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Physical processes used for solid/liquid separation

• Depth filtration

• Membrane filtration

• Flotation

Mixing

• Fundamentals

• Types of mixers
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• Often applied as a tertiary (advanced) treatment method to 

further treat the secondary treatment effluent in order to

– meet standards

– reduce loading to the water body

– reuse the treated water [e.g., recreational use, toilets, (indirect/direct) 

potable use]

• Depth filtration

– Usually sand filters, anthracite coal, dual- or multi-media

• Membrane filtration

– Smaller opening size than surface filtration

– Microfiltration, ultrafiltration, nanofiltration, reverse osmosis
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• Straining

– Mechanical : particles larger than the pore space are strained 

out mechanically

– Chance contact: particles smaller than the pore space are 

trapped within the filter by chance contact

• Sedimentation or impaction

– Heavy particles that do not follow the flow streamlines are 

removed when they come in contact with the surface of the 

filtering medium

• Interception

– Particles that move along in the streamline are removed when 

they come in contact with the surface of the filtering medium 
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• Filtration-backwash cycle
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<Filtration> <Backwash>
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• Headloss buildup and effluent quality
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– The shorter of the theadloss

and tbreakthrough will be the 

time for backwash cycle

– Optimized design: design 

the filter such that 

theadloss ≈ tbreakthrough

theadloss

tbreakthrough
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• Terminologies

– Feed water: influent water supplied to the membrane system for 

treatment

– Permeate: the liquid that has passed through the membrane

– Retentate: The portion of the feed water that does not pass through 

the membrane

– Flux: The rate at which permeate flows through the membrane
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RO/NF: nonporous membrane

Diffusion-like process
MF/UF: porous membrane

Straining-like process
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• Tubular

– Membrane is cast on the inside of a support tube and 

the tubes are placed in a pressure vessel

– Feed water is pumped through the tube and the 

permeate is collected outside

– Tube diameter 6-40 mm

• Hollow fiber

– A module consists of a bundle of hundreds to 

thousands of hollow fibers

– Inside diameter 35-45 μm, outside diameter 90-100 

μm
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• Spiral wound

– Flat membrane sheets are rolled into a tight circular 

configuration

– A flexible permeate spacer is placed between two flat 

sheets

– Membrane is sealed on the three side; the open side is 

connected to a perforated pipe
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• Apply either hydraulic pressure or vacuum

• MF & UF: cross-flow or dead-end modes

– Cross flow mode

• The feed water is pumped parallel to the membrane surface (at a high 

velocity to control fouling by the shear force)

– Dead-end mode

• The feed water is directed toward the membrane surface

• All water applied to the membrane passes through the membrane
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Feed water flow

Permeate flow

Feed water flow

Permeate flow

membrane



• Produces retentate (concentrate) that usually has x2 or more 

salt concentration than the feed water
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Osmosis

Water moves from low salt 

conc. � high salt conc.

Osmotic equilibrium

No net water movement

Reverse osmosis

Water moves from high 

salt conc. � low salt conc.
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Osmotic pressure

∆�� ≈ ∆� · ��
∆� = concentration difference between saline/fresh sides

� = ideal gas constant

� = temperature



• Particulate fouling
– Particles clog the membrane pores

• Scaling
– As chemical constituents in the feed water are removed at the surface of a membrane, 

their local concentration increases

– Concentrations of some of the constituents will increase beyond their solubility limits 

and will be precipitated on the membrane surface

– Especially critical for RO

• Organic fouling
– Many natural organic matter (NOM) are sticky – accumulate on the membrane surface

– Fouling is accelerated by forming stable organic/inorganic particulate matter

• Biological fouling
– Elevated concentrations of organic matter and nutrients on the membrane surface �

favorable for microbial growth

– Biofilm formed on the membrane surface
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• A membrane technology getting recent interest

– RO: High energy consumption for pressurizing the feed water

– FO: Uses natural osmotic pressure with minimal pressure application

– Use a more concentrated solution (draw solution) to recover water from the 

feed water

– Principal requirement of the draw solution
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• Osmotic pressure should be greater 

than the feed solution

• Must be easy to reconcentrate after 

being diluted by the water from the 

feed solution

• NaCl is a common salt used for draw 

solution: easy to reconcentrate, no 

scaling problems
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• Two typical types of flotation

– Dissolved-air flotation

– Dispersed-air flotation

• Dissolved-Air Flotation (DAF)

– Air is dissolved in the wastewater under a pressure of several atms

(high P → high gas solubility)

– The gas-laden wastewater then flows to a flotation tank under 

atmospheric pressure (low P → low gas solubility → generaDon of fine 

bubbles)
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• Dispersed-Air Flotation

– A revolving impeller forces water through disperser openings and 

creates a vacuum in the standpipe

– The vacuum pulls air into the standpipe and mixes it with the water
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– Fine bubbles are created by 

a mixing force and by the 

movement of the fluid 

through a series of cells

– Less frequently used –

mainly used in industrial 

wastewater treatment
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• Application of mixing in wastewater treatment

– Continuous rapid mixing

• Blending of chemicals with wastewater

• Blending of miscible liquids

• Addition of chemicals to sludge and biosolids

– (Slower) Continuous mixing

• Keeping the contents of a reactor or storage tanks in suspension (e.g., for 

biological treatment)

• Flocculation (after adding coagulants - more common in drinking water 

treatment!)
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• Velocity gradients and power requirement

– Mixing can be viewed as a development of velocity gradients among 

fluid

– “G value”: average velocity gradient, a measure of mixing intensity
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� =
�

� 

!

Camp and Stein (1943)

� = average velocity gradient (1/s)

� = power requirement (W)

� = dynamic viscosity (N-s/m2)

 = reactor volume (m3)

The effectiveness of mixing is a function of power input per volume

Greater power requirement to achieve greater G with the same reactor 

volume; 

Greater power requirement to achieve the same G with the larger reactor 

volume



• rapid mixing: G↑ with small τ

• gentle mixing (flocculaDon): G↓ with large τ
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Process Range of values

Retention time G value, s-1

Mixing

Typical rapid mixing operations in wastewater 

treatment

5-30 s 500-1500

Rapid mixing for effective initial contact and 

dispersion of chemicals

<1 s 1500-6000

Rapid mixing of chemicals in contact filtrations 

processes

<1 s 2500-7500

Flocculation

Typical flocculation processes used in wastewater 

treatment

30-60 min 50-100

Flocculation in direct filtration processes 2-10 min 25-150

Flocculation in contact filtration processes 2-5 min 25-200



Q: Determine the theoretical power requirement to achieve a G value of 

100/s in a tank with a volume of 2800 m3. Assume that the water 

temperature is 15°C. What is the corresponding value when the water 

temperature is 5°C?

Dynamic viscosity values:

15°C: 1.139 x 10-3 N-s/m2

5°C: 1.518 x 10-3 N-s/m2
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@ 15⁰C:

23

� =
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!

� = �"� 

� = 100/% " × 1.139 × 10)* + − %/� × 2800 �* = 31900 /

= 31.9 0/

@ 5⁰C: � = 100/% " × 1.518 × 10)* + − %/� × 2800 �* = 42500 /

= 42.5 0/

Results indicate that as temperature ↓, viscosity ↑, so more power input is 

required for the same intensity of mixing



Typical mixers 

used for rapid 

mixing of 

chemicals
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Inline static mixer 

with internal vanes

Inline static mixer 

with orifice

Inline propeller or 

turbine mixer

Inline mixer with 

orifice and internal 

propeller mixer

High-speed 

induction mixer

Pressurized water 

jet mixer
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Mixers for maintaining solids in suspension and chemical blending 

in reactors: turbine and propeller mixers most common
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• Type of mixers used for biological treatment

– Pneumatic mixing 

• mixing is provided by injecting gas into the bottom of tanks

• both mixing effect & oxygen supply

• used for aeration tank of an activated sludge process
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Ceramic disk diffuser Installation of ceramic disk aeration 

devices  to an aeration tank
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• Type of mixers used for biological treatment (cont’d)

– Mechanical aerators and mixers

• for anoxic/anaerobic reactors and oxidation ditches
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Surface mechanical aerators: (a), (b) – low-

speed; (c), (d) – high-speed
Mixers for anoxic reactors: (a), (b) - propeller; 

(c) - airfoil mixer; (d) - hyperbolic mixer
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Physical processes utilizing interphase mass transfer

• Gas-liquid mass transfer

• Adsorption

• Ion exchange
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• Phase partitioning: in multi-phase systems, materials are 

distributed with some ratio between the phases at 

equilibrium 

– Recall Henry’s law (gas-liquid partitioning): ��/�� = ��

ex) At 1 atm, 20°C, the saturation concentration of dissolved oxygen in pure water 

is 9.08 mg/L (0.208 atm partial pressure of O2 in gas phase ↔ 9.08 mg/L O2 in 

aqueous solution)
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• Transfer of material from one homogeneous phase to another

• Interphase mass transfer occurs towards equilibrium

• Time as a factor: it takes some time for the mass transfer 

processes to occur such that equilibrium is established

ex) Drying clothes

phase partitioning: moisture wetting the clothes vs. moisture in the ambient 

air

equilibrium: almost no moisture in the clothes because the amount of 

ambient air is almost infinite

time as a factor: it takes some time (~1 day) for the clothes to dry
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Type of reactor Phase equilibria Application

Absorption Gas → liquid Addition of gases to water (e.g., O2), NH3 scrubbing 

in acid

Adsorption Gas → solid

Liquid → solid

Removal of organics with activated carbon

Removal or organics with activated carbon, 

dechlorination

Desorption Solid → liquid

Solid → gas

Sediment scrubbing

Reactivation of spent activated carbon

Drying 

(evaporation)

Liquid → gas Drying of sludge

Gas stripping Liquid → gas Removal of gases 

(e.g., CO2, H2S, NH3, VOCs)

Ion exchange Liquid → solid Selective removal of chemical constituents, 

demineralization



• Modeling concentration change by mass transfer

- Mass transfer occurs at the interface (surface) -- A

- Should depend on compound (rate of diffusion) & surface 

characteristics (calm or turbulent?) -- KL

- Should also depend on how far the current state is from equilibrium 

-- (Cs-C)

- Flux = (mass transferred) / (area) / (time)

� =  
� �� − �
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F = flux of mass transfer [ML-2T-1]

KL = mass transfer coefficient with liquid as a reference phase [LT-1]

A= area through which mass is transferred [L2]

Cs = liquid concentration in equilibrium with bulk gas concentration [ML-3]

C = current liquid concentration



• Modeling concentration change by mass transfer

- When gas concentration is constant, change in liquid concentration 

is represented as:

� = ��
�� �

���� ��������
=  
�

�
� �� − � = 
�� �� − �

rv = rate of mass transfer [ML-3T-1]

V = bulk liquid volume [L3]

KLa = volumetric mass transfer coefficient [T-1] – 1st order rate constant
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• Absorption of gas in a batch reactor

C

V

��
�� = 
�� �� − ��

(rate of accumulation) 

= (rate of inflow) – (rate of outflow) + (rate of generation)
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�� − ���� − �� = ��( !�)�

• Desorption of gas in a batch reactor

��
�� = −
�� �� − � �� − ���# − �� = ��( !�)�



Q: Secondary effluent is placed in a storage basin for reuse. If the 

initial DO concentration is 1.5 mg/L, estimate the time required 

for the DO concentration to increase to 8.5 mg/L due to surface 

reaeration. The surface area of the storage basin is 400 m2 and 

the depth is 3 m. Assume the KL value for oxygen is 0.03 m/hr. Use 

the saturation DO concentration of 9.09 mg/L at 20°C.
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This is the case of absorption of gas in a batch reactor, so use:

�� − ���� − �� = ��( !�)�

� = − 1

�� · &' �� − ���� − ��

� = �
� = 1

� = 0.33 +�,

� = − 1
0.03 +- · 0.33 +�, · &' 9.09 − 8.5

9.09 − 1.5 = 258 - = 10.8 �

You see it takes a long time for surface reaeration from the atmosphere in the 

absence of mechanical agitation!



• Diffused air aeration  vs  Mechanical aeration
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• Mass transfer of a gas from the liquid phase to the gas phase

Recall: 
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• Stripping (blowing) a contaminant-free gas into the water

– Creates large gas-liquid interfacial area for mass transfer

• Most significant concern in the process design

– Concentration gradient generated: Cs � 0

• Removal of NH3, odorous gases and VOCs

– For ammonia stripping, pH should be raised by addition of lime (why?)

��
�� =  
�

�
� � − �� = 
�� � − ��

(for desorption of gas)



• Methods to contact phases

– Cocurrent, countercurrent, cross-flow

– Countercurrent most common
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• An emerging technology

- Gas-permeable membranes have been used for water production from 

water with high impurities (e.g., RO retentate from seawater desalination)

- Opportunities to be used for recovery NH3/NH4
+ and CH4 from wastewater
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• Removal of substances in solution by accumulation of those 

substances on a solid phase

– Adsorbate: the substance that is being removed from the solution

– Adsorbent: the material onto which the adsorbate accumulates

• Applications

Removal of:

• refractory organics

• residual inorganic constituents (nitrogen, sulfides, heavy metals, etc.)

• odor compounds
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• Activated carbon

– Most common – removal of refractory organics & residual COD

– Derived by i) pyrolysis of organic materials (wood, coal, coconut, etc.) and       

ii) activation by steam or CO2 at high temperatures

– Two types based on particle size

• GAC (granular activated carbon): > 0.1 mm, apply in columns

• PAC (powdered activated carbon): < 0.074 mm, apply in well-mixed contact tanks

• Granular ferric hydroxide

– Ferric hydroxides/oxides have high affinity to many metals and metalloids

– Applicable for removal of arsenic, chromium, selenium, copper, etc.

• Activated alumina

– May be considered in case of water reuse 

– Removal of arsenic and fluoride

16
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• Mass transfer zone

(MTZ; dashed zone): 

adsorption is occurring, 

some adsorbate conc. in 

pore-water

• Grey zone: GAC 

exhausted (adsorption 

equilibrium with 

influent), no further 

adsorption

• Breakthrough occurs 

after adding VBT of 

influent, but want full 

usage of the column!

#6



18

#7



• A unit process in which ions of a given species are displaced 

from an insoluble exchange material by ions of a different 

species in solution

• So ions in the solution is exchanged by other ions originating 

from the insoluble exchange material

• Applications

– Most common: water softening (Na+ from exchange material to 

solution; Ca2+ and Mg2+ from solution to exchange material)

– Removal of nitrogen, heavy metals, and TDS

• Commonly used exchange materials

– Natural mineral: zeolite

– Synthetic material: ion exchange resin
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• Nitrogen removal

– Remove NH4
+ or NO3

-

– NH4
+: zeolite or synthetic cation exchange resins

– NO3
-: synthetic anion exchange resins

• Heavy metal removal

– Zeolites, synthetic anion and cation resins, chelating resins

– Some chelating resins are made to have a high selectivity for specific 

metals (cations – Cu, Ni, Cd, Zn, …)
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