

Chan Park, MSE-SNU Intro to Crystallography, 2021

Space group

32 point groups - symmetry groups of many molecules and of all crystals so long as morphology is considered

> space group - symmetry of crystal lattices and crystal structures

- ✓ 14 Bravais lattice
- ✓ centered lattices new symmetry operations
- ✓ reflection + translation
- ✓ rotation + translation

Space group

- ➤ If translation operations are included with rotation and inversion →
 We have 230 three-dim. space groups
- Translation operations
 - ✓ Unit cell translations
 - Centering operations (Lattices) (A, B, C, I, F, R)
 - ✓ Glide planes (reflection + translation) (a, b, c, n, d)
 - \checkmark Screw axes (rotation + translation) (2₁, 3₁, 3₂)
- Hermann-Mauguin symbols (4 positions)
 - ✓ First position is Lattice type (P, A, B, C, I, F or R)
 - ✓ Second, third and fourth positions as with point groups

 $P - \frac{4}{3} - \frac{2}{2}$ (225) $F \overline{4} 3m$ (No.216) Cmm2 (35)

Chan Park, MSE-SNU Intro to Crystallography, 2021

Space lattice

➤ 14 Bravais lattice

	Р	C	I	F	
Triclinic	PĪ				
Monoclinic	P 2/m	C 2/m			
Orthorhombic	P 2/m 2/m 2/m	C 2/m 2/m 2/m	I 2/m 2/m 2/m	F 2/m 2/m 2/m	
Tetragonal	P 4/m 2/m 2/m		I 4/m 2/m 2/m		
Trigonal		· · · · · · · · · · · · · · · · · · ·	R 3 2/m		
Hexagonal	- PO/m 2/m 2/m		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Cubic	P4/m 32/m		I4/m32/m	F4/m32/m	

The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a 3D periodic array of points.

Chan Park, MSE-SNU Intro to Crystallography, 2021

5 plane lattices

> 5 plane lattices + 10 plane point groups + glide line \rightarrow 17 plane groups

Ott Chap 7

ATIONAL UNIVERS

17 plane groups

17 plane groups (1/5)

~ ~		~ ~	~	55 55 A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	کی تخک	
<i></i>	e* (c *	ا فند	قد ه	الحكر الأ	S.
~	~	~ ~		5	~	5 5	5
p1	~ ~	~	~ ~	p2 \$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S S
~	~	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ >>>	~ >>	~ >>
sex.	₩.	S.	~ ~	w. w	(x, x)	~~~	Se w
æ	~	~	~	~ ~	× m	~ m	~ m
Sec.	sec.	Sec.	sex.	Sec. 20	8.2	Sec. 20	Se 2
æ	æ	~	~	~~~	a so	~ m	~ m
S.	Sec.	٩.	\$	فديه	80.20	w. w	w.w
~	~	~	~	~~~	~~	~~	~~
-	Sec.	Sec.	~	فدينة	in si	in so	in w
S.							

How to recognize motifs, symmetry elements, and lattice types

For 17 plane groups, see Hammond 2.1 ~ 2.5, figure 2.6, 2.7, 2.8

Chan Park, MSE-SNU Intro to Crystallography, 2021

17 plane groups (1/5)

How to recognize motifs, symmetry elements, and lattice types

For 17 plane groups, see Hammond 2.1 ~ 2.5, figure 2.6, 2.7, 2.8

Chan Park, MSE-SNU Intro to Crystallography, 2021

1.45	Symmetry direction (position in Hermann–Mauguin symbol)			
Lattice	Primary .	Secondary	Tertiary	
Two dimensions Oblique				
Rectangular	Rotation point in plane	[10]	[01]	
Square		$ \left\{ \begin{bmatrix} 10 \\ 01 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 1\overline{1} \\ 11 \end{bmatrix} \right\} $	
Hexagonal		$ \begin{cases} [10]\\ [01]\\ [\overline{1}\overline{1}] \end{cases} $	$ \begin{cases} [1\overline{1}] \\ [12] \\ [\overline{2}\overline{1}] \end{cases} $	
Three dimensions				
Triclinic	None			
Monoclinic*	[010] ('unique axis b') [001] ('unique axis c')			
Orthorhombic	[100]	[010]	[001]	
Tetragonal	[001]	{[100]} {[010]}	{[1Ī0]} {[110]}	
Hexagonal	[001]	$ \begin{cases} [100]\\ [010]\\ [\overline{1}\overline{1}\overline{0}] \end{cases} $	$ \begin{bmatrix} [1\bar{1}0] \\ [120] \\ [2\bar{1}0] \end{bmatrix} $	
Rhombohedral (hexagonal axes)	[001]	$ \begin{cases} [100] \\ [010] \\ [1\overline{1}0] \end{cases} $		
Rhombohedral (rhombohedral axes)	[111]	$ \begin{cases} [1\overline{1}0]\\ [01\overline{1}]\\ [\overline{1}01] \end{cases} $		
Cubic	$ \begin{bmatrix} 100 \\ 010 \end{bmatrix} $	$ \begin{pmatrix} [111]\\ [1\overline{1}\overline{1}]\\ [\overline{1}1\overline{1}]\\ [\overline{1}1\overline{1}]\\ [\overline{1}\overline{1}1] \end{pmatrix} $	$\begin{cases} [1\bar{1}0] [110] \\ [01\bar{1}] [011] \\ [\bar{1}01] [101] \end{cases}$	

Symmetry directions

> Letters for the centering types of cells

- ✓ Lower-case for 2-D (plane groups)
- ✓ Capital letters for 3-D (space group)

Lattice symmetry directions that carry no symmetry elements for the space group are represented by the symbol "1"

International Tables for Crystallography Volume A, 2005. Page 18

International Tables for Crystallography Brief Teaching Edition of Volume A, 1993. Page 13

Chan Park, MSE-S

17 plane groups (4/5)

ATIONAL UN

17 plane groups (4/5)

17 plane groups (5/5)

17 plane groups (5/5)

	Symmetry direction (position in Hermann–Mauguin symbol)			
Lattice	Primary .	Secondary	Tertiary	
Two dimensions Oblique				
Rectangular	Rotation point in plane	[10]	[01]	
Square		$ \left\{ \begin{bmatrix} 10 \\ 01 \end{bmatrix} \right\} $	$ \begin{bmatrix} [1\overline{1}]\\ [11] \end{bmatrix} $	
Hexagonal		$ \left\{ \begin{bmatrix} 10 \\ 01 \\ \overline{1} \\ \overline{1} \end{bmatrix} \right\} $	$ \begin{cases} [1\overline{1}] \\ [12] \\ [2\overline{1}] \end{cases} $	
Three dimensions Triclinic	None			
Monoclinic*	[010] ('unique axis b') [001] ('unique axis c')			
Orthorhombic	[100]	[010]	[001]	
Tetragonal	[001]	{[100]} {[010]}	{[1Ī0] {[110]}	
Hexagonal	[001]	$ \begin{cases} [100]\\ [010]\\ [\overline{1}\overline{1}0] \end{cases} $	$ \begin{cases} [1\bar{1}0] \\ [120] \\ [\bar{2}\bar{1}0] \end{cases} $	
Rhombohedral (hexagonal axes)	[001]	$ \left\{ \begin{bmatrix} 100 \\ [010] \\ [110] \end{bmatrix} \right\} $		
Rhombohedral (rhombohedral axes)	[111]	$ \begin{cases} [1\overline{1}0]\\ [01\overline{1}]\\ [\overline{1}01] \end{cases} $		
Cubic	$ \begin{bmatrix} 100 \\ 010 \end{bmatrix} $	$ \begin{cases} \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} \\ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \begin{bmatrix} \overline{1} \\ 1 \end{bmatrix} \\ \begin{bmatrix} \overline{1} \\ 1 \end{bmatrix} \end{cases} $	$\begin{cases} [1\overline{1}0] [110] \\ [01\overline{1}] [011] \\ [\overline{1}01] [101] \end{cases}$	

Symmetry directions

- > Letters for the centering types of cells
 - ✓ Lower-case for 2-D (plane groups)
 - ✓ Capital letters for 3-D (space group)
- Lattice symmetry directions that carry no symmetry elements for the space group are represented by the symbol "1"

International Tables for Crystallography Volume A, 2005. Page 18

International Tables for Crystallography Brief Teaching Edition of Volume A, 1993. Page 13

p31m vs. p3m1 (plane group)

Chan Park, MSE-SNU Intro to Crystallography, 2021

Lattice	Symmetry direction (position in Hermann-Mauguin symbol)			
Lattice	Primary	Secondary	Tertiary	
<i>Two dimensions</i> Oblique				
Rectangular	Rotation	[10]	[01]	
Square	point in plane	$ \begin{bmatrix} 10 \\ 01 \end{bmatrix} $	$ \left\{ \begin{bmatrix} 1 \overline{1} \\ 1 1 \end{bmatrix} \right\} $	
Hexagonal		$ \left\{ \begin{bmatrix} 10 \\ 01 \end{bmatrix} \right\} $	$ \begin{cases} [1\overline{1}] \\ [12] \\ [\overline{2}\overline{1}] \end{cases} $	

SEDUL NATIONAL UNIVERSITY

International Tables for Crystallography Volume A, 2005. Page 18

International Tables for Crystallography Brief Teaching Edition of Volume A, 1993. Page 13

DUL

JANDITAN

UN

Which is *p*3*m*1?

International Tables for X-ray Crystallography > plane group Skip

International Tables for X-ray Crystallography > plane group

International Tables for X-ray Crystallography > plane group

Flow diagram for identifying plane groups

Examples of 17 plane groups

Examples of 17 plane groups

Chan Park, MSE-SNU Intro to Crystallography, 2021

DUL

IDNAL UN

Example 2

Example 5

ATIONAL UNIVERSIT

≻ Read

✓ Ott Chapter 10

✓ Hammond Chapter 4.6

✓ Krawitz Chapter 1.6~1.8

✓ Sherwood & Cooper Chapter 3.7~3.8

✓ Hammond Chapter 2.1 ~ 2.5

✓ Krawitz Chapter 1.1~1.5

Space Group-1 HW (due in 1 week)

✓ Ott chapter 10 --- 1, 3

✓ Hammond chapter 2 --- 2, 3, 4

39