# 14 Bravais Lattices

### Read

Ott Chapter 7, 8

Krawitz Chapter 1.1 ~ 1.5

Hammond Chapter 2.1 ~ 2.4; 3.1 ~ 3.3; 5.1 ~ 5.6

Sherwood & Cooper Chapter 3.1~3.7

Brief but very good summary can be found here https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section%2001\_Crystal%20Structure.pdf

Chan Park, MSE-SNU Intro to Crystallography, 2021

### Lattice types - P, I, F, C, R



the number of lattice points in a unit cell (N)?

NATIONAL

$$N = N_i + N_i/2 + N_c/8 + N_e/4$$

 $N_i$  = # of lattice points in cell interior (belong to 1 cell)  $N_j$  = # of lattice points on cell faces (shared by 2 cells)  $N_c$  = # of lattice points on cell corners (vertices) (shared by 8 cells)

 $N_e = #$  of lattice points on cell edges (shared by 4 cells)

Primitive lattice; one lattice point per unit cell
 Non-primitive lattice; more than one lattice point per unit cell

R

#### **Bravais** lattices

- ➢ In geometry and crystallography, a Bravais lattice is an infinite array of discrete points generated by a set of discrete translation operations described by:  $\mathbf{R} = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}$ . This discrete set of vectors must be closed under vector addition and subtraction. For any choice of position vector  $\mathbf{R}$ , the lattice looks exactly the same. (*n<sub>i</sub>*; any integer.  $\mathbf{a_i}$ ; primitive vectors which lie in different directions and span the lattice.)
- A crystal is made up of a periodic arrangement of one or more atoms (*basis, motif*) repeated at each lattice point. Consequently, the crystal looks the same when viewed from any of the lattice points.
- Two Bravais lattices are often considered equivalent if they have isomorphic symmetry groups. In this sense, there are only 14 possible Bravais lattices in 3dimensional space.

3

Chan Park, MSE-SNU Intro to Crystallography, 2021



### 3D Bravais lattices

- The 14 Bravais lattices in 3 dimensions are obtained by coupling one of the 7 lattice systems (or axial systems) with one of lattice centerings. Each Bravais lattice refers to a distinct lattice type.
- The lattice centerings are
  - ✓ Body (I): one additional lattice point at center of the cell.
  - ✓ Face (F): additional lattice points at centers of all the faces of the cell.
  - ✓ Base (A, B or C): additional lattice points at centers of each pair of cell faces.
- Not all the combinations of crystal systems and lattice centerings are needed to describe the possible lattices.
- > There are in total 7  $\times$  5 (P, I, F, C, R) = 35 possible combinations, but many of these are in fact equivalent to each other.
  - ✓ For example, the tetragonal F lattice can be described by a tetragonal I lattice by different choice of crystal axes.
- $\rightarrow$  This reduces the number of combinations to 14.  $\rightarrow$  14 Bravais lattices



Symmetry group

Chan Park, MSE-SNU

- > Complete set of symmetry elements  $\rightarrow$  symmetry group
- Limited # of symmetry elements (ten) & all valid combination among them
   → 32 crystallographic symmetry groups → <u>32 point groups</u>
- ➤ Limited # of symmetry elements (ten) + the way in which they interact with each other → limited # of completed sets of symmetry elements (32 symmetry groups = <u>32 point groups</u>)

When a symmetry operation has a locus (a point, a line, or a plane) that is left unchanged by the operation, this locus is referred to as the **symmetry element**.

### 7 Crystal systems

- ➤ Combination of symmetry elements & their orientations w.r.t. one another defines the crystallographic axes → 7 crystal systems
- Axes can be chosen arbitrarily, but are usually chosen w.r.t. specific symmetry elements present in a group
  - ✓ // rotation axes or  $\perp$  m
- All possible 3-D crystallographic point groups can be divided into a total of <u>7</u> crystal systems based on the presence of a specific symmetry element or specific combination of them present in the point group symmetry
- ➤ <u>7 X 5 types of lattices</u> → 14 different types of unit cells are required to describe all lattices (14 Bravais lattice)

Chan Park, MSE-SNU Intro to Crystallography, 2021

### 7 Crystal systems, 6 Crystal family

 Table 2.6
 Seven crystal systems and the corresponding characteristic symmetry elements.

| Crystal system | Characteristic symmetry element or combination of symmetry elements |
|----------------|---------------------------------------------------------------------|
| Triclinic      | No axes other than onefold rotation or onefold inversion            |
| Monoclinic     | Unique twofold axis and/or single mirror plane                      |
| Orthorhombic   | Three mutually perpendicular twofold axes, either rotation or       |
|                | inversion                                                           |
| Trigonal       | Unique threefold axis, either rotation or inversion                 |
| Tetragonal     | Unique fourfold axis, either rotation or inversion                  |
| Hexagonal      | Unique sixfold axis, either rotation or inversion                   |
| Cubic          | Four threefold axes, either rotation or inversion, along four body  |
|                | diagonals of a cube                                                 |

Trigonal & hexagonal can be described in the same type of the lattice

#### $\rightarrow$ six crystal family

8



| System       | Axial lengths and angles <sup>a</sup>                      | Unit cell geometry |
|--------------|------------------------------------------------------------|--------------------|
| Cubic        | $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$          |                    |
| Tetragonal   | $a=b eq c$ , $lpha=eta=\gamma=90^{\circ}$                  | c<br>a<br>a        |
| Orthorhombic | $a \neq b \neq c$ , $\alpha = \beta = \gamma = 90^{\circ}$ |                    |

The lattice parameters a, b, and c are unit-cell edge lengths. The lattice parameters  $\alpha$ ,  $\beta$ , and  $\gamma$  are angles between adjacent unit-cell axes, where  $\alpha$  is the angle viewed along the a axis (i.e., the angle between the b and c axes). The inequality sign ( $\neq$ ) means that equality is not required. Accidental equality occasionally occurs in some structures.



#### Selection of a unit cell

- > <u>Trigonal & hexagonal</u> can be described in the same type of the lattice  $\rightarrow$  six crystal family
- Different types of crystal systems (lattices) can be identified by the presence of <u>specific</u> symmetry elements and their relative orientation

**Table 2.10**Lattice symmetry and unit cell shapes.

| Crystal family  | Unit cell symmetry                                     | Unit cell shape/parameters                                                |
|-----------------|--------------------------------------------------------|---------------------------------------------------------------------------|
| Triclinic       | $\langle \widehat{1} \rangle_{\mathbf{k}}$             | $a \neq b \neq c$ ; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$       |
| Monoclinic      | 2/m                                                    | $a \neq b \neq c$ ; $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ |
| Orthorhombic    | mmm                                                    | $a \neq b \neq c; \alpha = \beta = \gamma = 90^{\circ}$                   |
| Tetragonal      | 4/mmm                                                  | $a = b \neq c; \alpha = \beta = \gamma = 90^{\circ}$                      |
| Hexagonal and T | rigonal 6/mmm                                          | $a = b \neq c; \alpha = \beta = 90^\circ, \gamma = 120^\circ$             |
| Cubic           | m3m                                                    | $a = b = c; \alpha = \beta = \gamma = 90^{\circ}$                         |
| Crystal system  | Characteristic symmetry element or combinelements      | nation of symmetry Pecharsky 2 <sup>nd</sup> ed. page 41                  |
| Triclinic       | No axes other than onefold rotation or onefo           | ld inversion                                                              |
| Monoclinic      | Unique twofold axis and/or single mirror pla           | me All lattices are                                                       |
| Orthorhombic    | Three mutually perpendicular twofold axes              | either rotation or centrosymmetric                                        |
|                 | inversion                                              |                                                                           |
| Trigonal        | <u>Unique threefold axis</u> , either rotation or inve | rsion                                                                     |
| Tetragonal      | Unique fourfold axis, either rotation or inver         | sion                                                                      |
| Hexagonal       | Unique sixfold axis, either rotation or invers         | ion                                                                       |
| Cubic           | Four threefold axes, either rotation or inversi-       | on, along four body                                                       |
|                 | diagonals of a cube                                    | Pecharsky 2 <sup>nd</sup> ed. page 36                                     |

### Selection of a unit cell-1

- > Rule #1 --- symmetry of the unit cell should be identical to the symmetry of the lattice, except for translation
- ➤ Choice of unit cell is arbitrary
  - $\checkmark$  It is not always possible to select a primitive cell



Chan Park, MSE-SNU Intro to Crystallography, 2021

| Selection of                             | a unit cell-                 | 2                                                                                                                                                                                                                           | SEOUL NATIONAL UNIVERSITY                                                                                                                                                                     |  |  |  |  |
|------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                          | Table 2.11 Ru                | Table 2.11 Rules for selecting the unit cell in different crystal systems.                                                                                                                                                  |                                                                                                                                                                                               |  |  |  |  |
|                                          | Crystal family               | Standard unit cell choice                                                                                                                                                                                                   | Alternative unit cell choice                                                                                                                                                                  |  |  |  |  |
|                                          | Triclinic                    | Angles between crystallographic axes should be<br>as close to 90° as possible but greater than or<br>equal to 90°                                                                                                           | Angle(s) less than or equal to 90° are allowed                                                                                                                                                |  |  |  |  |
|                                          | Monoclinic                   | Y-axis is chosen parallel to the unique twofold<br>rotation axis (or perpendicular to the mirror<br>plane) and angle $\beta$ should be greater than but as<br>close to 90° as possible                                      | Same as the standard<br>choice, but <u>Z-axis in place</u><br>of <u>Y</u> , and angle $\gamma$ in place of<br>$\beta$ are allowed                                                             |  |  |  |  |
|                                          | Orthorhombic                 | Crystallographic axes are chosen parallel to the<br>three mutually perpendicular twofold rotation<br>axes (or perpendicular to mirror planes)                                                                               | None                                                                                                                                                                                          |  |  |  |  |
|                                          | Tetragonal                   | Z-axis is always parallel to the unique fourfold<br>rotation (inversion) axis. X- and Y-axes form a<br>$90^{\circ}$ angle with the Z-axis and with each other                                                               | None                                                                                                                                                                                          |  |  |  |  |
|                                          | Hexagonal<br>and<br>trigonal | Z-axis is always parallel to three- or sixfold<br>rotation (inversion) axis. X- and Y-axes form a<br>$90^{\circ}$ angle with the Z-axis and a $120^{\circ}$ angle with<br>each other                                        | In a trigonal symmetry, <sup>a</sup><br>threefold axis is chosen<br>along the body diagonal of<br>the primitive unit cell, then<br>a = b = c and<br>$\alpha = \beta = \gamma \neq 90^{\circ}$ |  |  |  |  |
| Pecharsky 2 <sup>nd</sup> ed.<br>page 43 | Cubic                        | Crystallographic axes are always parallel to the<br>three mutually perpendicular two- or fourfold<br>rotation axes, while the four threefold rotation<br>(inversion) axes are parallel to three body<br>diagonals of a suba | None                                                                                                                                                                                          |  |  |  |  |
| Chan Park, MSE-SNU                       | Intro to Crystallo           | graphy, 2021                                                                                                                                                                                                                | 14                                                                                                                                                                                            |  |  |  |  |

Pecharsky 2nd ed. page 42

13

Rule #3 --- minimum volume (or min # of lattice points inside the unit cell)

 $\blacktriangleright$  Rule # 1, 2, 3,  $\rightarrow$  5 types of lattices (P, I, F, C, R)

| Centering of the lattice | Lattice points per unit cell   | International symbol | Lattice translation(s)<br>due to centering                                                                   |
|--------------------------|--------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|
| Primitive                | 1                              | Р                    | None                                                                                                         |
| Base-centered            | 2                              | А                    | $1/2({\bf b}+{\bf c})$                                                                                       |
| Base-centered            | 2                              | В                    | $\frac{1}{2}(a+c)$                                                                                           |
| Base-centered            | 2                              | С                    | 1/2(a+b)                                                                                                     |
| Body-centered            | 2                              | Ι                    | $\frac{1}{2}({\bf a} + {\bf b} + {\bf c})$                                                                   |
| Face-centered            | 4                              | F                    | $\frac{1}{2}(\mathbf{b}+\mathbf{c}); \frac{1}{2}(\mathbf{a}+\mathbf{c}); \frac{1}{2}(\mathbf{a}+\mathbf{b})$ |
| Rhombohedral             | 3                              | R                    | $\frac{1}{3}a + \frac{2}{3}b + \frac{2}{3}c; \frac{2}{3}a + \frac{1}{3}b + \frac{1}{3}c$                     |
|                          |                                |                      |                                                                                                              |
| han Park, MSE-SNU        | Intro to Crystallography, 2021 |                      | Pecharsky 2 <sup>nd</sup> ed. page 45 <b>15</b>                                                              |

Table 2.12Possible lattice centering.

### 14 Bravais lattice

- > 7 crystal systems (6 crystal families) X 5 types of lattices
- → only 14 different types of unit cells are required to describe all lattices using conventional crystallographic symmetry → 14 Bravais lattice

|   | cubic | hexagonal | rhombohedral<br>(trigonal) | tetragonal | orthorhombic | monoclinic | triclinic |
|---|-------|-----------|----------------------------|------------|--------------|------------|-----------|
| Р | a     | a c       | $\Diamond$                 | c<br>a a   | c<br>a b     | γ          | γ         |
| I | a a   |           |                            | c          | c<br>a<br>b  |            |           |
| F | a     |           |                            | I          | c<br>a b     | No.        |           |
| С |       |           |                            | Р          | c<br>a b     | β<br>α     |           |

- > Why tetragonal F lattice is not one of 14?
  - ✓ Because that lattice can be reduced to a lattice with different centering and/or a smaller unit cell (rule #3)
  - $\checkmark$  Or Because they do not satisfy rule # 1 or #2



**Fig. 2.21** The reduction of the tetragonal face-centered lattice (*left*) to the tetragonal body-centered lattice with half the volume of the unit cell (*right*). Small circles indicate lattice points.

Chan Park, MSE-SNU Intro to Crystallography, 2021

See Hammond 3.2 Pecharsky 2<sup>nd</sup> ed. page 47













Chan Park, MSE-SNU Intro to Crystallography, 2021 Isosceles triangle 이등변삼각형

22

Ott Chap 7

Position of point 3 is special (1, 2, & Position of point 3 is special (1, 2, & 3 3 make an isosceles right triangle) make an equilateral triangle) 13 = 2313 = 23 $a_0 = b_0, \gamma = 120^\circ$  hexagonal mesh  $a_0 = b_0, \gamma = 90^\circ$  square mesh 2, 6, 3-fold axes, mirror planes 4-fold axes, 4 mirror planes Б  $\triangleleft$  $\triangleright$ ð 0  $\triangleright$  $\triangleleft$ 0 0  $\triangleright$  $\triangleleft$ • (c) (d) Ott Chap 7 23 Chan Park, MSE-SNU Intro to Crystallography, 2021

### 5 plane lattices

|                           |   | Shape of<br>unit mesh    | Lattice<br>parameters                    | Characteristic<br>symmetry<br>elements |
|---------------------------|---|--------------------------|------------------------------------------|----------------------------------------|
| General<br>plane lattices |   | Parallelogram            | $a_0 \neq b_0$<br>$\gamma \neq 90^\circ$ | 2                                      |
| Special<br>plane lattice  | a | Rectangle<br>(primitive) | $a_0 \neq b_0$<br>$\gamma = 90^{\circ}$  | m                                      |
|                           | b | Rectangle<br>(centred)   | $a_0 \neq b_0$<br>$\gamma = 90^\circ$    | m                                      |
|                           | с | Square                   | $a_0 = b_0$<br>$\gamma = 90^{\circ}$     | 4                                      |
|                           | d | 120° Rhombus             | $a_0 = b_0$<br>$\gamma = 120^{\circ}$    | 6 (3)                                  |

Any two-dimensionally periodic array can be assigned to one of the 5 lattice types

## 5 plane lattices

Table 1.3. Plane Lattice Types, Axial Parameters and Associated Two-Dimensional Point Groups

| Five 2-D lattice types              | Cell     | Name        | <b>Axial Parameters</b>                                           | Point groups                |
|-------------------------------------|----------|-------------|-------------------------------------------------------------------|-----------------------------|
| The Z D futtice types               | b        | Oblique     | $\begin{array}{c} a \neq b \\ \gamma \neq 90^{\circ} \end{array}$ | 1, 2                        |
|                                     |          |             |                                                                   |                             |
|                                     | ge       | Rectangular | $a \neq b$                                                        |                             |
|                                     | Ъ        |             | $\gamma = 90^{\circ}$                                             | m, 2mm                      |
|                                     | a        |             |                                                                   |                             |
|                                     | *        | Hexagonal   | a = b                                                             | 3, 3 <i>m</i>               |
|                                     |          |             | $\gamma = 120^{\circ}$                                            | 6, 6 <i>mm</i>              |
|                                     | ¥        | 0           |                                                                   |                             |
|                                     | 1        | Square      | a = b<br>$\gamma = 90^{\circ}$                                    | 4, 4 <i>mm</i>              |
|                                     | b        |             |                                                                   | CARGE CONTRACTOR CONTRACTOR |
| Ten 2-D point groups                | a        |             |                                                                   |                             |
| Ten plane point groups              | <u> </u> | Centered    | a = b                                                             | m, 2mm                      |
|                                     |          | Rectangular | $\gamma \neq 90^{\circ}$                                          |                             |
| See Hammond 2.3                     | b •      |             |                                                                   |                             |
| Chan Park, MSE-SNU Intro to Crystal |          |             |                                                                   |                             |





<sup>a</sup> Note that for historical reasons, the description  $a_0 \neq b_0$ ,  $\gamma \neq 90^\circ$  has been changed in this case to  $a_0 \neq c_0$ ,  $\beta \neq 90^\circ$ . (See slide # 14; standard unit cell choice of monoclinic) Chan Park, MSE-SNU Intro to Crystallography, 2021 Ott Chap 7 **27** 

### Symmetry of P-lattices

- The presence of any two of the following symmetry elements implies the presence of the third
- > Rule 1 : A rotation axis of even order ( $X_e = 2, 4, 6$ ), a mirror plane normal to  $X_e$ , and an inversion center at the point of intersection of  $X_e$  and m
- Rule 2 : Two mutually perpendicular mirror planes and a 2-fold axis along their line of intersection



Every lattice has inversion centers on the lattice point and midway between any two of them



All lattices are centrosymmetric

- Space group
  - the complete set of symmetry operations in a lattice or a crystal structure

✓ a group of symmetry operations including lattice translations

✓ 230 space groups

Chan Park, MSE-SNU Intro to Crystallography, 2021

### Space lattice > Triclinic P-lattice (general lattice)



➤ When stacked directly above one another → monoclinic
P lattice

When lattice points of stacked plane do not coincide → lose 2-fold axis → triclinic P lattice → The only point symmetry elements are inversion centres







### Space lattice > Orthorhombic P-lattice

- ➤ rectangular plane lattice
- ➢ set of 2-fold axes // c
- > symmetry of stacked plane + (mirror planes  $\perp$  c at x,y,0 and x,y,<sup>1</sup>/<sub>2</sub>) + (inversion centres)
- > rule I\* ( $\overline{1}$  on m → 2⊥m) or rule II\* (m⊥m → 2) generates

2-fold axes at x,0,0; x,0,1/2; x,1/2,0; x,1/2,1/2; 0,y,0; 0,y,1/2; 1/2,y,0; 1/2,y,1/2







### Space lattice > Tetragonal P-lattice

- > symmetry of stacked plane + (mirror planes  $\perp$  c at x,y,0 and
  - $x,y,\frac{1}{2}$  + (inversion centres)
- > rule I\* ( $\overline{1}$  on m → 2⊥m) or rule II\* (m⊥m → 2) generates several 2-fold axes







\* rule I or rule II ; see slide # 28

#### Chan Park, MSE-SNU Intro to Crystallography, 2021

Ott Chap 7 36





- > a<sub>0</sub>=b<sub>0</sub>=c<sub>0</sub> → four 3-fold axes along the body diagonals of unit cell as well as inversion center → 3
- > Rule I\* or II\* generates 2-fold axes // [110] and equivalent directions







### Space lattice > Cubic P-lattice











Chan Park, MSE-SNU Intro to Crystallography, 2021









Ott Chap 7

### Lattice types - P, I, F, C, R



### 14 Bravais lattice > Non-primitive lattice

>What happens when we add extra lattice planes into monoclinic P-lattice?

- monoclinic P-lattice
  - ✓ lattice point:  $\frac{2}{m}$
  - ✓ new lattice points to be added also should have 2/m
    - 1/2,0,0; 0,1/2,0; 0,0,1/2; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2; 1/2,1/2,1/2



Consider all the possibilities for introducing extra lattice planes into the monoclinic P lattice (next 3 slides)  $\rightarrow$  all these can be represented as P or C lattice



(c) at  $\frac{1}{2}, 0, \frac{1}{2} \rightarrow B$ -lattice  $\rightarrow$  smaller primitive unit cell (P-lattice)



#### 14 Bravais lattice > Add extra lattice planes into Monoclinic P-lattice

- monoclinic lattice
- (e) at  $\frac{1}{2}$ ,0,0; 0, $\frac{1}{2}$ ,0 or 0,0, $\frac{1}{2}$   $\rightarrow$  half the cell  $\rightarrow$  P-lattice
- (f) at ½,½,0 & 0 ½,½ → further lattice point @ ½,0,½ (because all lattice points should have the same environment) → F-lattice → can be reduced to C-lattice of half the volume



#### 14 Bravais lattice > space group symbols

|              | P             | C                                      | I             | F                                     |
|--------------|---------------|----------------------------------------|---------------|---------------------------------------|
| Triclinic    | PĪ            |                                        |               |                                       |
| Monoclinic   | P 2/m         | C 2/m                                  |               |                                       |
| Orthorhombic | P 2/m 2/m 2/m | C 2/m 2/m 2/m                          | I 2/m 2/m 2/m | F 2/m 2/m 2/m                         |
| Tetragonal   | P 4/m 2/m 2/m |                                        | I 4/m 2/m 2/m |                                       |
| Trigonal     |               | •••••••••••••••••••••••••••••••••••••• | RĴ            | 2/m                                   |
| Hexagonal    | r 0/m 2/m 2/m |                                        |               | · · · · · · · · · · · · · · · · · · · |
| Cubic        | P4/m32/m      |                                        | I4/m32/m      | F4/m32/m                              |

- The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a 3-D periodic array of points.
- > All crystals are built up on one of 14 Bravais lattices.
- > Any crystal structure has only one Bravais lattice.
- Number of lattice is fixed at 14.
- ➤ Infinite number of arranging atoms in a cell ← basis

| Xtal systems | Symmetry directions |         | ections | Axial system                                                          |
|--------------|---------------------|---------|---------|-----------------------------------------------------------------------|
| Triclinic    |                     |         |         | a1 ≠ a2 ≠ a3, α ≠ β ≠ γ ≠ 90°                                         |
| Monoclionic  |                     | b       |         | a1 ≠ a2 ≠ a3, α = γ = 90° ≠ β                                         |
| Orthorhombic | а                   | b       | С       | a1 $\neq$ a2 $\neq$ a3, $\alpha$ = $\beta$ = $\gamma$ = 90°           |
| Tetragonal   | С                   | <a></a> | <110>   | a1 = a2 ≠ a3, α = β = γ = 90°                                         |
| Trigonal     | С                   | <a></a> |         | a1 = a2 = a3, $\alpha = \beta = \gamma < 120^{\circ} \neq 90^{\circ}$ |
| Hexagonal    | С                   | <a></a> | <210>   | a1 = a2 $\neq$ a3, $\alpha$ = $\beta$ = 90°, $\gamma$ = 120°          |
| Cubic        | <a></a>             | <111>   | <110>   | a1 = a2 = a3, $\alpha$ = $\beta$ = $\gamma$ = 90°                     |

Chan Park, MSE-SNU Intro to Crystallography, 2021

See Ott Chap 7 57

TIONAL

FOUL

UNIVE



Numbers & coordinates of the lattice points in the unit cells of the Bravais lattices

| Lattice | No. of lattice points in unit cell | oints Coordinates of lattice point in unit cell                                                               |  |
|---------|------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Р       | 1                                  | 0,0,0                                                                                                         |  |
| А       | 2                                  | $0, 0, 0; 0, \frac{1}{2}, \frac{1}{2}$                                                                        |  |
| В       | 2                                  | $0, 0, 0; \frac{1}{2}, 0, \frac{1}{2}$                                                                        |  |
| С       | 2                                  | $0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0$                                                                        |  |
| I       | 2                                  | $0, 0, 0; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$                                                              |  |
| R       | 3                                  | $0, 0, 0; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}; \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$                       |  |
| F       | 4                                  | $0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0; \frac{1}{2}, 0, \frac{1}{2}; 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ |  |

Chan Park, MSE-SNU Intro to Crystallography, 2021

| 7 Xtal systems | a, b, c, α, β, γ                                                    | 14 Bravais lattice | Lattice symbol |
|----------------|---------------------------------------------------------------------|--------------------|----------------|
|                |                                                                     | Simple             | Р              |
| Cubic          | a = b = c                                                           | Body-centered      | I              |
|                | $\alpha = \beta = \gamma = 90^{\circ}$                              | Face-centered      | F              |
| <b>T</b> ( )   | a = b ≠ c                                                           | Simple             | Р              |
| letragonal     | $\alpha = \beta = \gamma = 90^{\circ}$                              | Body-centered      | I              |
|                |                                                                     | Simple             | Р              |
|                | a≠b≠c                                                               | Body-centered      | I              |
| Orthorhombic   | $\alpha = \beta = \gamma = 90^{\circ}$                              | Base-centered      | С              |
|                |                                                                     | Face-centered      | F              |
| Rhombohedral   | $a = b = c, \alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ | Simple             | R              |
| Hexagonal      | a = b ≠ c, α = β = 90° , γ = 120°                                   | Simple             | Р              |
|                |                                                                     | Simple             | Р              |
| Monoclinic     | a ≠ b ≠ c, α = γ = 90° ≠ β                                          | Base-centered      | С              |
| triclinic      | a≠b≠c,α≠β≠γ≠90°                                                     | Simple             | Р              |

Ott Chap 7 59

| Crystal<br>system | 32 Point groups <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Characteristic<br>symmetry elements                                                                                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Cubic             | $4/m \ \overline{\underline{3}} \ 2/m \ \overline{\underline{4}} \ 2/m \ \overline{\underline{4}} \ \underline{3} \ m, \ 4 \ \underline{3} \ 2, \ 2/m \ \overline{\underline{3}}, \ 2 \ \underline{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| Hexagonal         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • or •                                                                                                             |
| Tetragonal        | $\begin{array}{c} 4 \ /m \ 2/m \ 2/m \\ \underline{4}2m, \ 4mm, \ 422, \\ \underline{4}\ /m, \ \underline{4}, \ \underline{4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1 \blacksquare \text{ or } 1 \blacksquare$ $(3 \blacksquare \text{ or } 3 \blacksquare \Rightarrow \text{cubic})$ |
| Trigonal          | <u>3</u> 2/m<br><u>3</u> m, <u>3</u> 2, <u>3</u> , <u>3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1 \blacktriangle$ (remember that m normal<br>to 3 gives $\overline{6} \Rightarrow$ hexagonal                      |
| Orthorhombic      | <u>2/m 2/m 2/m</u><br><u>mm2, 222</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 and/or m<br>in three orthogonal directions                                                                       |
| Monoclinic        | <u>2/m</u><br><u>m</u> , <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 and/or m<br>in one direction                                                                                     |
| Triclinic         | tata da la $\frac{1}{2}$ da la da | Ĩ or 1 only                                                                                                        |

### todos

≻ Read

- ✓ Ott Chapter 7, 8
- ✓ Krawitz Chapter 1.1 ~ 1.5
- ✓ Hammond Chapter 2.1 ~ 2.4; 3.1 ~ 3.3; 5.1 ~ 5.6
- ✓ Sherwood & Cooper Chapter 3.1~3.7

Bravais HW (due in 1 week)

✓ Hammond 1.9; 3.1, 3.2