Nucleophilic reactions I: Overview

Nucleophiles & nucleophilic substitution

Nucleophiles: species that like nucleus

- Can donate a pair of electrons to form a new covalent bond
- Electron-rich (e.g., negatively charged ions)
- Large abundance of nucleophiles in the environment (water itself is a nucleophile)

Nucleophilic substitution

- Nucleophiles may form a bond with the electron-deficient atom in an organic molecule
- As a consequence of a new bond formation, another bond has to be broken

$$Nu: +R - L \Rightarrow R - Nu + L:$$

S_N2 & S_N1 mechanisms

Nucleophiles & hydrolysis

Important nucleophiles in the environment

- High abundance of water (and OH⁻ for high pH)
- Water is usually the most significant among the environmental nucleophiles

Hydrolysis

 A reaction in which a water molecule (or OHion) substitutes for another atom or group of atoms present in an organic molecule

Table 13.1 Examples of Important Environmenal Nucleophiles

	C1O ₄
	H_2O
for	NO_3
city	F -
increasing nucleophilicity for reaction at a saturated carbon	SO_4^{2-} , CH_3COO^{-}
leopatura	Cl*
nuc : a s	HCO ₃ ,HPO ₃ 2-
sing on at	NO_2^-
reas actic	PhO ^{-a} , Br ⁻ , OH ⁻
ië ii	1 -, CN -
•	HS^-,R_2NH^b
	$S_2O_3^2$ -, SO_3^2 -,PhS -
a Ph = C ₄	H ₅ (phenyl)
b R = CH	3, C ₂ H ₅ #1

Table 13.2 Examples of Environmentally Relevant Chemical Reactions Involving Nucleophiles and/or Bases

Reactants		Products	Reaction Number
Nucleophili	ic Substitutions at S	Saturated Carbon Atoms	
CH ₃ Br + H ₂ O		CH ₃ OH + H ⁺ + Br ⁻	(1)
Methyl bromide		Methanol	
CH ₃ Ci + HS ⁺		CH ₃ SH + CI -	(2)
Methyl chloride		Methane thiol (Methyl mercaptan)	
$O \\ II \\ CH_3O-P(OCH_3)_2 + H_2O$		$O = 0$ $II = 0$ $CH_3OH + OP(OCH_3)_2 + H^+$	(3)
Trimethylphosphate		Methanol Dimethylphosphate	
	eta-Eliminati	ion	
Cl ₂ HC-CHCl ₂ + HO		Cl ₂ C=CHCl + Cl-+ H ₂ O	(4)
1,1,2,2-Tetrachloroethane		Trichloroethene	

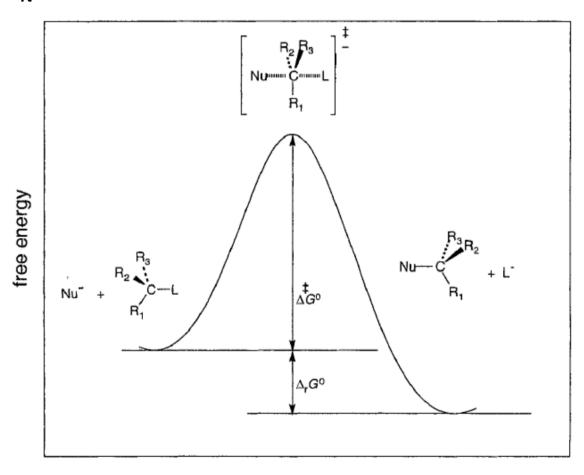
Reactants	Products
11040141110	

Reaction Number

Ester Hydrolysis

$$\begin{array}{c} O \\ H_3C-C-OCH_2CH_3 + H_2O \\ \hline \\ Ethyl \ acetate \\ (Acetic \ acid \ ethylester) \\ \end{array} \begin{array}{c} O \\ H_3C-C-O^- + HO-CH_2CH_3 + H^+ \ (5) \\ \hline \\ Acetate \ Ethanol \\ \hline \\ S \\ \hline \\ \end{array}$$

$$(C_2H_5O)_2P - O$$
 $NO_2 + HO$
 $(C_2H_5O)_2P - O$
 $NO_2 + HO$
 $NO_2 + HO$
 $NO_3 + HO$
 $NO_2 + HO$
 $NO_3 + HO$
 NO

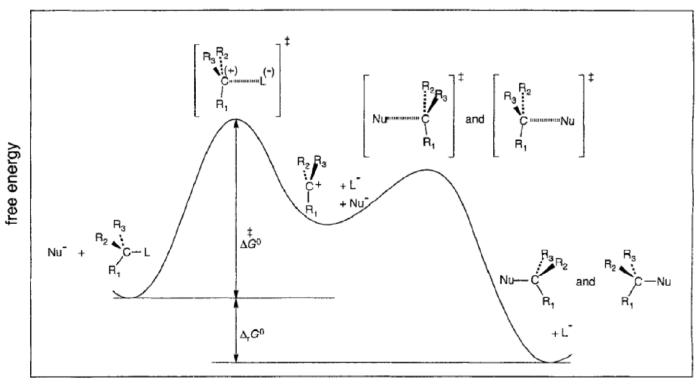

Parathion

O,O-Diethylthiophosphoric acid

Carbamate Hydrolysis

$$\begin{array}{c} O \\ H_3CNH-C-O \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline CH_3 \\ \hline \\ CH_3 \\ \hline CH_3 \\ \hline \\ CH_3 \\ \hline CH_3$$

• S_N2 mechanism


S_N2 mechanism

- Substitution, nucleophilic, bimolecular
- The standard free energy of activation $\Delta^{\ddagger}G^{0}$ (which controls the reaction rate) depends strongly on both <u>the capability of the nucleophile to initiate a substitution reaction</u> and <u>the willingness of the organic molecule to undergo that reaction</u>
- Follows a second-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu^-][R_1R_2R_3C - L]$$

 $k = 2^{nd}$ order rate constant (L/mole-s)

• S_N1 mechanism

extent of reaction (reaction coordinate)

#4

S_N1 mechanism

- Substitution, nucleophilic, unimolecular
- The reaction rate depends solely on <u>how easily the leaving group dissociates</u> from the parent molecule
- The structure of the activated complex is assumed to be similar to the carboncation complex
- $\Delta^{\ddagger}G^{0}$ depends on the stability of the cation
- Follows a first-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[R_1R_2R_3C - L]$$

k = 1st order rate constant (s⁻¹)

References

#1-#4) Schwarzenbach, R., Gschwend, P. M., Imboden, D. M. (2003) Environmental Organic Chemistry, 2nd ed., John Wiley & Sons, p. 491; p. 492; p. 495; p. 496.

Nucleophilic reactions II: Kinetics

S_N2: Relative nucleophilicity

- Study of nucleophilic substitution of methyl halides for various nucleophiles:
 - Methyl halides (CH₃X) have similar relative reactivity toward different nucleophiles
 - Swain & Scott (1953):

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) = s \cdot n_{Nu,CH_3Br}$$

 k_{Nu} = 2nd-order rate const. for a nucleophile of interest k_{H_2O} = 2nd order rate const. for H₂O

 n_{Nu,CH_3Br} = a measure of the nucleophilicity of the nucleophile of interest

s = sensitivity of the organic molecule to nucleophilic attack

n_{Nu,CH_3Br} ---?

- Set CH₃Br as a reference compound to measure the nucleophilicity
- Set H₂O as a reference nucleophile
- By observing a nucleophilic substitution reaction between CH_3Br and Nu, n_{Nu,CH_3Br} can be determined:

$$n_{Nu,CH_{3}Br} = log \left[\frac{(k_{Nu})_{CH_{3}Br}}{(k_{H_{2}O})_{CH_{3}Br}} \right] * so, n_{H_{2}O,CH_{3}Br} = 0$$

We saw:

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) \approx log\left[\frac{(k_{Nu})_{CH_3Br}}{\left(k_{H_2O}\right)_{CH_3Br}}\right] = n_{Nu,CH_3Br}$$

• But there is some error, so use "s" for modification

* s is not substantially different from 1

Table 13.3 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined from the Reaction with Methyl Bromide or n-Hexyl Bromide in Water (Eq. 13-3, s = 1)

Nucleophile	$n_{ m Nu,CH_3Br}$ a
ClO ₄	<0
H_2O	0
NO ₃	1.0
F ⁻	2.0
SO ₄ ²⁻	2.5
CH ₃ COO	2.7
Cl ⁻	3.0
HCO_3^- , $HPO_4^{2^-}$	3.8
Br~	3.9
OH-	4.2
I-	5.0
CN", HS	5.1
$S_2O_3^{2-}$	6.1 ^b
PhS ⁻	6.8 ^b
S ₄ ²⁻	7.2 ^b

^a Data from Hine (1962). ^b Data from Haag and Mill (1988a).

S_N2: Competition of nucleophiles

Competition with hydrolysis:

Reaction rate of Nu depends on k & [Nu]

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu][R_1R_2R_3C - L]$$

- H₂O is abundant ([H₂O] \uparrow), so a nucleophile should compete with hydrolysis
- Define [Nu]_{50%} as the nucleophile concentration that satisfies:

$$[Nu]_{50\%}k_{Nu} = [H_2O]k_{H_2O}$$

1st order rate of Nu reaction hydrolysis

assuming s=1,
$$k_{Nu} = k_{H_2O} \times 10^{n_{Nu,CH_3Br}}$$

$$[Nu]_{50\%} = 55.3 \times 10^{-n_{Nu,CH_3Br}}$$

55.3 = molar concentration of water (M) @ 25 °C

S_N2: Determining significance

Use [Nu]_{50%} to determine whether a nucleophile is significant

Freshwater vs. saline water

- Freshwater [Cl⁻] ~ 10⁻⁴ M → Cl⁻ not a significant nucleophile
- Seawater [Cl⁻] ~ 0.5 M → Cl⁻ a significant nucleophile

pH sensitivity of hydrolysis reaction

- Low & neutral pH → OH⁻ not a significant nucleophile
- High pH (e.g., pH>11) → OH⁻ a significant nucleophile

Table 13.5 Calculated
Concentration of Nucleophile
Required to Compete with Water
in an S_N2 Reaction with Alkyl
Halides Assuming an s Value of 1

Nucleophile	$[Nu]_{50\%}^{a}(M)$
NO ₃	~6
F-	$\sim 6 \times 10^{-1}$
SO ₄ ²⁻	$\sim 2 \times 10^{-1}$
Cl-	$\sim 6 \times 10^{-2}$
HCO ₃	$\sim 9 \times 10^{-3}$
HPO4	$\sim 9 \times 10^{-3}$
Br ⁻	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I ⁻	~6 × 10 ⁻⁴
HS-	$\sim 4 \times 10^{-4}$
CN ⁻	$\sim 4 \times 10^{-4}$
$S_2O_3^{2-}$	$\sim 4 \times 10^{-5}$
S42-	$\sim 4 \times 10^{-6}$

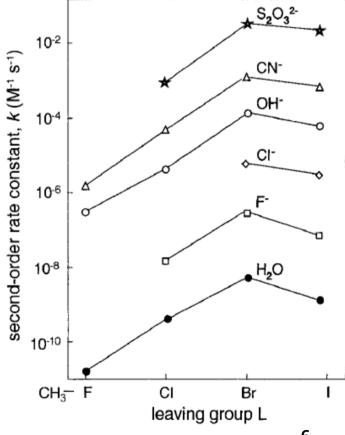
^a Eq. 13-5 using the $n_{\text{Nu,CH}_3\text{Br}}$ values given in Table 13.3.

#2

S_N1 & S_N2: Leaving groups

Reaction rates for methyl halides: CH₃Br ~ CH₃I > CH₃Cl > CH₃F

#1


- What makes one a good leaving group??
 - 1) The one with smaller n_{Nu,CH_3Br} (a weaker nucleophile)

but
$$n_{Nu,CH_3Br}$$
 is in the order of:
 $F^- < Cl^- < Br < l^-$

2) The one bound weakly to carbon

C-X bond strength is in the order of: $CH_3I < CH_3Br < CH_3CI < CH_3F$

More significant!

S_N1 & S_N2: Effect of EDGs & resonance

Table 13.6 Hydrolysis Half-Lives and Postulated Reaction Mechanisms at 25°C of Some Monohalogenated Hydrocarbons at Neutral pH a

	Type of Carbon		$t_{1/2}$ (Hydrolysis)			Dominant Mechanism(s)	
Compound	to Which L is Attached	L = F	Cl	Br	I	in Nucleophilic Substi- tution Reactions	
R-CH ₂ -L	primary	≈30 yr ^b	340 d ^b	20–40 d °	50–110 d ^d	S _N 2	
H³Ć CH−F H³C	secondary		38 d	2 d	3 d	$S_{N}2S_{N}1$	
CH ₃ CH ₃	tertiary	50 d	23 s			$S_{N}1$	
CH ₂ = CH- CH ₂ -L	allyl		69 d	0.5 d	2 d	$S_{N}2S_{N}1$	
CH ₂ -L	benzyl		15 h	0.4 h		$S_{N}2S_{N}1$	

^a Data taken from Robertson (1969) and Mabey and Mill (1978). ^b R = H. ^c R = H, C₁ to C₅-n-alkyl. ^d R = H, CH₃.

#3

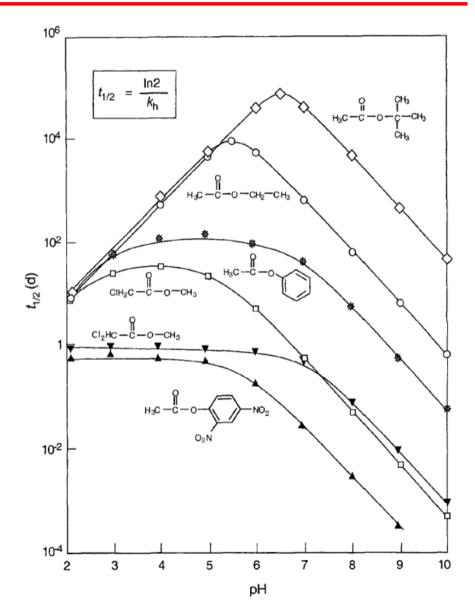
References

#1-#3) Schwarzenbach, R., Gschwend, P. M., Imboden, D. M. (2003) Environmental Organic Chemistry, 2nd ed., John Wiley & Sons, p. 498; p. 501; p. 505

Nucleophilic reactions III: Hydrolysis of esters, etc.

Hydrolysis of carboxylic & carbonic acid derivatives

- Carboxylic acid derivatives Carbonic acid derivatives


- Unsaturated, electron-deficient C
- Reacts predominantly with H₂O & OH⁻ (hydrolysis)
- **General reaction mechanism**

$$R = C + HL$$
 $R = C + HL$
 $R = C + HL$

#1

Hydrolysis of Esters

- Three mechanisms:
 - 1) acid-catalyzed
 - 2) neutral
 - 3) base-catalyzed
- Importance of each reaction depends on the structure of the reactant

Ester hydrolysis: acid-catalyzed

- Ester carbon is protonated
 → enhanced depletion of electrons near the carbon
 → ester carbon gets more susceptible to H₂O attack
- Reaction (2) is rate limiting
- Reaction rate depends on:
 - $-k_A'$
 - K_a of the protonated ester
 - $-[H^+]$

$$R_{1} - C = \begin{pmatrix} O \\ O - R_{2} \end{pmatrix} + H_{3}O^{+} = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} \qquad R_{1} - C = \begin{pmatrix} C \\ + \\ O - R_{2} \end{pmatrix} + H_{2}O = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} \qquad R_{1} - C = \begin{pmatrix} C \\ - C \\ - C \end{pmatrix} - R_{2} \qquad (2)$$

$$C = \begin{pmatrix} O \\ O - R_{2} \\ O - R_{2} \end{pmatrix} \qquad (fast) \qquad R_{1} - \begin{pmatrix} C \\ - C \\ - C \\ - C \end{pmatrix} - R_{2} \qquad (3)$$

$$C = \begin{pmatrix} O \\ H_{1} - C \\ - C \\ - C \\ - C \\ O \\ - C \end{pmatrix} \qquad (fast) \qquad R_{1} - \begin{pmatrix} O \\ - C \end{pmatrix} \qquad (4)$$

$$C = \begin{pmatrix} O \\ H_{1} - C \\ - C$$

Ester hydrolysis: base-catalyzed

(1) only or both (1) & (2) can be rate-limiting

Rate depends on [OH-] and in addition:

If only (1) is rate-limiting:

Depends on the formation of R₁-c-o-R₂

If both (1) & (2) are rate-limiting:

group

– Depends on the formation of $R_1 - \stackrel{1}{C} - O - R_2$ & the property of the leaving

#4

Ester hydrolysis: neutral

- Similar to base-catalyzed
- The property of the leaving group is more important for H₂O (weaker nucleophile) than OH⁻

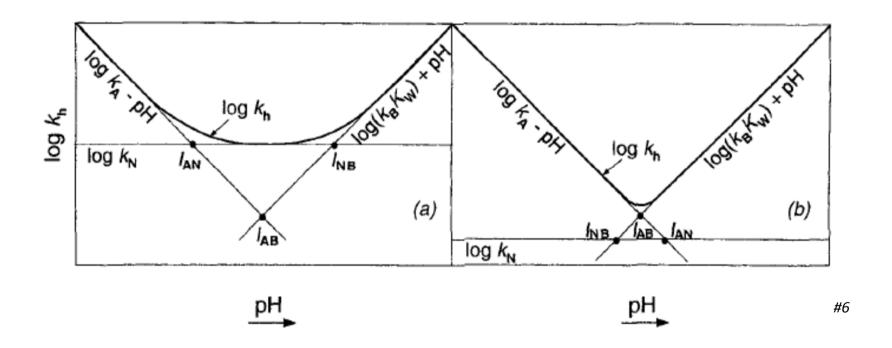
$$R_{1} - C = \begin{pmatrix} O \\ O - R_{2} \end{pmatrix} + H_{2}O = \begin{pmatrix} \frac{k_{N1} \text{ (slow)}}{k_{N2} \text{ (fast)}} & R_{1} - \frac{1}{C} - O - R_{2} \\ + \frac{1}{O}H_{2} \end{pmatrix}$$

$$R_{1} - \frac{1}{C} - O - R_{2} = \frac{(fast)}{(fast)} = R_{1} - \frac{OH}{C} - O - R_{2} = \frac{k_{N3} \text{ (fast...slow)}}{(slow)} = R_{1} - C + \frac{OH}{OH} + O - R_{2} = (2)$$

$$(fast) = \begin{pmatrix} O - R_{2} \\ (fast) \\ (fast)$$

#5

Ester hydrolysis kinetics


• k_h : pseudo-first-order hydrolysis rate constant (s⁻¹), f(pH)

$$k_h = k_A[H^+] + k_{H_2O}[H_2O] + k_B[OH^-]$$

= $k_A[H^+] + k_N + k_B[OH^-]$

Hydrolysis half-life (at certain pH)

$$t_{1/2 \,(hydroysis)} = \frac{\ln 2}{k_h}$$

Ester hydrolysis: I values

I_I = the pH value at which the rates for I and J reactions are the same
I, J: A (acid-catalyzed); N (neutral); B (base-catalyzed)

Table 13.8 Rate Constants k_A , k_N , and k_B , Half-Lives at pH 7, and I Values for Hydrolysis of Some Carboxylic Acid Esters at 25°C ^a

	Compound O II R ₁ - C - O - R ₂							
R_1	R_2	$(M^{-1} s^{-1})$	k_{N} (s^{-1})	$(M^{-1} s^{-1})$	t _{1/2} (pH 7)	I _{AN} b,c.e	$I_{ m AB}^{AB$	$I_{ m NB}^{}$
CH ₃ -	- CH ₂ CH ₃	1.1×10^{-4}	1.5×10^{-10}	1.1×10^{-1}	2 yr	(5.9)	5.5	(5.1)
CH_3 $-$	$-C(CH_3)_3$	1.3×10^{-4}		1.5×10^{-3}	140 yr		6.5	
H	-C(CH ₃) ₃	2.7×10^{-3}	1.0×10^{-6}	1.7×10^{0}	7 d	2.6	5.6	7.8
CH ₃ -	$-CH = CH_2$	1.4×10^{-4}	1.1×10^{-7}	1.0×10^{1}	7 d	3.1	(4.6)	6.0
CH ₃ –		7.8×10^{-5}	6.6×10^{-8}	1.4×10^{0}	38 d	3.1	(4.8)	6.7
CH ₃ –	O_2N		1.1×10^{-5}	9.4×10^{1}	10 h			7.1
CH ₂ Cl –	-	8.5×10^{-5}	2.1×10^{-7}	1.4×10^2	14 h	2.6	(3.9)	5.2
CHCl ₂ -	- CH ₃	2.3×10^{-4}	1.5×10^{-5}	2.8×10^3	40 min	1.2	(3.5)	5.7
CHCl ₂ -	_		1.8×10^{-3}	1.3×10^4	4 min			7.1

^a Data from Mabey and Mill (1978) except for *tert*-butyl formate $(R_1 = H, R_2 = C(CH_3)_3; Church et al., 1999)$. ^b $I_{AN} = \log (k_A/k_N)$. ^c $I_{AB} = 1/2 \log (k_A/k_BK_w)$. ^d $I_{NB} = \log (k_N/k_BK_w)$. ^e Parentheses indicate that one or both of the processes is too slow to contribute significantly to the overall rate.

References

#1-#7) Schwarzenbach, R., Gschwend, P. M., Imboden, D. M. (2003) Environmental Organic Chemistry, 2nd ed., John Wiley & Sons, p. 513; p. 514; p. 521; p. 523; p. 524; p. 515; p. 520.

Nucleophilic reactions: Exercise

S_N2: Relative nucleophilicity

Q: Estimate the half-life (in days) of CH_3Br present at low concentration (i.e., < 0.01mM) in a homogeneous aqueous solution (pH=7.0, T=25°C) containing 100 mM Cl^- , 2 mM NO_3^- , 1 mM HCO_3^- , and 0.1 mM CN^- . In pure water at pH 7.0 and 25°C, the half-life of CH_3Br is about 20 days.

S_N2: Relative nucleophilicity

Nucleophile concentrations are all in excess compared to CH₃Br concentration

The nucleophilic substitution reaction can be assumed to be in pseudo- 1^{st} order

$$r = -\frac{d[CH_3Br]}{dt} = \left\{ \sum_j k_{Nu_j}[Nu_j] \right\} \cdot [CH_3Br] \qquad \textit{recall "reactions in parallel"}$$

$$= k_{obs} \cdot [CH_3Br] \qquad \qquad k_{obs} = \textit{pseudo-1}^{\textit{st}} \textit{ order rate constant by reaction of CH}_3Br \qquad \qquad \textit{will all nucleophiles}$$

For a nucleophile with a concentration much lower than $[Nu]_{50\%}$, we can neglect its contribution (it should contribute much less than H_2O)

EOC text, p. 501

$$[Cl^{-}] = 0.1; [NO_{3}^{-}] = 2 \times 10^{-3}; [HCO_{3}^{-}] = 10^{-3};$$

 $[CN^{-}] = 10^{-4}; [OH^{-}] = 10^{-7} (units in M)$

 NO_3^- & OH^- can be neglected.

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) = s \cdot n_{Nu,CH_3Br} = n_{Nu,CH_3Br}$$

$$s=1 \text{ for } CH_3Br$$

$$k_{Nu} = 10^{n_{Nu,CH_3Br}} \cdot k_{H_2O}$$

Table 13.5 Calculated Concentration of Nucleophile Required to Compete with Water in an S_N2 Reaction with Alkyl Halides Assuming an s Value of 1

Nucleophile	$[\mathrm{Nu}]_{50\%}{}^a (\mathrm{M})$
NO ₃	~6
F-	$\sim 6 \times 10^{-1}$
SO ₄ ²⁻	$\sim 2 \times 10^{-1}$
Cl-	$\sim 6 \times 10^{-2}$
HCO ₃	$\sim 9 \times 10^{-3}$
HPO4	$\sim 9 \times 10^{-3}$
Br ⁻	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I-	$\sim 6 \times 10^{-4}$
HS-	$\sim 4 \times 10^{-4}$
CN	$\sim 4 \times 10^{-4}$
$S_2O_3^{2-}$	$\sim 4 \times 10^{-5}$
S ₄ 2-	~4 × 10 ⁻⁶

^a Eq. 13-5 using the $n_{\text{Nu.CH}_3\text{Br}}$ values given in Table 13.3. 4

$$k_{obs} = k_{H_2O}\{[H_2O] + 10^{3.0}[Cl^-] + 10^{3.8}[HCO_3^-] + 10^{5.1}[CN^-]\}$$

= $(174.2 M) \cdot k_{H_2O}$

Half-life for a 1^{st} order (or pseudo- 1^{st} order) reaction is given as

$$t_{1/2} = \frac{\ln 2}{k}$$

In pure water, only hydrolysis reaction by H_2O occurs:

$$t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{k_{H_2O}[H_2O]}$$

$$k_{H_2O} = \frac{\ln 2}{t_{1/2}[H_2O]} = \frac{\ln 2}{20 \ d \cdot 55.3 \ M}$$

$$= 6.27 \times 10^{-4} \ M^{-1} d^{-1}$$

Table 13.3 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined from the Reaction with Methyl Bromide or n-Hexyl Bromide in Water (Eq. 13-3, s = 1)

Nucleophile	$n_{ m Nu,CH_3Br}^{a}$
ClO ₄	<0
H_2O	0
NO ₃	1.0
\mathbf{F}^{-}	2.0
SO ₄ ²⁻	2.5
CH ₃ COO	2.7
C1	3.0
HCO_3 , HPO_4^2	3.8
Br~	3.9
OH-	4.2
I-	5.0
CN", HS	5.1
$S_2O_3^{2-}$	6.1 ^b
PhS ⁻	6.8 ^b
S ₄ ²⁻	7.2 ^b

^a Data from Hine (1962). ^b Data from Haag and Mill (1988a).

Now, we are ready to calculate the pseudo- 1^{st} order rate constant for the solution:

$$k_{obs} = (174.2 M) \cdot k_{H_2O} = 0.109 d^{-1}$$

Therefore,

$$t_{1/2} = \frac{ln2}{k_{obs}} = \frac{ln2}{0.109 \ d^{-1}} = \mathbf{6.4} \ \mathbf{d}$$

Ester hydrolysis kinetics

Q: Following pseudo-first order hydrolysis rate constants, k_h , were determined by a laboratory kinetic experiment for DNPA at 25° C. Determine the rate constants for the neutral (k_N) and base-catalyzed (k_B) hydrolysis of DNPA. Determine the l_{NB} .

рН	3.0	4.0	5.0	8.5
k _h (s ⁻¹)	4.3 x 10 ⁻⁵	4.5 x 10 ⁻⁵	4.4 x 10 ⁻⁵	5.1 x 10 ⁻⁴

Ester hydrolysis kinetics

Because k_h is almost the same at pH=3.0-5.0, acid-catalyzed hydrolysis is insignificant.

As k_h is neither a function of $[H^+]$ nor $[OH^-]$ at this range, neutral hydrolysis should be dominant at pH=5.0

$$k_h(pH = 5.0) = k_N = 4.4 \times 10^{-5} \, s^{-1}$$

At pH=8.5, both neutral and base-catalyzed hydrolysis will occur:

$$k_h(pH = 8.5) = k_N + k_B[OH^-] = 5.1 \times 10^{-4} \text{ s}^{-1}$$

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{10^{-14}}{10^{-8.5}} = 10^{-5.5} M$$
 (pK_w=14 @ 25°C)

$$k_B = \frac{k_h - k_N}{[OH^-]} = \frac{(5.1 \times 10^{-4} \, s^{-1}) - (4.4 \times 10^{-5} \, s^{-1})}{10^{-5.5} \, M} = 147 \, M^{-1} s^{-1}$$

$$k_N = k_B[OH^-] = k_B \frac{K_w}{[H^+]}$$

$$[H^+] = k_B \frac{K_w}{k_N} = 147 M^{-1} s^{-1} \times \frac{10^{-14}}{4.4 \times 10^{-5} s^{-1}} = 3.34 \times 10^{-8} M$$

$$pH = -log[H^+] = 7.5$$

$$I_{NB} = 7.5$$