \ v_p(x) \ greater \ than \ v_o \end{aligned}$

Estimating settling velocity by experiments

- Issues of theoretical determination of settling velocities
 - A large gradation of particle sizes for wastewater
 - Not easy to estimate terminal settling velocities of a large range of particles using theoretical calculations
 - Flocculant settling occurs in primary sedimentation basins
- ➔ To characterize the wastewater particle settling characteristics, a settling column test is often used and a settling curve is constructed

Q: Determine the removal efficiency for a sedimentation basin with an overflow rate of 2 m/h. The settling velocity distribution for the particles in the wastewater is provided below.

Settling velocity, m/h	Number of particles per liter x 10 ⁻⁵
0.0-0.5	30
0.5-1.0	50
1.0-1.5	90
1.5-2.0	110
2.0-2.5	100
2.5-3.0	70
3.0-3.5	30
3.5-4.0	20
total	500

Average settling velocity, m/h (A)	# particles/L x 10 ⁻⁵ (B)	Fraction removed (C)	# particles removed/L x 10 ⁻⁵ (D)
0.0-0.5	30	0.125	3.75
0.5-1.0	50	0.375	18.75
1.0-1.5	90	0.625	56.25
1.5-2.0	110	0.875	96.25
2.0-2.5	100	1.000	100
2.5-3.0	70	1.000	70
3.0-3.5	30	1.000	30
3.5-4.0	20	1.000	23
total	500	1.000	395.00

 $(C) = (A) / v_o \text{ if } (A) < v_o, \quad (C) = 1.000 \text{ if } (A) \ge v_o$ $(D) = (C) \times (B)$

 $Total \ fraction \ removed = \frac{Total \ \# \ of \ particles \ removed}{Total \ \# \ of \ particles \ in \ the \ influent} \times 100 \ (\%)$

$$=\frac{500\times10^5/L}{395\times10^5/L}\times100\ (\%)=79\%$$

Grit removal

• Grit: sand, gravel, cinders, or other heavy solid materials that have settling velocities substantially greater than those of the organic solids in wastewater

Necessity of grit removal

- Reduce formation of heavy deposits in reactors, pipelines, and channels
- Reduce the frequency of digester cleaning caused by excessive accumulations of grit
- Protect moving mechanical equipment from abrasion and accompanying abnormal wear

Types of grit chambers (1)

- Horizontal-flow grit chambers
 - Rectangular horizontal-flow grit chambers: oldest type, velocity-controlled
 - Square horizontal-flow grit chambers

Types of grit chambers (2)

• Aerated grit chambers

Air is introduced along one side of a rectangular tank to create a spiral flow pattern

Typical aerated grit chamber: (a) cross-section through grit chamber and (b) schematic of helical flow pattern through an aerated grit chamber.

Types of grit chambers (3)

• Vortex-type grit chambers

- Mechanically induced vortex: a rotating turbine impeller enhances the toroidal motion
- Hydraulically induced vortex: vortex is generated by the flow entering the unit

Figure 5-40

Vortex-type grit chambers: (a) schematic Pista® Grit Separator (adapted from Smith & Loveless), (b) view of typical installation (courtesy of Smith & Loveless) (c) schematic of Eutek TeaCup® separator (adapted from Hydro International), (d) view of Eutek TeaCup® separator (courtesy of Hydro International), (e) section through seven-tray Eutek HeadCell® grit separator, and (f) view of Eutek HeadCell of tray grit separator (courtesy of Hydro International).

Primary sedimentation

• Objective

- <u>Remove readily settleable solids and floating material</u> in wastewater
- Removes 50-70% of SS and 25-40% of BOD
- Sedimentation tanks are also used for...
 - CSO and stormwater treatment
 - Apply moderate retention time (10-30 min) to remove a substantial portion of the organic solids in CSO or stormwater before direct discharge
 - Secondary treatment
 - Settling of microbial "floc"

Types of primary sedimentation tanks (1)

Rectangular tanks ullet

Figure 5-45

Typical rectangular primary sedimentation tank: (a) plan, (b) section, (c) view of large rectangular sedimentation tank with weirs similar to those shown on (b), and (d) view of empty tank with sludge removal mechanism.

Types of primary sedimentation tanks (2)

• Circular tanks

Both center-feed and periphery-feed types are applicable (center-feed more common)

Typical circular sedimentation tanks: (a) schematic of center feed, (b) view of center feed unit, (c) schematic of peripheral feed, and (d) view of a peripheral feed unit.

38

#12

Primary sedimentation - considerations

- Flow distribution
 - Maintain calm, consistent flow with less turbulence esp. at inlet & outlet
 - Minimize vertical flow (minimize sludge resuspension)
 - Examples of inlet designs for rectangular tanks
 - Full-width inlet channels with inlet weirs
 - Inlet channels with submerged ports or orifices
 - Inlet channels with wide gates and slotted baffles
- Sludge removal
 - How to collect settled sludge and where to install pumping facilities
- Scum removal
 - How to collect scum and remove it manually or automatically?

Primary sedimentation – design considerations

• Hydraulic retention time

 $\tau = \frac{V}{Q}$ $\tau = HRT (hr)$ V = effective tank volume (m³) O = flowrate (m³/hr)

- Overflow rate (surface loading rate)
 - Set based on target particle type and size to be removed (recall the gravity settling theory)

 $v_o = \frac{Q}{A}$ v_o = overflow rate (m³/m²-d) A = horizontal tank surface area (m²)

Primary sedimentation – typical design info.

Item	Unit	Range	Typical					
Primary sedimentation tanks followed by secondary treatment								
HRT	h	1.5-2.5	2.0					
Overflow rate Average flowrate Peak hourly flowrate	m³/m²/d	30-50 80-120	40 100					
Primary settling with waste activated sludge return								
HRT	h	1.5-2.5	2.0					
Overflow rate Average flowrate Peak hourly flowrate	m³/m²/d	24-32 48-70	28 60					

References

- #1) http://techalive.mtu.edu/meec/module21/Collection.htm
- #2) https://dir.indiamart.com/impcat/mechanical-bar-screen.html?biz=10
- #3, #4) Metcalf & Eddy, Aecom (2014) Wastewater Engineering: Treatment and Resource Recovery, 5th ed. McGraw-Hill, p. 319, 322.
- #5) https://dir.indiamart.com/vadodara/wastewater-treatment-chemical.html
- *#6)* Mann, S., Janzen, R., Meier, J. (2007) The electric hydraulophone: A hyperacoustic instrument with acoustic feedback. ICMC 07, August 27-31, 2007, Copenhagen, Denmark.
- #7-#12) Metcalf & Eddy, Aecom (2014) Wastewater Engineering: Treatment and Resource Recovery, 5th ed. McGraw-Hill, p. 352, 372, 374, 378, 384, 386.