Space Group - 2

Read

Ott Chapter 10 (exclude 10.1)
Hammond Chapter 4.6~4.7
Krawitz Chapter 1.6~1.8
Sherwood \& Cooper Chapter 3.8
Hammond Chapter 2.1 ~ 2.5; 3.1 ~ 3.3; $4.1 \sim 4.5$; $5.1 \sim 5.6$
Krawitz Chapter 1.1 ~ 1.8

Space groups

$>$ Bravais lattice + point group $\rightarrow 230$ space groups

+ screw axis
+ glide plane
$>$ Bravais lattice + point group $=73$
$>$ Bravais lattice + screw axis $=41$
$>$ Bravais lattice + glide plane $=116$
monoclinic system

$$
\begin{aligned}
P \frac{2}{m}, \quad C \frac{2}{m} & \left(\text { a-glide at } \mathrm{x}, \frac{1}{4}, z, \mathrm{x}, \frac{3}{4}, z\right. \\
& \left.2_{1} \text { screw axis at } \frac{1}{4}, y, 0, \frac{1}{4}, y, \frac{1}{2}, \frac{3}{4}, y, 0, \frac{3}{4}, y, \frac{1}{2}\right)
\end{aligned}
$$

Space groups - Monoclinic

$-\frac{2}{m}$ subgroup 2 , m
$2_{1} \rightarrow 2$, c-glide $\rightarrow \mathrm{m}$

glide planes parallel to (010)

 a-glide \& n-glide can be converted to c-glide

13 monoclinic space groups	Point groups	Space groups	
	2/m	$\begin{aligned} & \mathrm{P} 2 / \mathrm{m} \\ & \mathrm{P}_{1} / \mathrm{m} \\ & \mathrm{P} 2 / \mathrm{c} \\ & \mathrm{P}_{1} / \mathrm{c} \end{aligned}$	$\begin{aligned} & \mathrm{C} 2 / \mathrm{m} \\ & \mathbf{-}^{\mathrm{a}} 2 / \mathrm{c} \\ & \mathrm{C}^{\mathrm{b}} \end{aligned}$
	m	$\begin{aligned} & \mathrm{Pm} \\ & \mathrm{Pc} \end{aligned}$	$\begin{aligned} & \mathrm{Cm} \\ & \mathrm{Cc} \end{aligned}$
	2	$\begin{aligned} & \mathbf{P 2} \\ & \mathbf{P 2}_{1} \end{aligned}$	$\underset{-c}{\mathrm{C} 2}$

Space groups with d-glide Fddd $\quad 14_{1} \mathrm{md}$
$141 \mathrm{~cd} \quad \mid 4 \mathrm{bar} 2 \mathrm{~d}$
$14_{1} / \mathrm{a}$ c d
F d 3bar
| 4bar 3 d
F d 3bar c
I a 3bar d

Space groups - Monoclinic; $x, y, 0$ projection

$C \xrightarrow{\frac{2}{14}}$

Chan Park, MSE-SNU
(1) enantiomorphs
(1) two positions

- (1) + superimposed

International Tables for X-ray Crystallography

Powder Diffraction File (PDF)

CAS; chemical abstracts
service registry number

Quality mark

* Highest quality

\checkmark average $\Delta 2 \theta<0.03$ degree, all lines were indexed, I measured quantitatively

i reasonable quality

\checkmark average $\Delta 2 \theta<0.06$ degree, indexed with no more than two lines being unaccounted for, I measured quantitatively
>o low quality
\checkmark low precision, poorly characterized, no unit cell data
blank quality lower than o
c calculated data
r d's from Rietveld refinement
$>$ for a point $\quad x, y, z \quad$ (general point),

$$
\text { symmetry element generates } \quad \bar{x}, y, z ; x, \bar{y}, z ; \bar{x}, \bar{y}, z
$$

$x, y, z ; \bar{x}, y, z ; x, \bar{y}, z ; \bar{x}, \bar{y}, z$ are equivalent (multiplicity of 4)

Space group - Pmm2

$>$ move the point x, y, z to mirror plane at $\frac{1}{2}, y, z$
x, y, z and $1-x, y, z$ coalesce to $\frac{1}{2}, y, z$
$x, 1-y, z$ and $1-x, 1-y, z$ coalesce to $\frac{1}{2}, 1-y, z$
multiplicity of 2
\checkmark as long as the point remains on the mirror plane, its multiplicity is unchanged - degree of freedom 2

c)

A special point arises from the merging of equivalent positions

Space groups - multiplicity
screw axis and glide plane do not alter the multiplicity of a point
Pna21: orthorhombic

Origin on 112,
Asymmetric unit $0 \leq x \leq 1 ; \quad 0 \leq y \leq f ; 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0.0 . \frac{1}{2}\right) \quad 0.0 . z$
(3) ar $x, \frac{1}{2}, 2$
(4) $n(0, j, 1) \quad i, v, z$

Multiplicity, Wyckoff letter,
Site symmetry

Coordinates

(2)

> (4)
(3)

Reflection conditions
(3) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, z$
(4) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$

General:
$\begin{array}{llll}4 & a & 1\end{array}$
(1) x, y, z
(2) $\bar{x}, \bar{y}, z+\frac{1}{2}$
(4) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$

Special position
Symmetry of special projections

Symmetry operations

(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \quad 0,0, z$
(3) $a \quad x, \frac{1}{4}, z$
General position - multiplicity of 4 No special positions in Pna2 ${ }_{1}$
(4) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$
$0 k l: k+l=2 n$
$h 0 l: h=2 n$
$h 00: h=2 n$
$0 k 0: k=2 n$

$>$ The number of equivalent points in the unit cell $=\underline{\text { multiplicity }}$
$>$ A general position is a set of equivalent points with point symmetry (site symmetry) 1
> A special position is a set of equivalent points with point symmetry (site symmetry) higher than 1
$>$ The asymmetric unit of a space group is the smallest part of the unit cell from which the whole cell may be filled by the operation of all the symmetry operations
> General form : Set of equivalent faces, each of which has symmetry 1
$>$ Special form : Set of equivalent faces, each of which has symmetry higher than 1
$>$ Limiting form : A special case of either a general or a special form. It has the same number of faces, each of which has the same face symmetry, but the faces are differently arranged.
$>$ Asymmetric face unit : The smallest part of the surface of the sphere which, by the application of the symmetry operations, will generate the entire surface of the sphere

Space groups - asymmetric unit

> The asymmetric unit of a space group; the smallest part of the unit cell from which the whole cell may be filled by the operation of all the symmetry operations.

$$
V_{\text {asymmunit }}=\frac{V_{\text {unit cell }}}{\text { multiplicity of general position }}
$$

- Asymmetric unit of Pmm2 ($a \neq b \neq c$, multiplicity of 4) $0 \leq x \leq 1 / 2, \quad 0 \leq y \leq 1 / 2, \quad 0 \leq z \leq 1 \quad V_{\text {asym.unit }}=V_{\text {unit cell }} / 4$

Asymmetric unit contains all the information necessary for the complete description of a crystal structure

Unit cell
the smallest unit of volume that contains all of the structural and symmetry information and that can reproduce a pattern in all of space by translation.

Look hard at the fig. 10.13 and table 10.4 (space group $\mathrm{P} 2 / \mathrm{m}$) of Ott

Operation of 6_{1} at $0,0, z$

(a) 3-fold rotation

48 -fold general position of space group $P \frac{4}{m} \overline{3} \frac{2}{m}$ (221)
(b) projection on $x, y, 0 \rightarrow 3$

mirror plane @ $x, x, z \rightarrow 6$
(c)
c)

4-fold rotation @ 0,0,z
\& mirror plane @ x,y,0 (planr of paper)
$\rightarrow 6 \times 4 \times 2=48$

48 points can be generated by symmetry $4 / \mathrm{m} 3 \mathrm{~m}$
(d)

1516

8

14
13

1.4. Graphical symbols for symmetry elements in one, two, and three dimensions
(a) Symmetry planes normal to the plane of projection (three dimensions) and symmetry lines in the plane of the figure (two dimensions)

Symmetry plane or symmetry line	Graphical symbol	Glide vector in units of lattice translation vectors parallel and normal to the projection plane	Printed symbol
$\left.\begin{array}{l}\text { Reflection plane, mirror plane } \\ \text { Reflection line, mirror line } \\ \text { (two dimensions) }\end{array}\right\}$	$\underline{\square}$	None	m
'Axial' glide plane $\}$		$\frac{1}{2}$ along line parallel to projection plane	a, b or c
Glide line (two dimensions)		$\frac{1}{2}$ along line in plane	g
'Axial' glide plane	$\frac{1}{2}$ normal to projection plane	a, b or c
'Diagonal' glide plane	--	$\frac{1}{2}$ along line parallel to projection plane, combined with $\frac{1}{2}$ normal to projection plane	n
'Diamond' glide plane (pair of planes; in centred cells only)	-.-. - -	$\frac{1}{4}$ along line parallel to projection plane, combined with $\frac{1}{4}$ normal to projection plane (arrow indicates direction parallel to the projection plane for which the normal component is positive)	d

\qquad
No. 225

> International Tables for Crystallography, Brief teaching edition of Volume

A: Space-group symmetry

Edited by Theo Hahn

> International Tables for Crystallography, Volume A: Space-group symmetry Edited by Theo Hahn

International Tables for X-ray Crystallography

Short Hermann-Mauguin symbol Schoenflies symbol Point group Crystal system symbol

Full Hermann-Mauguin symbol

Projection of

Projection of a general position

Choice of origin Asymmetric unit Symmetry operations

Origin at 1
Asymmetric unit $\quad 0 \leq x \leq 1 ; \quad 0 \leq y \leq \frac{1}{2} ; 0 \leq 2 \leq 1$
Symmetry operations
$\begin{array}{llll}\text { (1) } 1 & \text { (2) } 2(0,1,0) & 0, y, \frac{1}{6} & \text { (3) } \overline{1} 0,0,0\end{array} \quad$ (4) $c x, 4,2$

General \& special positions

Chan Park, MSE-SNU

International Tables for X-ray Crystallography

Asymmetric unit

\checkmark a region of space which fills all space when all the symmetry operations of the space group are applied
\checkmark smaller than a unit cell

Unit cell

\checkmark a region of space which fills all space when the translation operations are applied

Origin at 1

Asymmetric unit $0 \leq x \leq 1 ; \quad 0 \leq y \leq \frac{1}{c} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, \frac{1}{4}$
(3) $\overline{1} \quad 0,0,0$
(4) $c x, \frac{1}{4}, z$

Symmetry operations

International Tables for X-ray Crystallography

Symmetry operations

Origin at $\overline{1}$

Asymmetric unit $0 \leq x \leq 1 ; \quad 0 \leq y \leq \frac{1}{6} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, \frac{1}{4}$

(3) $\overline{1}$
$0,0,0$
(4) $c x, \frac{1}{4}, z$
c glide, glide plane $x, 1 / 4, z$ Location of inversion point
$20,1 / 4, z \quad 2$-fold rotation around the line $0,1 / 4, z$
a $x, y, 1 / 4 \quad$ glide reflection $w /$ glide component $(1 / 2,0,0)$ thru the plane $x, y, 1 / 4$ (plane // (001) at $z=1 / 4$)
$2(0,0,1 / 2) \quad 1 / 4,0, z$
2 -fold screw rotation $w /$ screw part $(0,0,1 / 2)$ for which the corresponding screw axis coincides $w /$ the line $1 / 4,0, z$ (runs // to [001] thru the point $1 / 4,0,0$)

International Tables for X-ray Crystallography

> Generators
\checkmark Symmetry operations and their sequence, selected to generate all symmetrically equivalent points of the general position from a point x, y, z
\checkmark Set of symmetry operators which when successfully multiplied yield ALL of the operators of the group
\checkmark List of symmetry operations selected that can generate all of the symmetry operations of the space group

Cenerators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3)$ translations

Symmetry operations
(1) 1
(2) $2(0,1,0) \quad 0, y, \frac{1}{4}$
(3) $10,0,0$
(4) $c x, \frac{1}{4}, z$

International Tables for X-ray Crystallography

Positions

\checkmark Multiplicity (rank); \# equivalent points per unit cell
\checkmark Wyckoff letter
\checkmark Site symmetry (point symmetry of the position)
\checkmark Coordinates of the equivalent positions

General position	Positions Multiplicity. Wyckoff letter. Site symmetry		Coordinates		
	4 e 1	(1) x, y, z	(2) $\bar{x}, y+\frac{1}{2}, \bar{z}+\frac{1}{1}$	(3) $\bar{x}, \bar{y}, \bar{z}$	(4) $x, \bar{y}+\frac{1}{2}, z+\frac{1}{2}$
Special position	$2{ }^{2}$ d 1	- $1,0,1$	$\frac{1}{2}, \frac{1}{2}, 0$		
	$2 c^{2} \quad 1$	0,0,1	0, 1,0		
	$2 b^{2}$ I	$\frac{1}{2}, 0,0$	+, $\frac{1}{2}$, $\frac{1}{1}$		
	$2 a^{2}$ 1	0,0,0	0, 1,1		

> projection of symmetry elements
> projection of general position

Origin on $m m 2$
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; 0 \leq y \leq \frac{1}{2} ; 0 \leq z \leq 1$

Symmetry operations

$\begin{array}{llll}\text { (1) } 1 & \text { (2) } 20,0, z & \text { (3) } m x, 0, z & \text { (4) } m 0, y, z\end{array}$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

(3)

(4) Origin on $m m 2$
(5) Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; 0 \leq z \leq 1$
(6) Symmetry operations

For $(0,0,0)+$ set
(1) 1
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m 0, y, z$
For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set
(I) $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(2) $2 \frac{1}{3}, \frac{1}{2}, z$
(3) a $x, \frac{1}{1}, 2$
(4) $b \frac{1}{4}, y, z$
(1) Headline: Section 2.2.3.

Short Hermann-Mauguin symbol
(Section 2.2.4 and Chapter 12.2)
(2) Number of space group
[Same as in IT (1952)]

Schoenflies symbol
(Chapters 12.1 and 12.2)

Full Hermann-Mauguin symbol (Section 2.2.4 and Chapter 12.3)

Crystal class (Point group)
(Section 10.1.1 and Chapter 12.1)
Crystal system
(Section 2.1.2)

Patterson symmetry
(Section 2.2.5)
(3) Space-group diagrams, consisting of one or several projections of the symmetry elements and one illustration of a set of equivalent points in general position. The numbers and types of the diagrams depend on the crystal system. The diagrams and their axes are described in Section 2.2.6; the graphical symbols of symmetry elements are listed in Chapter 1.4.

For monoclinic space groups see Section 2.2.16; for orthorhombic settings see Section 2.2.6.4.
(4) Origin of the unit cell: Section 2.2 .7 . The site symmetry of the origin and its location with respect to the symmetry elements are given.
(5) Asymmerric zmit: Section 2.2.8. One choice of asymmetric unit is given.
(6) Symmetry operations: Section 2.2 .9 and Part 11. For each point $\bar{x}, \bar{y}, \tilde{z}$ of the general position that symmetry operation is listed which transforms the initial point x, y, z into the point under consideration. The symbol describes the nature of the operation, its glide or serew component (given between parentheses), if present, and the location of the corresponding symmetry element.

The symmetry operations are numbered in the same way as the corresponding coordinate triplets of the general position. For centred space groups the same numbering is applied in each block, e.g. under 'For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set'.
[Continued on inside back cover]
(2) Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ; t\left(\frac{1}{2}, \frac{1}{2}, 0\right) ;$ (2); (3)
(3) Positions

Multiplicity,		Coordinates		
Wyckotf letter. Site symmetry		$(0,0,0)+$	$\left.\frac{1}{2}, 0\right)+$	
$8 \quad j 1$	(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) x, \bar{y}, z	(4) \bar{x}, y, z

Reflection conditions
Site symmerty

> General: $h k l: h+k=2 n$ $0 k l: k=2 n$ $h 0 l: h=2 n$ $h k 0: h+k=2 n$ $h 00: h=2 n$ $0 k 0: k=2 n$ Special; as above, plas no extra conditions no extra conditions $h k l: h=2 n$ no extra conditions no extra conditions
$\begin{array}{llllll}8 & f & 1 & \text { (1) } x, y, z & \text { (2) } \bar{x}, \bar{y}, z & \text { (3) } x, \bar{y}, z\end{array} \quad$ (4) \bar{x}, y, z

4	e	$m \ldots$	$0, y, z$	$0, \bar{y}, z$
4	d	$\ldots m$	$x, 0, z$	$\bar{x}, 0, z$
4	c	$\ldots 2$	$\frac{1}{4}, \frac{1}{4}, z$	$\frac{1}{4}, \frac{3}{4}, z$
2	b	$m m 2$	$0, \frac{1}{2}, z$	
2	a	$m m 2$	$0,0, z$	

2 a mm2 0,0,z
(4) Symmetry of special projections

Along [001]c2mm
$\mathbf{a}^{\prime}=\mathbf{a} \quad \mathbf{b}^{\prime}=\mathbf{b}$
$a^{\prime}=\mathbf{a} \quad b^{\prime}=b$
Origin at $0,0, z$
Along [100] p | ml I
$\mathrm{a}^{\prime}=\frac{1}{2} \mathrm{~b} \quad \mathrm{~b}^{\prime}=\mathrm{c}$
Origin at $x, 0,0$
Along [010] $p 11 m$
$\mathbf{a}^{\prime}=\mathbf{c} \quad \mathrm{b}^{\prime}=\frac{1}{2}$
(5) Maximal non-isomorphic subgroups
$\begin{array}{lll}\text { I } & \begin{array}{ll}[2] \mathrm{Clml(Cm}, 8) \\ {[2] \mathrm{Cm} 11(\mathrm{Cm}, 8)}\end{array} & (1 ; 3)+ \\ & (1 ; 4)+\end{array}$ [2]C112(P2,3) (1:2) +
Ua $\begin{array}{ll}{[2] P b a 2(32)} & 1 ; 2 ;(3 ; 4)+\left(\frac{1}{2}, \frac{1}{2}, 0\right) \\ {[21 P b m 2(P m a 2,28)} & 1 ; 3 ; 2 ; 4)\end{array}$
$\begin{array}{ll}{[21 \text { PPm2 } 2(28)} & 1 ; 3 ;(2 ; 4)+\left(1, \frac{1}{2}, 0\right) \\ \text { 2] } 1 ; 4 ;(2 ; 3)+(1,0)\end{array}$
[2] $P \mathrm{~mm} 2(25) \quad 1 ; 2 ; 3 ; 4$
IIb [2] $\operatorname{lma2}\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(46) ;[2] / \mathrm{bm} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(1 \mathrm{man} 2,46) ;[2] / \mathrm{ha} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(45) ;[2] / \mathrm{mm} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(44) ;[2] \mathrm{Ccc} 2\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(37) ;$ [2] $\mathrm{Cmc} 2,\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(36) ;[2] \mathrm{Ccm} 2,\left(\mathrm{c}^{\prime}=2 \mathrm{e}\right)(\mathrm{Cmc} 2,36)$
Maximal isomorphic subgroups of lowest index
IIc [2] Cmm 2 $\left(\mathrm{c}^{\prime}=2 \mathrm{c}\right)(35) ;[3] \mathrm{Cmm} 2\left(\mathrm{a}^{\prime}=3 \mathrm{a}\right.$ or $\left.\mathrm{b}^{\prime}=3 \mathrm{~b}\right)(35)$
(7) Minimal non-isomorphic supergroups
I. [2]Cmmm (65); [2] Cmme (67); [2]P4mm (99); [2] $P 4 b m(100) ;[2] P 4_{2} c m(101):[2] P 4{ }_{2} n m$ (102); [2] $P \overline{4} 2 m(111)$; [2] $P \overline{4} 2, m(113) ;[3] P 6 \mathrm{~mm}(183)$
II [2] $F m m 2(42) ;[2] P m m 2\left(\mathbf{a}^{\prime}=\frac{1}{2} \mathbf{a}, \mathbf{b}^{\prime}=\frac{1}{2}\right)(25)$
(1) Headline in abbreviated form.
(2) Generators selected: Sections 2.2 .10 and 8.3.5. A set of generators, as selected for these Tables, is listed in the form of translations and numbers of general-position coordinates. The gencrators determine the sequence of the coordinate triplets in the gencral position and of the corresponding symmetry operations.
(3) Positions: Sections 2.2 .11 and 8.3.2. The general Wyckoff position is given at the top, followed downwards by the various special Wyckoff positions with decreasing multiplicity and increasing site symmetry. For each general and special position its multiplicity, Wyckoff letter, oriented site-symmetry symbol, as well as the appropriate coordinate triplets and the reflection conditions, are listed. The coordinate triplets of the gencral position are numbered sequentially; of. Symmerry operations.

Orienzed site-symmetry symbol (third columm); Section 2.2.12. The site symmetry at the points of a special position is given in oriented form.

Reflection conditions (right-most column): Section 2.2.13.
[Lattice complexes are described in Part 14; Tables 14.2.3.1 and 14.2.3.2 show the assigument of Wyckoff positions to Wyckoff sets and to lattice complexes.]
(4) Symmetry of special projections: Section 2.2.14, For each space group, orthographic projections along three (symmerry) directions are listed. Given are the projection direction, the plane group of the projection, as well as the axes and the origin of the projected cell.
(5) Maximal non-isomorphic stugroups: Sections 2.2.15 and 8.3.3.

Type I: translationengleiche or t subgroups;
Type IIa: klassengleiche or k subgroups, obtained by 'decentring' the conventional cell; applies only to space groups with centred cells;
Type IIb: klassengleiche or k subgroups, obtained by enlarging the conventional cell.
Given are:
For types I and Ma: Index [between brackets]; 'unconventional' Hermann-Mauguin symbol of the subgroup; 'conventional' Hermann-Mauguin symbol of the subgroup, if different (between parentheses); coordinate triplets retained in subgroup.
For type IIb: Index [between brackets]; 'unconventional' Hermann-Mauguin symbol of the subgroup; basis-vector relations between group and subgroup (between parentheses); 'conventional' Hermann-Mauguin symbol of the subgroup, if different (between parentheses).
(6) Maximal isomorphic subgroups of lowest index: Sections 2.2.15, 8.3.3 and 13.1.2.

Type IIc: klassengleiche or k subgroups of lowest index which are of the same type as the group, i.e have the same standard Hermann-Mauguin symbol. Data as for subgroups of type IIb.
(7) Minimal non-isomorphic supergroups: Sections 2,2.15 and 8.3.3.

The list contains the reverse relations of the subgroup tables; only types I (t supergroups) and $\mathbf{I I}$ (k supergroups) are distinguished.

All centrosymmetric space groups are described with an inversion centers as origin. A $2^{\text {nd }}$ description is given if a space group contains points of high site symmetry that do not coincide with a center of symmetry.
> For non-centrosymmetric space groups, the origin is at a point of highest site symmetry. If no site symmetry is higher than 1 , the origin is placed on a screw axis or a glide plane, or at the intersection of several such symmetry elements.
$\mathrm{P} 2_{1} / \mathrm{C}$ (14)

$C_{2 h}^{5}$
P12,/c1
UNIQUE AXIS b, CELL CHOICE 1
$2 / m$

Patterson symmetry Patterson symmetry P12/m 1

2 choices for the unique axis b or c

3 choices of unit cell

Origin at 1
Asymmetric unit $0 \leq x \leq 1 ; 0 \leq y \leq 1 ; 0 \leq z \leq 1$
Symmetric operations
$\begin{array}{llll}\text { (1) } 1 & \text { (2) } 2\left(0, \frac{1}{2}, 0\right) & 0, y, \frac{1}{z} & \text { (3) } 10,0,0\end{array} \quad$ (4) $\subset x, \frac{1}{2}, z$

Unique axis b, cell choice 1 Unique axis b, cell choice 2 Unique axis b, cell choice 3

Unique axis c, cell choice 1 Unique axis c, cell choice 2 Unique axis c, cell choice 3

Total 8 pages

P2 $1 / \mathrm{C}$ (14)
(continued)

No. 14
UNIQUE ANIS b, DIFFERENT CELL CHOICES

P121/c 1
UNIQUE AXOS b, CELL CHOICE :

Orfgin at 1
Asymmetric unit $0 \leq x \leq 1 ; 0 \leq y \leq k ; 0 \leq z \leq 1$
Generators selected (1); $\mathrm{r}(1,0,0) ; \quad t(0,1,0 \mathrm{~N} \quad \mathrm{t}(0,0,1) ;$ (2): (3)
Positions
winatro
Whineflomer
$\begin{array}{lllll}4 \text { e } 1 & \text { (1) } x, y, z & \text { (2) } R y+1,2+i & \text { (3) } x, 9, z & \text { (4) } x, g+i, z+i\end{array}$

General:
bor $1=2 n$
0ito: $k=2 n$
$00: l=2 n$
Special: as above, plus
$h k j: k+i=2 n$
hel:k+1=2n
$h k l: k+1=2 n$
$h k d: k=2=2 n$

Fig. 4.13. Space group $P 2_{1} / c$ (No, 14) (from the International Tables for Crystallography), (a) unique axis b, cell choice 1, (b) unique axis b, different cell choices.

Rutile, TiO_{2}

Origin at centre (mmm) at $2 / \mathrm{m} 12 / \mathrm{m}$
Ott Page 204
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; 0 \leq z \leq \frac{1}{2} ; \quad x \leq y$

Symmetry operations

(1) 1
(5) $\frac{2}{1}\left(0, \frac{1}{2}, 0\right) \frac{1}{4}, y, \frac{1}{4}$
(9) $\overline{1} 0,0,0$
(2) $20,0, z$
(3) $4^{+}\left(0,0, \frac{1}{2}\right) \quad 0, \frac{1}{2}, z$
(4) $4-\left(0,0, \frac{1}{2}\right) \frac{1}{2}, 0, z$
(6) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(7) $2 x, x, 0$
(8) $2 x, \bar{x}, 0$
(13) $n\left(\frac{1}{2}, 0, \frac{1}{2}\right) \quad x, \frac{1}{4}, z$
(10) $m x, y, 0$
(11) $\mathbf{4}^{+} \frac{1}{2}, 0, z ; \frac{1}{2}, 0, \frac{1}{4}$
(12) $\overline{4}^{-} 0, \frac{1}{2}, z ; 0, \frac{1}{2}, \frac{1}{4}$
14) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$
(15) $m \quad x, \bar{x}, z$
(16) $m x, x, z$

Generators selected (1); $t(1,0,0) ; \quad t(0,1,0) ; \quad t(0,0,1) ; \quad$ (2); (3); (5); (9)

Positions

(2) \bar{x}, \bar{y}, z
(2) $x+\frac{1}{2} \bar{y}$
(10) x, y, \bar{z}

General
(1) x, y, z
(10) x, y, z
(9) $\bar{x}, \overline{\bar{y}}, \bar{z}$
$+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(13) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, z+\frac{1}{2}$
(14)

$\underset{x}{x}, x, z$
$\begin{array}{ll}x, x, z & \bar{x}, \bar{x}, z \\ \bar{x}+\frac{1}{2}, x+\frac{1}{2}, \bar{z}+\frac{1}{2} & x+\frac{1}{2}, \bar{x}+\end{array}$
$x+\frac{1}{2}, \bar{x}+\frac{1}{2}, \bar{z}+\frac{1}{z}$
$\begin{array}{ll}\bar{x}+\frac{1}{2}, x+\frac{1}{2}, z+\frac{1}{2} & x+\frac{1}{2}, \bar{x}+\frac{1}{2}, z+\frac{1}{2} \\ \bar{x}, \bar{z} & \bar{x}\end{array}$
$\begin{array}{lll}x, y, 0 & \bar{x}, \bar{y}, 0 & \bar{y}+\frac{1}{2}, x+\frac{1}{2}, \frac{1}{2}\end{array} \quad y+\frac{1}{2}, \bar{x}+\frac{1}{2}, \frac{1}{2}$
$\bar{x}+\frac{1}{2}, y+\frac{1}{2}, \frac{1}{2} \quad x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \frac{1}{2}$ $y, x, 0$
$\begin{array}{lllllll}8 & h & 2 . & 0, \frac{1}{2}, z & 0, \frac{1}{2}, z+\frac{1}{2} & \frac{1}{2}, 0, \bar{z}+\frac{1}{2} & \frac{1}{2}, 0, \bar{z} \\ & & & 0, \frac{1}{2}, \bar{z} & 0, \frac{1}{2}, \bar{z}+\frac{1}{2} & \frac{1}{2}, 0, z+\frac{1}{2} & \frac{1}{2}, 0, z\end{array}$
$4 \mathrm{~g} \quad \mathrm{~m} .2 \mathrm{~m} \quad x, \bar{x}, 0 \quad \bar{x}, x, 0 \quad x+\frac{1}{2}, x+\frac{1}{2}, \frac{1}{2} \quad \bar{x}+\frac{1}{2}, \bar{x}+\frac{1}{2}, \frac{1}{2}$

4 e $2 . m m \quad 0,0, z \quad \frac{1}{2}, \frac{1}{2}, z+\frac{1}{2} \quad \frac{1}{2}, \frac{1}{2}, \bar{z}+\frac{1}{2} \quad 0,0, \bar{z}$
4 d $\overline{4} . \quad 0, \frac{1, \frac{1}{2}}{4} \quad 0, \frac{1}{2}, \frac{3}{4} \quad \frac{1}{2}, 0, \frac{1}{4} \quad \frac{1}{2}, 0, \frac{3}{4}$
4 c $\quad 2 / m \ldots \quad 0, \frac{1}{2}, 0 \quad 0, \frac{1}{2}, \frac{1}{2} \quad \frac{1}{2}, 0, \frac{1}{2} \quad \frac{1}{2}, 0,0$
2 b m.mm 0,0, 古 $\quad \frac{1}{2}, \frac{1}{2}, 0$
$\begin{array}{lllll}2 & a & m . m m & 0,0,0 & \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\end{array}$

Reflection conditions
General:
$0 k l: k+l=2 n$
$00 l: l=2 n$ $h 00: h=2 n$

Special: as above, plus no extra conditions no extra conditions $h k l: h+k, l=2 n$
no extra conditions
no extra conditions
$h k l: h+k+l=2 n$
$h k l: h+k, l=2 n$
$h k l: h+k, l=2 n$
$h k l: h+k+l=2 n$
$h k l: h+k+l=2 n$

Rutile, TiO_{2}

Lattice + basis
Space group + positions of atoms (general or special)

A		B		
Lattice	Basis	Space group		Positions of the atoms
tetragonal P		P 42/mnm	a	$\begin{array}{r} \text { Ti: } 0,0,0 \\ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{array}$
$\begin{aligned} & a_{0}=4.59 \AA \\ & c_{0}=2.96 \AA \end{aligned}$		$\begin{aligned} & \mathrm{a}_{0}=4.59 \AA \\ & \mathrm{c}_{0}=2.96 \AA \end{aligned}$	f	$\begin{array}{ll} \text { O: } & \mathrm{x}, \mathrm{x}, 0 \\ & \frac{1}{2}+\mathrm{x}, \frac{1}{2}-\mathrm{x}, \frac{1}{2} \quad \mathrm{x}=0.3 \\ & \frac{1}{2}-\mathrm{x}, \frac{1}{2}+\mathrm{x}, \frac{1}{2} \\ & \overline{\mathrm{x}}, \overline{\mathrm{x}}, 0 \end{array}$

- B is simpler than A when positions of high multiplicity are involved.
- B shows clearly which atoms are related to one another by the symmetry elements of the space group.

Table 11.2. Data for the three most important metal structure types, Cu, Mg and W , and for α-Po

	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ccp} \end{gathered}$	$\underset{\mathrm{hcp}}{\mathrm{Mg}}$	$\underset{\mathrm{bcc}}{\mathrm{~W}}$	$\begin{gathered} \alpha-\mathrm{Po} \\ \mathrm{sc} \end{gathered}$
Lattice basis	Cubic F	Hexagonal P	Cubic I	Cubic P
	0,0,0	0,0,0; $\frac{2}{3}, \frac{1}{3}, \frac{1}{2}$	0,0,0	0,0,0
Space group $+$ Positions occupied	F $4 / \mathrm{m} \overline{3} 2 / \mathrm{m}$	$\mathrm{P}_{3} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{c}$	I $4 / \mathrm{m} \overline{3} 2 / \mathrm{m}$	P 4/m $\overline{3} 2 / \mathrm{m}$
	(a) $0,0,0$	$\begin{gathered} \text { (c) } \\ 0,0,0 ; \frac{2}{3}, \frac{1}{3}, \frac{1}{2} \end{gathered}$	(a) $0,0,0$	(a) $0,0,0$
Coordination number	[12]		[8]	[6]
Atomic radii	$\frac{1}{4} \mathrm{a}_{0} \sqrt{2}$	$\frac{1}{2} a_{0}$	$\frac{1}{4} \mathrm{a}_{0} \sqrt{3}$	$\frac{1}{2} \mathrm{a}_{0}$
Packing efficiency	0.74		0.68	0.52
Further examples	Ag, Au Ni, Al Pt , Ir Pb, Rh	Mg (1.62) Ni (1.63) Ti (1.59) Zr (1.59) Be (1.56) Zn (1.86)	$\begin{aligned} & \mathrm{Mo}, \mathrm{~V} \\ & \mathrm{Ba}, \mathrm{Na} \\ & \mathrm{Zr}, \mathrm{Fe} \end{aligned}$	-

Perovskite, CaTiO_{3}

Ca-corner
$>$ O- face centered
> Ti- body centered
high temperature - cubic, $\operatorname{Pm} \overline{3} \mathrm{~m}$ (No.221)
$C a: 1 a, m 3 m, 0,0,0$
Ti: $1 b, m \overline{3} m, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

$O: 3 c, 4 / \mathrm{mmm}, \quad 0, \frac{1}{2}, \frac{1}{2} \frac{1}{2}, 0, \frac{1}{2} \frac{1}{2}, \frac{1}{2}, 0$
$>\mathrm{Ti}-6 \mathrm{O}$
$>\mathrm{O}-4 \mathrm{Ca}+2 \mathrm{Ti}$
Ca-12O

3	d	$4 / m m \cdot m$	$\frac{1}{2}, 0,0$	$0, \frac{1}{2}, 0$	$0,0, \frac{1}{2}$
3	c	$4 / m m \cdot m$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$
1	b	$m \overline{3} m$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$		
1	a	$m \overline{3} m$	$0,0,0$		

Origin at centre ($m \overline{3} m$)
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{2} ; \quad 0 \leq z \leq \frac{1}{2} ; \quad y \leq x ; z \leq y$
Vertices $\quad 0,0,0 \quad \frac{1}{2}, 0,0 \quad \frac{1}{2}, \frac{1}{2}, 0 \quad \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
$\underset{\text { (given on page } 664 \text {) }}{\text { Symmetry operations }}$

Perovskite, BaTiO_{3}

Chan Park, MSE-SNU

[^0]
Zinc blende, ZnS

> diamond derivative structure
> Zn and S replace the C atoms in diamond
> Zn cubic close packing; $\mathrm{S}^{1 ⁄ 2}$ tetrahedral site
$>\mathrm{Zn}$ and S cubic close packing displaced by $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
$F \overline{4} 3 m$ (No.216)
$\mathrm{Zn}: 4 \mathrm{a}, \overline{4} 3 m, 0,0,0$
$\mathrm{Zn}: 4 \mathrm{c}, \overline{43 m}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Zinc blende structure ZnS, SiC

F $\overline{4} 3 \mathrm{~m}$
No． 216
T_{d}^{2}
F $\overline{4} 3 m$
$\overline{4} 3 m$
Cubic
Patterson symmetry $F m \overline{3} m$

Upper left quadrant only

Zinc blende，ZnS

Generators selected（1）；t（1，0，0）；t（0，1，0）；t（0，0，1）；t（0，⿱亠䒑
Positions

Multiplicity， Wyckoff letter Site symmetry	Coordinates				Reflection conditions h, k, l permutable General：
	$(0,0,0)+$	（ $\left.0, \frac{1}{2}, \frac{1}{2}\right)+$	$\left(\frac{1}{2}, 0, \frac{1}{2}\right)+$	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$	
$\begin{array}{llll}96 & i & 1\end{array}$					
	（1）x, y, z	（2） \bar{x}, \bar{y}, z	（3） \bar{x}, y, \bar{z}	（4）x, \bar{y}, \bar{z}	$\begin{aligned} & h k l: h+k, h+l, k+l=2 n \\ & 0 k l: k, l=2 n \\ & h h l: h+l=2 n \\ & h 00: h=2 n \end{aligned}$
General	（5）z, x, y	（6）z, \bar{x}, \bar{y}	（7） \bar{z}, \bar{x}, y	（8） \bar{z}, x, \bar{y}	
	（9）y, z, x	（10） \bar{y}, z, \bar{x}	（11）y, \bar{z}, \bar{x}	（12） \bar{y}, \bar{z}, x	
position	（13）y, x, z （17）x, z, y	（14） \bar{y}, \bar{x}, z	（15）y, \bar{X}, \bar{z}	（16） \bar{y}, x, \bar{z}	
	（17）x, z, y （21）z, y, x	（18） \bar{x}, z, \bar{y} （22）z, \bar{y}, \bar{x}	（19） \bar{x}, \bar{z}, y （23） \bar{z}, y, \bar{x}	（20）x, \bar{z}, \bar{y}	
	（21）z, y, x	（22）z, \bar{y}, \bar{x}	（23） \bar{z}, y, \bar{x}	（24） \bar{z}, \bar{y}, x	

Special：no extra conditions

48	h	．．m	$\begin{aligned} & x, x, z \\ & \bar{z}, \bar{x}, \boldsymbol{x} \end{aligned}$	$\begin{aligned} & \bar{x}, \bar{x}, z \\ & \bar{z}, x, \bar{x} \end{aligned}$	$\begin{aligned} & \bar{x}, x, \bar{z} \\ & x, z, x \end{aligned}$	$\begin{aligned} & x, \bar{x}, \bar{z} \\ & \bar{x}, z, \bar{x} \end{aligned}$	$\begin{aligned} & z, x, x \\ & x, \bar{z}, \bar{x} \end{aligned}$	$\begin{aligned} & z, \bar{x}, \bar{x} \\ & \bar{x}, \bar{z}, x \end{aligned}$
24	g	$2 . m m$	\boldsymbol{x} ，$\frac{1}{4}$ ，$\frac{1}{4}$	$\boldsymbol{x}, \frac{3}{4}, \frac{1}{4}$	$\frac{1}{4}, x, \frac{1}{4}$	$\frac{1}{4}, \bar{x}, \frac{3}{4}$	$\frac{1}{4}, \frac{1}{2}, x$	${ }_{4}^{4}, \frac{1}{4}, \bar{x}$
24	f	$2 . m m$	$x, 0,0$	$\bar{X}, 0,0$	$0, x, 0$	0，, $\bar{x} 0$	0，0，x	0，0， \bar{x}
16	e	． 3 m	$\boldsymbol{x , x , x}$	\bar{X}, \bar{X}, x	\bar{x}, x, \bar{x}	x, \bar{x}, \bar{x}		
4	d	$\overline{4} 3 \mathrm{~m}$	3， $3, \frac{3}{4}$					
4	c	$\overline{4} 3 \mathrm{~m}$	$\underline{t}, \frac{1}{4}, \frac{1}{t}$		Special position			
4	b	$\overline{4} 3 \mathrm{~m}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$					
4	a	$\overline{4} 3 \mathrm{~m}$	0，0，0					

Molecular symmetry vs. Crystal symmetry

Point group of molecule - relation - Space group of crystal

Symmetry of hexa-methylene-tetramine (C6H12N4)

Molecules occupy positions with site symmetry $\overline{4} 3 \mathrm{~m}$.

Molecular symmetry vs. Crystal symmetry

Symmetry of ethylene (C2H4)

a)

Molecule 2/m 2/m 2/m

Crystal structure P2 1_{1} n $2_{1} / n 2 / m$ (Pnnm)

Molecules occupy positions with site symmetry $2 / m$

Ott page 147
The point groups of molecules are not limited to the 32 crystallographic groups. They may contain such symmetry elements as 5 -fold axes which are incompatible with a crystal lattice. These non-crystallographic point groups are described in Sect.9.7.

No simple relationship between molecular symmetry \& crystal symmetry
> Read (Space Group 2)
\checkmark Ott Chapter 10
\checkmark Hammond Chapter 4.6~4.7
\checkmark Krawitz Chapter 1.6~1.8
\checkmark Sherwood \& Cooper Chapter 3.8
\checkmark Hammond Chapter $2.1 \sim 2.5 ; 3.1 \sim 3.3 ; 4.1 \sim 4.5 ; 5.1 \sim 5.6$
\checkmark Krawitz Chapter $1.1 \sim 1.8$

Space Group-2 HW (due in 1 week)
\checkmark Ott chapter 10 --- 7, 9, 13, 14
\checkmark Hammond chapter $4---1,2$

[^0]: Intro to Crystallography, 2021

