Space Group - 1

Read

Ott Chapter 10 (exclude 10.1)
Hammond Chapter 4.6
Krawitz Chapter 1.6~1.8
Sherwood \& Cooper Chapter 3.7~3.8
Hammond Chapter 2.1 ~ 2.5
Krawitz Chapter 1.1~1.5

> 32 point groups - symmetry groups of many molecules and of all crystals so long as morphology is considered
> space group - symmetry of crystal lattices and crystal structures
$\checkmark 14$ Bravais lattice
\checkmark centered lattices - new symmetry operations
\checkmark reflection + translation
\checkmark rotation + translation

Space group

$>$ If translation operations are included with rotation and inversion \rightarrow
We have 230 three-dim. space groups
> Translation operations
\checkmark Unit cell translations
\checkmark Centering operations (Lattices) $(\boldsymbol{A}, \boldsymbol{B}, \mathbf{C}, \boldsymbol{I}, \boldsymbol{F}, \boldsymbol{R})$
\checkmark Glide planes (reflection + translation) (a, b, c, n, d)
\checkmark Screw axes (rotation + translation) $\left(2,3_{1}, 3_{2}\right)$
Hermann-Mauguin symbols (4 positions)
\checkmark First position is Lattice type ($\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{I}, \mathrm{F}$ or R)
\checkmark Second, third and fourth positions as with point groups
Cmm 2 (35)

$$
P \frac{4}{m} \frac{-2}{m}(225)
$$

$$
F \overline{4} 3 m(\text { No.216 })
$$

Lattice types - P I F C R

P ; primitive

F ; face-centered
$\checkmark 1 / 2,1 / 2,0$
$\checkmark 1 / 2,0,1 / 2$
$\checkmark 0,1 / 2,1 / 2$
\checkmark Multiplicity $=4$

Intro to Crystallography, 2021

A, B, and C ; end (base)-centered

R ; rhombohedral
$\checkmark 2 / 3,1 / 3,1 / 3$
$\checkmark 1 / 3,2 / 3,2 / 3$
\checkmark Multiplicity $=3$
\checkmark Trigonal system

14 Bravais lattice

	P	C	I	F
Triclinic	P1			
Monoclinic	P2/m	C 2 /m		
Orthorhombic	P $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	C $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	12/m2/m2/m	F $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$
Tetragonal	P $4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$		I $4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	
Trigonal	P6/m $2 / \mathrm{m} 2 / \mathrm{m}$	R $\overline{3} 2 / \mathrm{m}$		
Hexagonal				
Cubic	P $4 / \mathrm{m} 32 / \mathrm{m}$		I $4 / \mathrm{m} 3$ 2/m	F $4 / \mathrm{m} \overline{3} 2 / \mathrm{m}$

The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a 3D periodic array of points.

5 plane lattices

>5 plane lattices +10 plane point groups + glide line $\rightarrow 17$ plane groups

$\left.\begin{array}{lll}\begin{array}{l}5 \text { plane } \\ \text { lattices }\end{array} & \begin{array}{c}10 \text { plane } \\ \text { point groups }\end{array} & \begin{array}{l}17 \text { plane } \\ \text { groups }\end{array} \\ \hline \hline & \begin{array}{l}\text { Point } \\ \text { groups } \\ \text { compatible } \\ \text { with } \\ \text { crystal } \\ \text { system }\end{array} & \begin{array}{l}\text { Lattices in } \\ \text { system }\end{array}\end{array} \begin{array}{l}\text { space } \\ \text { compatible } \\ \text { with lattice }\end{array}\right]$

Space group notation

$\mathrm{Pna2}_{1}$: orthorhombic
n-glide normal to a-axis
a-glide normal to b-axis
2_{1} screw axis along c-axis
a b c
Symmetry directions of orthorhombic

17 plane groups ($1 / 5$)

How to recognize motifs, symmetry elements, and lattice types

For 17 plane groups, see Hammond 2.1 ~ 2.5, figure 2.6, 2.7, 2.8

Chan Park, MSE-SNU Intro to Crystallography, 2021

17 plane groups (1/5)

How to recognize motifs, symmetry elements, and lattice types

For 17 plane groups, see Hammond 2.1 ~ 2.5, figure 2.6, 2.7, 2.8

Lattice	Symmetry direction (position in Hermann-Mauguin symbol)		
	Primary	Secondary	Tertiary
Two dimensions Oblique	Rotation point in plane		
Rectangular		[10]	[01]
Square		$\left\{\begin{array}{l}{[10]} \\ {[01]}\end{array}\right\}$	$\left\{\begin{array}{l}{[11]} \\ {[11]}\end{array}\right\}$
Hexagonal		$\left\{\begin{array}{l}{[10]} \\ {[01]} \\ {[\overline{1}]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1}]} \\ {[12]} \\ {\left[\frac{2}{2}\right]}\end{array}\right\}$
$\begin{array}{\|c\|} \hline \text { Three dimensions } \\ \hline \text { Triclinic } \\ \hline \end{array}$	None		
Monoclinic*	[010] ('unique axis b) [001] ('unique axis c ')		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]}\end{array}\right\}$	$\left.\begin{array}{l}\{[110] \\ {[110]}\end{array}\right\}$
Hexagonal	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[\overline{1} 10]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[120]} \\ {[\overline{2} 0]}\end{array}\right\}$
Rhombohedral (hexagonal axes)	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[110]}\end{array}\right\}$	
Rhombohedral (rhombohedral axes)	[111]	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[01 \overline{1}]} \\ {[\overline{101]}]}\end{array}\right\}$	
Cubic	$\left\{\begin{array}{l} {[100]} \\ {[010]} \\ {[001]} \end{array}\right\}$	$\left\{\begin{array}{l} {[111]} \\ {[1 \overline{1} 1]} \\ {\left[\frac{11}{[1]}\right]} \\ {[\overline{1} 111]} \end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0][110]} \\ {[01 \overline{1}][011]} \\ {[\overline{\mathrm{T} 01]}[101]}\end{array}\right\}$

Symmetry directions

Letters for the centering types of cells
\checkmark Lower-case for 2-D (plane groups)
\checkmark Capital letters for 3-D (space group)

Lattice symmetry directions that carry no symmetry elements for the space group are represented by the symbol "1"

International Tables for Crystallography Volume A, 2005. Page 18

International Tables for Crystallography Brief Teaching Edition of Volume A, 1993. Page 13

17 plane groups (3/5)

17 plane groups (3/5)

17 plane groups (4/5)

17 plane groups (5/5)

Chan Park, MSE-SNU Intro to Crystallography, 2021

Three dimensions Triclimic	None		
Monoclinic*	[010] ('unique axis b) [001] ('unique axis c ')		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]}\end{array}\right\}$	$\left\{\begin{array}{l}{[110]} \\ {[110]}\end{array}\right\}$
Hexagonal	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[\overline{1} 10]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[120]} \\ {[\overline{2} 10]}\end{array}\right\}$
Rhombohedral (hexagonal axes)	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[110]}\end{array}\right\}$	
Rhombohedral (rhombohedral axes)	[111]	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[01 \overline{1}]} \\ {[\overline{1} 01]}\end{array}\right\}$	
Cubic	$\left\{\begin{array}{l} {[100]} \\ {[010]} \\ {[001]} \end{array}\right\}$	$\left\{\begin{array}{l} {[111]} \\ {[1 \overline{1} 1]} \\ {[\bar{T} 11]} \\ {[\overline{1} 11]} \end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0][110]} \\ {[011][011]} \\ {[\overline{101] ~[101] ~}}\end{array}\right.$

$>$ Lattice symmetry directions that carry no symmetry elements for the space group are represented by the symbol "1"

International Tables for Crystallography Volume A, 2005. Page 18

International Tables for Crystallography Brief Teaching Edition of Volume A, 1993. Page 13

[21]

Lattice	Symmetry direction (position in Hermann-Mauguin symbol)		
	Primary	Secondary	Tertiary
Two dimensions Oblique			
Rectangular		[10]	[01]
Square		$\left\{\begin{array}{l}{[10]} \\ {[01]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 i]} \\ {[11]}\end{array}\right\}$
Hexagonal		$\left\{\begin{array}{l}{[10]} \\ {[01]} \\ {\left[\frac{11}{1}\right]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 i]} \\ {[12]} \\ {[21]}\end{array}\right\}$

International Tables for Crystallography Volume A, 2005. Page 18

International Tables for Crystallography Brief Teaching Edition of Volume A, 1993. Page 13

Which is $p 3 \mathrm{ml}$?

Origin at 2 mm

Asymmetric unit $0 \leq x \leq \frac{1}{2} ; 0 \leq y \leq \frac{1}{2}$
Symmetry operations
(1) 1
(2) 20,0
(3) $m 0, y$
(4) $m \quad x, 0$
(1) short Hermann-Mauguin symbol of the plane group
(1); $t(1,0) ; \quad t(0,1)$;
(2); (3)
(3) crystal system
(4) sequential number of plane group
(5) full international (Hermann-Mauguin) symbol for the plane group
(6) patterson symmetry
(7) diagram for the symmetry elements and the general position

Chan Park, MSE-SNU Intro to Crystallography, 2021

International Tables for X-ray Crystallography > plane group

Generators selected (1); t(1,0); t(0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry	Coordinates	Reflection conditions		
4	i	1	$(1) x, y$	(2) \bar{x}, \bar{y}

2	h	.m.	$\frac{1}{2}, y$	$\frac{1}{2}, \bar{y}$
2	g	.m.	$0, y$	$0, \bar{y}$
2	f	$\ldots m$	$x, \frac{1}{2}$	$\bar{x}, \frac{1}{2}$
2	e	$\ldots m$	$x, 0$	$\bar{x}, 0$
1	d	$2 m m$	$\frac{1}{2}, \frac{1}{2}$	
1	c	$2 m m$	$\frac{1}{2}, 0$	
1	b	$2 m m$	$0, \frac{1}{2}$	
1	a	$2 m m$	0,0	

International Tables for X-ray Crystallography > plane group

| Oblique | | $p 2$ |
| :--- | :--- | ---: | ---: |
| Patterson symmetry p^{2} | $p 2$ | No. 2 |
| | | |

Short point group symbol Short plane group symbol

Chan Park, MSE-SNU Intro to Crystallography, 2021

International Tables for X-ray Crystallography > plane group

International Tables for X-ray Crystallography > plane group

$p 3$	3	$p 3$
No. 13	Hexagonal	
Paterson symmetry $p 6$		

Hexagonal	6	$p 6$
Patterson symmetry $p 6$	$p 6$	No. 16

Flow diagram for identifying plane groups

Examples of 17 plane groups

Example 2

p2gg

Example 4

cm

c 2 mm

p4mm

p6mm

Example 8

$>$ Read
\checkmark Ott Chapter 10
\checkmark Hammond Chapter 4.6
\checkmark Krawitz Chapter 1.6~1.8
\checkmark Sherwood \& Cooper Chapter 3.7~3.8
\checkmark Hammond Chapter $2.1 \sim 2.5$
\checkmark Krawitz Chapter 1.1~1.5
$>$ Space Group-1 HW (due in 1 week)
\checkmark Ott chapter 10 --- 1, 3
\checkmark Hammond chapter 2 --- 2, 3, 4

