14 Bravais Lattices

Read

Ott Chapter 7, 8

Krawitz Chapter 1.1 ~ 1.5
Hammond Chapter 2.1 ~ 2.4; 3.1 ~ 3.3; 5.1 ~ 5.6
Sherwood \& Cooper Chapter 3.1~3.7

Brief but very good summary can be found here
https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section\ 01_Crystal\ Structure.pdf

> Primitive lattice; one lattice point per unit cell
> Non-primitive lattice; more than one lattice point per unit cell
> In geometry and crystallography, a Bravais lattice is an infinite array of discrete points generated by a set of discrete translation operations described by: $\mathbf{R}=$ $n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$. This discrete set of vectors must be closed under vector addition and subtraction. For any choice of position vector \mathbf{R}, the lattice looks exactly the same. ($n_{i} ;$ any integer. $\mathbf{a}_{\mathbf{i}}$; primitive vectors which lie in different directions and span the lattice.)
> A crystal is made up of a periodic arrangement of one or more atoms (basis, motif) repeated at each lattice point. Consequently, the crystal looks the same when viewed from any of the lattice points.
> Two Bravais lattices are often considered equivalent if they have isomorphic symmetry groups. In this sense, there are only 14 possible Bravais lattices in 3dimensional space.

2D Bravais lattice (Plane lattice)

> In two dimensions, there are five Bravais lattices.

rectangular

$$
a \neq b
$$

$$
\gamma=90^{\circ}
$$

hexagonal

$$
\begin{gathered}
a=b \\
\gamma=120^{\circ}
\end{gathered}
$$

square

$$
\begin{gathered}
a=b \\
\gamma=90^{\circ}
\end{gathered}
$$

3D Bravais lattices

> The 14 Bravais lattices in 3 dimensions are obtained by coupling one of the 7 lattice systems (or axial systems) with one of lattice centerings. Each Bravais lattice refers to a distinct lattice type.
$>$ The lattice centerings are
\checkmark Body (I): one additional lattice point at center of the cell.

\checkmark Face (F): additional lattice points at centers of all the faces of the cell.
\checkmark Base (A, B or C): additional lattice points at centers of each pair of cell faces.
> Not all the combinations of crystal systems and lattice centerings are needed to describe the possible lattices.
$>$ There are in total $7 \times 5(\mathrm{P}, \mathrm{I}, \mathrm{F}, \mathrm{C}, \mathrm{R})=35$ possible combinations, but many of these are in fact equivalent to each other.
\checkmark For example, the tetragonal F lattice can be described by a tetragonal I lattice by different choice of crystal axes.
\rightarrow This reduces the number of combinations to $14 . \rightarrow 14$ Bravais lattices

Symmetry group

$>$ Complete set of symmetry elements \rightarrow symmetry group
> Limited \# of symmetry elements (ten) \& all valid combination among them $\rightarrow 32$ crystallographic symmetry groups $\rightarrow 32$ point groups
$>$ Limited \# of symmetry elements (ten) + the way in which they interact with each other \rightarrow limited \# of completed sets of symmetry elements (32 symmetry groups $=32$ point groups)
$>$ Point group \leqslant symmetry elements in these groups have at least one common point and, as a result, they leave at least one point of an object unmoved

When a symmetry operation has a locus (a point, a line, or a plane) that is left unchanged by the operation, this locus is referred to as the symmetry element.

7 Crystal systems

$>$ Combination of symmetry elements \& their orientations w.r.t. one another defines the crystallographic axes $\rightarrow 7$ crystal systems
> Axes can be chosen arbitrarily, but are usually chosen w.r.t. specific symmetry elements present in a group
$\checkmark / /$ rotation axes or $\perp \mathrm{m}$
> All possible 3-D crystallographic point groups can be divided into a total of $\underline{7}$ crystal systems based on the presence of a specific symmetry element or specific combination of them present in the point group symmetry
$>7 \times 5$ types of lattices $\rightarrow 14$ different types of unit cells are required to describe all lattices (14 Bravais lattice)

7 Crystal systems, 6 Crystal family

Table 2.6 Seven crystal systems and the corresponding characteristic symmetry elements.

Crystal system	Characteristic symmetry element or combination of symmetry elements
Triclinic Monoclinic Orthorhombic	$\underline{\text { No axes other than onefold rotation or onefold inversion }}$ Three mutually perpendicular twofold axes, either rotation or Trigersion Tetragonal Hexagonal Cubic

Trigonal \& hexagonal can be described in the same type of the lattice \rightarrow six crystal family
Axial lengths and angles ${ }^{\mathbf{a}}$
Cubic $a=b=c, \alpha=\beta=\gamma=90^{\circ}$
Tetragonal $a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$
Orthorhombic
Rhombohedral $a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$
Triclinic
Hexagonal $\quad a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$
Monoclinic
$a \neq b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
System \quad Axial lengths and angles ${ }^{a} \quad$ Unit cell geometry AL university $^{\text {a }}$

Cubic

$$
a=b=c, \alpha=\beta=\gamma=90^{\circ}
$$

Tetragonal

$$
a=b \neq c, \alpha=\beta=\gamma=90^{\circ}
$$

Orthorhombic

$$
a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}
$$

${ }^{a}$ The lattice parameters a, b, and c are unit-cell edge lengths. The lattice parameters α, β, and γ are angles between adjacent unit-cell axes, where α is the angle viewed along the a axis (i.e., the angle between the b and c axes). The inequality $\operatorname{sign}(\neq)$ means that equality is not required. Accidental equality occasionally occurs in some structures.

Rhombohedral

$$
a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}
$$

Hexagonal

$$
a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

Monoclinic

$$
a \neq b \neq c, \alpha=\gamma=90^{\circ} \neq \beta
$$

Triclinic

$$
a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}
$$

Selection of a unit cell

$>$ Trigonal \& hexagonal can be described in the same type of the lattice \rightarrow six crystal family
> Different types of crystal systems (lattices) can be identified by the presence of specific symmetry elements and their relative orientation
Table 2.10 Lattice symmetry and unit cell shapes.

Crystal family	Unit cell symmetry	Unit cell shape/parameters
Triclinic	1	$a \neq b \neq c ; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
Monoclinic	$2 / \mathrm{m}$	$a \neq b \neq c ; \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$
Orthorhombic	$4 / \mathrm{mmm}$	$a \neq b \neq c ; \alpha=\beta=\gamma=90^{\circ}$
Tetragonal	$6=b \neq c ; \alpha=\beta=\gamma=90^{\circ}$	
Hexagonal and Trigonal	$6 / \mathrm{mmm}$	$a=b \neq c ; \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Cubic	$\mathrm{m} \overline{3} \mathrm{~m}$	$A-b=c ; \alpha=\beta=\gamma=90^{\circ}$

Crystal system	Characteristic symmetry element or combination of symmetry elements
Triclinic Monoclinic Orthorhombic	No axes other than onefold rotation or onefold inversion Unique twofold axis and/or single mirror plane
Three mutually perpendicular twofold axes, either rotation or Trigonal Tetragonal Hexagonal Cubic	Unique threefold axis, either rotation or inversion
	Unique fourfold axis e either rotation or inversion Four threefold axes, either rotation or inversion, along four body diagonals of a cube

Rule \#1 --- symmetry of the unit cell should be identical to the symmetry of the lattice, except for translation

Choice of unit cell is arbitrary

\checkmark It is not always possible to select a primitive cell

Chan Park, MSE-SNU
Intro to Crystallography, 2021

Selection of a unit cell-2

Table 2.11 Rules for selecting the unit cell in different crystal systems.
$\left.\begin{array}{lll|}\hline \text { Crystal family } & \begin{array}{l}\text { Standard unit cell choice }\end{array} & \begin{array}{l}\text { Alternative unit cell choice }\end{array} \\ \hline \text { Triclinic } & \begin{array}{l}\text { Angles between crystallographic axes should be } \\ \text { as close to } 90^{\circ} \text { as possible but greater than or } \\ \text { equal to } 90^{\circ}\end{array} & \begin{array}{l}\text { Angle(s) less than or equal } \\ \text { to } 90^{\circ} \text { are allowed }\end{array} \\ \hline \begin{array}{ll}\text { Monoclinic } \\ \hline \text {-axis is chosen parallel to the unique twofold } \\ \text { rotation axis (or perpendicular to the mirror } \\ \text { plane) and angle } \beta \text { should be greater than but as } \\ \text { close to } 90^{\circ} \text { as possible }\end{array} & \begin{array}{l}\text { Same as the standard } \\ \text { choice, but } Z \text {-axis in place } \\ \text { of } Y, \text { and angle } \gamma \text { in place of }\end{array} \\ \beta \text { are allowed }\end{array}\right]$
> Rule \#3 --- minimum volume (or min \# of lattice points inside the unit cell)

Rule \# 1, 2, 3, $\rightarrow 5$ types of lattices (P, I, F, C, R)

Table 2.12 Possible lattice centering.

Centering of the lattice	Lattice points per unit cell	International symbol	Lattice translation(s) due to centering
Primitive	1	P	None
Base-centered	2	A	$1 / 2(\mathbf{b}+\mathbf{c})$
Base-centered	2	B	$1 / 2(\mathbf{a}+\mathbf{c})$
Base-centered	2	C	$1 / 2(\mathbf{a}+\mathbf{b})$
Body-centered	2	I	$1 / 2(\mathbf{a}+\mathbf{b}+\mathbf{c})$
Face-centered	4	F	$1 / 2(\mathbf{b}+\mathbf{c}) ; 1 / 2(\mathbf{a}+\mathbf{c}) ; 1 / 2(\mathbf{a}+\mathbf{b})$
Rhombohedral	3	R	$1 / 3 \mathbf{a}+2 / 3 \mathbf{b}+2 / 3 \mathbf{c} ; 2 / 3 \mathbf{a}+1 / 3 \mathbf{b}+1 / 3 \mathbf{c}$

14 Bravais lattice

7 crystal systems (6 crystal families) X 5 types of lattices
\rightarrow only 14 different types of unit cells are required to describe all lattices using conventional crystallographic symmetry $\rightarrow 14$ Bravais lattice
C

Why tetragonal F lattice is not one of 14 ?
\checkmark Because that lattice can be reduced to a lattice with different centering and/or a smaller unit cell (rule \#3)
\checkmark Or Because they do not satisfy rule \# 1 or \#2

Fig. 2.21 The reduction of the tetragonal face-centered lattice (left) to the tetragonal body-centered lattice with half the volume of the unit cell (right). Small circles indicate lattice points.

14 Bravais lattice

general space lattice

\checkmark no symmetry elements except inversion center

special space lattice

All lattices are centrosymmteric
\checkmark rotation axis and mirror plane \checkmark restriction on the cell parameters

- ex) 4_{z}-fold rotation axis $\rightarrow a=b, \gamma=90^{\circ}$
\checkmark simplifications in the crystal morphology and in the physical properties

plane lattices \rightarrow space lattices
$>$ general (oblique) lattice
$\checkmark 2$ fold axis: $1 \rightarrow 2$
\checkmark lattice translation $\vec{a}: 1 \rightarrow 3$
$\checkmark 2$ fold axis: $3 \rightarrow 4$
\rightarrow oblique parallelogram, $a_{0} \neq b_{0}, \gamma \neq 60^{\circ}, 90^{\circ}$, 120°
(1)!
a)

(3) ${ }^{2}$
(4) ${ }^{7}$
0
$\dot{2}$

c)

Position of point 3 is general

> | 7 ; need not be equivalent |
| :--- |
| $=$; are required to be equivalent by symmetry |

5 plane lattices > general \& special plane lattices

Position of point 3 is special

right triangle $a_{0} \neq b_{0}$
$\gamma=90^{\circ}$
S1

Isosceles triangle

$$
\begin{gathered}
a_{0}=b_{01} \\
\gamma \neq 60^{\circ}, 90^{\circ}, 120^{\circ}
\end{gathered}
$$

S2

Isosceles right triangle

$$
\begin{aligned}
& a_{0}=b_{0} \\
& \gamma=90^{\circ}
\end{aligned}
$$

S3

equilateral triangle $a_{0}=b_{0}$
$\gamma=120^{\circ}$
$>$ special lattice ; $\mathrm{a}_{0} \neq \mathrm{b}_{0}, \gamma=90^{\circ}$
\checkmark rectangular unit mesh
\checkmark two perpendicular mirror planes // 2 fold axes

right triangle
$\mathrm{a}_{0} \neq \mathrm{b}_{0}$
$\gamma=90^{\circ}$
(a)

5 plane lattices > special plane lattice - 2 (S2)
Position of point 3 is special $(13=32)$
$a_{0}=b_{0}, \gamma \neq 60^{\circ}, 90^{\circ}, 120^{\circ}$
extension of the edges 1-3 \& 1-4
\rightarrow alternative unit mesh, $\mathrm{a}_{0}^{\prime} \neq \mathrm{b}^{\prime}{ }_{0}, \gamma^{\prime}=90^{\circ}$
\rightarrow centered rectangular ; 2-fold axes, mirror plane

Isosceles triangle $a_{0}=b_{0}$,
$\gamma \neq 60^{\circ}, 90^{\circ}, 120^{\circ}$

b)
(b)

c)

5 plane lattices > special plane lattice - 3 (S3), 4 (S4)

Position of point 3 is special ($1,2, \&$ 3 make an isosceles right triangle)

$$
\begin{aligned}
& \overline{13}=\overline{23} \\
& a_{0}=b_{0}, \gamma=90^{\circ} \text { square mesh }
\end{aligned}
$$

4-fold axes, 4 mirror planes

(c)

Chan Park, MSE-SNU

Position of point 3 is special $(1,2, \& 3$ make an equilateral triangle)
$\overline{13}=\overline{23}$
$a_{0}=b_{0}, \gamma=120^{\circ}$ hexagonal mesh
2, 6, 3-fold axes, mirror planes

(d)

5 plane lattices

	Shape of unit mesh	Lattice parameters	Characteristic symmetry elements	
General plane lattices	Parallelogram	$\mathrm{a}_{0} \neq \mathrm{b}_{0}$ $\gamma \neq 90^{\circ}$	2	
Special plane lattice	a	Rectangle (primitive)	$\mathrm{a}_{0} \neq \mathrm{b}_{0}$ $\gamma=90^{\circ}$	m
	b	Rectangle (centred)	$\mathrm{a}_{0} \neq \mathrm{b}_{0}$ $\gamma=90^{\circ}$	m
	c	Square	$\mathrm{a}_{0}=\mathrm{b}_{0}$ $\gamma=90^{\circ}$	4
	d	120° Rhombus	$\mathrm{a}_{0}=\mathrm{b}_{0}$ $\gamma=120^{\circ}$	$6(3)$

Any two-dimensionally periodic array can be assigned to one of the 5 lattice types

Five 2-D lattice types

Cell	Name	Axial Parameters	Point groups
Oblique	$a \neq b$ $\gamma \neq 90^{\circ}$	1,2	

Rectangular

$$
\begin{gathered}
a \neq b \\
\gamma=90^{\circ}
\end{gathered}
$$

$$
\mathrm{m}, 2 \mathrm{~mm}
$$

Hexagonal

Square

$$
\begin{gathered}
a=b \\
\gamma=90^{\circ}
\end{gathered}
$$

4, 4mm
Ten 2-D point groups Ten plane point groups

See Hammond 2.3

Chan Park, MSE-SNU

Centered Rectangular

$$
\begin{gathered}
a=b \\
\gamma=120^{\circ}
\end{gathered}
$$

3, 3 m
6, 6 mm

$$
a=b
$$

$\gamma \neq 90^{\circ}$
m, 2 mm

>Stack plane lattices \rightarrow space lattice

5 space lattices with primitive unit cells from the 5 plane lattices
\rightarrow primitive space lattices

- Congruent lattice planes are stacked above one another

Shape of unit mesh in stacked layers	Interplanar spacing	Lattice
Parallelogram $\left(\mathrm{a}_{0} \neq \mathrm{c}_{0}\right)$	b_{0}	Monoclinic P
Rectangle $\left(\mathrm{a}_{0} \neq \mathrm{b}_{0}\right)$	c_{0}	Orthorhombic P
Square $\left(\mathrm{a}_{0}=\mathrm{b}_{0}\right)$	$\mathrm{c}_{0} \neq\left(\mathrm{a}_{0}=\mathrm{b}_{0}\right)$	Tetragonal P
Square $\left(\mathrm{a}_{0}=\mathrm{b}_{0}\right)$	$\mathrm{c}_{0}=\left(\mathrm{a}_{0}=\mathrm{b}_{0}\right)$	Cubic P
$120^{\circ}-$ Rhombus $\left(\mathrm{a}_{0}=\mathrm{b}_{0}\right)$	c_{0}	Hexagonal P

${ }^{\text {a }}$ Note that for historical reasons, the description $\mathrm{a}_{0} \neq \mathrm{b}_{0}, \gamma \neq 90^{\circ}$ has been changed in this case to $\mathrm{a}_{0} \neq \mathrm{c}_{0}, \beta \neq 90^{\circ}$. (See slide \# 14; standard unit cell choice of monoclinic)

Symmetry of P-lattices

The presence of any two of the following symmetry elements implies the presence of the third
$>$ Rule 1: A rotation axis of even order $\left(X_{e}=2,4,6\right)$, a mirror plane normal to X_{e} and an inversion center at the point of intersection of X_{e} and m
\rightarrow Rule 2 : Two mutually perpendicular mirror planes and a 2 -fold axis along their line of intersection

- Every lattice has inversion centers on the lattice point and midway between any two of them

Space group

All lattices are centrosymmteric
\checkmark the complete set of symmetry operations in a lattice or a crystal structure
\checkmark a group of symmetry operations including lattice translations
$\checkmark 230$ space groups

Space lattice > Triclinic P-lattice (general lattice)
$>$ When stacked directly above one another \rightarrow monoclinic
 P lattice
$>$ When lattice points of stacked plane do not coincide \rightarrow lose 2-fold axis \rightarrow triclinic P lattice \rightarrow The only point symmetry elements are inversion centres

set of 2-fold axes // b
$>$ mirror planes normal to b at $x, 0, z$ and $x, 1 / 2, z$
> inversion center

unit mesh

unit cell

($\mathrm{x}, \mathrm{0}, \mathrm{z}$ projection)
」 indicates a mirror plane // to the plane of the page at heights of 0 and $1 / 2$
stack with inter-planar spacing b_{0}

The b -axis (// to 2 and \perp to m) is called symmetry direction ("2nd setting")

Chan Park, MSE-SNU Intro to Crystallography, 2021

$$
\begin{array}{ll}
a_{o} \neq b_{o} \neq \mathrm{c}_{\mathrm{o}} & \text { point group: } \frac{2}{m} \\
\alpha=\gamma=90^{\circ}, \beta>90^{\circ} & \text { space group: } \mathrm{P} \frac{2}{\mathrm{~m}}
\end{array}
$$

Space lattice > Monoclinic P-lattice

Highest symmetry point group in monoclinic system

along b direction
along symmetry direction

monoclinic point groups of lower symmetry
> rectangular plane lattice
> set of 2-fold axes // c
$>$ symmetry of stacked plane + (mirror planes $\perp c$ at $x, y, 0$ and $x, y, 1 / 2)+$ (inversion centres)
$>$ rule ${ }^{*}(\overline{1}$ on $\mathrm{m} \rightarrow 2 \perp \mathrm{~m})$ or rule II* $(\mathrm{m} \perp \mathrm{m} \rightarrow 2)$ generates
2-fold axes at $x, 0,0 ; x, 0,1 / 2 ; x, 1 / 2,0 ; x, 1 / 2,1 / 2 ; 0, y, 0 ; 0, y, 1 / 2 ; 1 / 2, y, 0 ; 1 / 2, y, 1 / 2$

Intro to Crystallography, 2021

* rule I or rule II ; see slide \# 28
 Ott Chap 7

Space lattice > Orthorhombic P-lattice

$$
\begin{aligned}
& a_{o} \neq b_{o} \neq \mathrm{c}_{\mathrm{o}} \\
& \alpha=\beta=\gamma=90^{\circ}
\end{aligned}
$$

point group: $\frac{2}{m} \frac{2}{m} \frac{2}{m}$
space group: $\mathrm{P} \frac{2}{\mathrm{~m}} \frac{2}{m} \frac{2}{m}$

$2 / \mathrm{m} \mathrm{2/m} \mathrm{2/m}-\mathrm{D}_{2 \mathrm{~h}}$

orthorhombic point groups of lower symmetry

Space lattice > Tetragonal P-lattice

symmetry of stacked plane + (mirror planes $\perp c$ at $x, y, 0$ and $x, y, 1 / 2)+$ (inversion centres)
\Rightarrow rule ${ }^{*}(\overline{1}$ on $m \rightarrow 2 \perp \mathrm{~m})$ or rule II* $(\mathrm{m} \perp \mathrm{m} \rightarrow 2)$ generates several 2-fold axes

unit mesh

* rule I or rule II ; see slide \# 28

point group: $\frac{4}{m} \frac{2}{m} \frac{2}{m}$
space group: $\mathrm{P} \frac{4}{\mathrm{~m}} \frac{2}{m} \frac{2}{m}$
Ott Chap 7

Space lattice > Tetragonal P-lattice

$a_{o}=b_{o} \neq \mathrm{c}_{\mathrm{o}}$
$\alpha=\beta=\gamma=90^{\circ}$
point group: $\frac{4}{m} \frac{2}{m} \frac{2}{m}$
space group: $\mathrm{P} \frac{4}{\mathrm{~m}} \frac{2}{m} \frac{2}{m}$

tetragonal point groups of lower symmetry
$>\mathrm{a}_{0}=\mathrm{b}_{0}=\mathrm{c}_{0} \rightarrow$ four 3-fold axes along the body diagonals of unit cell as well as inversion center $\rightarrow \overline{3}$
> Rule I* or II* generates 2-fold axes // [110] and equivalent directions

Intro to Crystallography, 2021
symmetry directions of cubic
d Space group

Symmetry elements (incomplete) of the cubic P -lattice. This is one of the space groups of highest symmetry in the cubic system

* rule I or rule II ; see slide \# 28 Ott Chap 7

$$
\begin{aligned}
& a_{o}=b_{o}=c_{o} \\
& a=b=g=90^{\circ}
\end{aligned}
$$

$$
\text { point group: } \frac{4}{m} \frac{2}{m}
$$

$$
\text { space group: } \mathrm{P} \frac{4}{m} \overline{3} \frac{2}{m}
$$

$4 / \mathrm{m} \overline{3} 2 / \mathrm{m}-\mathrm{O}_{\mathrm{h}}$
Highest symmetry point group in cubic system

Space lattice > Cubic P-lattice

cubic point groups of lower symmetry

Space lattice > Hexagonal P-lattice

symmetry of stacked plane + (mirror planes $\perp c$ at $x, y, 0$ and $x, y, 1 / 2)+$ (inversion centres)
$>$ rule I* ($\overline{1}$ on $m \rightarrow 2 \perp \mathrm{~m}$) or rule II* $(\mathrm{m} \perp \mathrm{m} \rightarrow 2)$ generates several 2-fold axes

unit mesh
stack with inter-planar spacing c_{0}

* rule I or rule II ; see slide \# 28 Ott Chap 7

$a_{o}=b_{o} \neq \mathrm{c}_{\mathrm{o}}$
$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
point group: $\frac{6}{m} \frac{2}{m} \frac{2}{m}$
space group: $\mathrm{P} \frac{6}{\mathrm{~m}} \frac{2}{m} \frac{2}{m}$

hexagonal point groups of lower symmetry

Space lattice > Hexagonal P-lattice

hexagonal point groups of lower symmetry

start with hexagonal plane lattice
\checkmark second plane $\frac{1}{3} c_{o}$ with a lattice point on 3 -fold at $\frac{2}{3}, \frac{1}{3}, c_{o}$
\checkmark third plane $\frac{2}{3} c_{o}$ with a lattice point on 3 -fold at $\frac{1}{3}, \frac{2}{3}, z$
$\checkmark \rightarrow$ reduce 6 -fold to 3 -fold axis,

- remove mirrors $x, 0, z ; 0, y, z ; x, x, z$
- remove 2 -fold axis // c

What is the difference between hexagonal and trigonal (rhombohedaral) lattice? Starting 2D mesh is same, but difference in stacking.

Space lattice > Trigonal, Rhombohedral

> Two unit cells

Trigonal R-lattice

$$
\begin{aligned}
& a_{o}=b_{o} \neq \mathrm{c}_{\mathrm{o}} \\
& \alpha=\beta=90^{\circ} \quad \gamma=120^{\circ}
\end{aligned}
$$

Rhombohedral P-lattice

$$
a_{o}=b_{o}=\mathrm{c}_{\mathrm{o}}
$$

$$
\alpha=\beta=\gamma
$$

directions
$>$ Primitive cells of cubic I and cubic F are rhombohedral (Fig 3.2 of Hammond)
$>\alpha=90^{\circ} \rightarrow$ cubic P lattice
$>\alpha=60^{\circ} \rightarrow$ cubic F lattice
$>\alpha=109.47^{\circ} \rightarrow$ cubic I lattice

Fig. 3.2. (a) The cubic I and (b) the cubic F lattices with the primitive rhombohedral cells and inter-axial angles indicated.
> When hexagonal layers of lattice points in the rhombohedral lattice are spaced apart in such a way that $\alpha=90^{\circ}, 60^{\circ}$, or 109.47°, then cubic symmetry results.
> What is the difference between hexagonal and trigonal (rhombohedaral) lattice?
\checkmark Hexagonal --- AAAAAA
\checkmark Rhombohedral --- ABCABC

Space lattice > Trigonal

trigonal point groups of lower symmetry

Chan Park, MSE-SNU Intro to Crystallography, 2021

14 Bravais lattice > Non-primitive lattice

What happens when we add extra lattice planes into monoclinic P-lattice?
> monoclinic P-lattice
\checkmark lattice point: $\frac{2}{m}$
\checkmark new lattice points to be added also should have $2 / \mathrm{m}$

- $1 / 2,0,0 ; 0,1 / 2,0 ; 0,0,1 / 2 ; 1 / 2,1 / 2,0 ; 1 / 2,0,1 / 2 ; 0,1 / 2,1 / 2 ; 1 / 2,1 / 2,1 / 2$

Consider all the possibilities for introducing extra lattice planes into the monoclinic P lattice (next 3 slides) \rightarrow all these can be represented as P or C lattice
> Introduce extra lattice planes into monoclinic P-lattice
(a) new lattice point @ $1 / 2,1 / 2,0 \rightarrow$ C-centered lattice or C-lattice

(b) @ $0,1 / 2,1 / 2 \rightarrow$ A-lattice \rightarrow C-lattice (a \& c can be swapped)

14 Bravais lattice > Add extra lattice planes into Monoclinic P-lattice
(c) at $1 / 2,0,1 / 2 \rightarrow$ B-lattice \rightarrow smaller primitive unit cell (P-lattice)

(d) at $1 / 2,1 / 2,1 / 2 \rightarrow$ - lattice \rightarrow C-lattice
(e) at $1 / 2,0,0 ; 0,1 / 2,0$ or $0,0,1 / 2 \rightarrow$ half the cell \rightarrow P-lattice
(f) at $1 / 2,1 / 2,0 \& 01 / 2,1 / 2 \rightarrow$ further lattice point @ $1 / 2,0,1 / 2$ (because all lattice points should have the same environment) \rightarrow F-lattice \rightarrow can be reduced to C-lattice of half the volume

(e)

In last 3 slides, considered all the possibilities for having non-primitive monoclinic lattice $\rightarrow \mathrm{P}$ or C monoclinic lattice can exist $>$ monoclinic lattice can only be either P or C

14 Bravais lattice > space group symbols

	P	C	I	F
Triclinic	$P \overline{1}$			
Monoclinic	$P 2 / \mathrm{m}$	$\mathrm{C} 2 / \mathrm{m}$		
Orthorhombic	$P 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	$\mathrm{C} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	$\mathrm{I} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	$\mathrm{F} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$
Tetragonal	$P 4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$		$\mathrm{I} 4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	
Trigonal	$\mathrm{R} \overline{3} 2 / \mathrm{m}$			
Hexagonal				
Cubic				

> The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a 3-D periodic array of points.
> All crystals are built up on one of 14 Bravais lattices.

- Any crystal structure has only one Bravais lattice.
$>$ Number of lattice is fixed at 14.
$>$ Infinite number of arranging atoms in a cell \leftarrow basis

Xtal systems	Symmetry directions		Axial system	
Triclinic			$a 1 \neq a 2 \neq a 3, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	
Monoclionic	b	$a 1 \neq a 2 \neq a 3, \alpha=\gamma=90^{\circ} \neq \beta$		
Orthorhombic	a	b	c	$a 1 \neq a 2 \neq a 3, \alpha=\beta=\gamma=90^{\circ}$
Tetragonal	c	$<a>$	$<110>$	$a 1=a 2 \neq a 3, \alpha=\beta=\gamma=90^{\circ}$
Trigonal	c	$<a>$		$a 1=a 2=a 3, \alpha=\beta=\gamma<120^{\circ} \neq 90^{\circ}$
Hexagonal	c	$<a>$	$<210>$	$a 1=a 2 \neq a 3, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Cubic	$<a>$	$<111>$	$<110>$	$a 1=a 2=a 3, \alpha=\beta=\gamma=90^{\circ}$

14 Bravais lattice

Numbers \& coordinates of the lattice points in the unit cells of the Bravais lattices

Lattice	No. of lattice points in unit cell	Coordinates of lattice points in unit cell
P	1	$0,0,0$
A	2	$0,0,0 ; 0, \frac{1}{2}, \frac{1}{2}$
B	2	$0,0,0 ; \frac{1}{2}, 0, \frac{1}{2}$
C	2	$0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0$
I	2	$0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
R	3	$0,0,0 ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$,
F	4	$0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, 0, \frac{1}{2} ; 0, \frac{1}{2}, \frac{1}{2}$

7 Xtal systems	$a, b, c, \alpha, \beta, \gamma$	14 Bravais lattice	Lattice symbol
Cubic	$\begin{aligned} & a=b=c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	Simple	P
		Body-centered	1
		Face-centered	F
Tetragonal	$\begin{aligned} & a=b \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	Simple	P
		Body-centered	1
Orthorhombic	$\begin{aligned} & a \neq b \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	Simple	P
		Body-centered	1
		Base-centered	C
		Face-centered	F
Rhombohedral	$a=b=c, \alpha=\beta=\gamma<120^{\circ}, \neq 90^{\circ}$	Simple	R
Hexagonal	$a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	Simple	P
Monoclinic	$a \neq b \neq c, \alpha=\gamma=90^{\circ} \neq \beta$	Simple	P
		Base-centered	C
triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Simple	P

Table 8.9. Characteristic symmetry elements of the seven crystal systems

	Crystal system	32 Point groups ${ }^{\text {a }}$	Characteristic symmetry elements
	Cubic	$\begin{gathered} 4 / \mathrm{m} \overline{3} 2 / \mathrm{m} \\ \overline{4} \mathrm{~m}, 4 \underline{3} 2,2 / \mathrm{m} \underline{3}, 2 \underline{3} \end{gathered}$	4 -
	Hexagonal	$\begin{gathered} \underline{6} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ \underline{6} \mathrm{~m} 2, \underline{\mathrm{~mm}}, \underline{6} 22, \\ \underline{6} / \mathrm{m}, \underline{6}, \underline{6} \end{gathered}$	- or ${ }^{\text {d }}$
	Tetragonal	$\begin{gathered} \frac{4}{4} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ \underline{4} \mathrm{~m}, 4 \mathrm{~mm}, 422, \\ \underline{4} / \mathrm{m}, \underline{4}, \underline{4} \end{gathered}$	$\underset{(3 \mathbf{~ o r ~} 3 \rrbracket \Rightarrow \text { cubic })}{1 \llbracket}$
	Trigonal	$\begin{gathered} \frac{\overline{3}}{\underline{3}} 2 / \mathrm{m} \\ \underline{3}, \underline{32}, \underline{3}, \underline{3} \end{gathered}$	(remember that m normal to 3 gives $\overline{6} \Rightarrow$ hexagonal
	Orthorhombic	$\frac{2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}}{\mathrm{~mm} 2,222}$	2 and/or m in three orthogonal directions
	Monoclinic	$\frac{2 / \mathrm{m}}{\underline{m}, \underline{2}}$	2 and/or m in one direction
	Triclinic	$\begin{aligned} & \overline{1} \\ & \underline{1} \end{aligned}$	$\overline{1}$ or 1 only
Chan Par ${ }^{\text {a }}$. Characteric symmetry elements are underlined.			

todos

$>$ Read
\checkmark Ott Chapter 7, 8
\checkmark Krawitz Chapter 1.1 ~ 1.5
\checkmark Hammond Chapter $2.1 \sim 2.4 ; 3.1 \sim 3.3 ; 5.1 \sim 5.6$
\checkmark Sherwood \& Cooper Chapter 3.1~3.7
>Bravais HW (due in 1 week)
\checkmark Hammond 1.9; 3.1, 3.2

