
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Binary Search Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ This topic covers binary search trees:
§ Abstract Sorted Lists
§ Background
§ Definition and examples
§ Implementation:

• FindMin, FindMax, insert, erase
• Previous smaller and next larger objects
• Finding the kth object

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Abstract Sorted Lists

□ Previously, we discussed Abstract Lists: the objects are
linearly ordered by the programmer

□ We will now discuss the Abstract Sorted List:
§ The relation is based on an implicit linear ordering

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Abstract Sorted Lists (ASL)

□ Queries that may be made about data stored in a
Sorted List ADT include:
§ Finding the smallest and largest values
§ Finding the kth largest value
§ Find the next larger or previous smaller objects of a given object
§ Iterate through objects within an interval [a, b]

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Limitation: ASL with Array or Linked Lists

□ If we implement an Abstract Sorted List using an array
or a linked list, some operations take O(n)
§ To perform insertion, we may either traverse or copy, on

average, O(n) objects

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Binary Search Trees

□ Using a binary tree, we can dictate an order on the two
children

□ We will exploit this order:
§ All objects in the left sub-tree to be less than the object stored

in the root node, and
§ All objects in the right sub-tree to be greater than the object in

the root object

Recursive definition: Each of the two sub-trees will themselves be
binary search trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Binary Search Trees

□ We can use this structure for searching

□ With a linear order, one of the following three must be
true:

a < b a = b a > b

□ Examine the root node and if we have not found what
we are looking for:
§ If the object is less than what is stored in the root node,

continue searching in the left sub-tree
§ Otherwise, continue searching the right sub-tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Binary Search Trees: Good Example

□ Here are other examples of binary search trees:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Binary Search Trees: Bad Example

□ Unfortunately, it is possible to construct unbalanced
binary search trees

§ This is equivalent to a linked list, i.e., O(n)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Binary Search Trees: More Examples

□ All these binary search trees store the same data

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Note: No Duplicate Values

□ We will assume that in any binary tree, we are not
storing duplicate values unless otherwise stated

□ You can always consider duplicate values with
modifications to the algorithms we will cover

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Implementation: Binary Search Trees

□ Design with two classes:

1) BinaryNode
§ Represent each node in the tree

2) BinarySearchTree
§ Represent the tree, which holds the root node (an instance of

BinaryNode)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Implementation: class BinaryNode

template <typename T>
struct BinaryNode {

T value;
BinaryNode *left;
BinaryNode *right;

BinaryNode<T>(const T &value, BinaryNode<T> *left, BinaryNode<T> *right)
: value{value}, left{left}, right{right} {}

BinaryNode<T>(T &&value, BinaryNode<T> *left, BinaryNode<T> *right)
: value{std::move(value)}, left{left}, right{right} {}

};

- A value has a template based type <T>
- If <T> is not comparable, you will need to override comparison operators

Recall the concept of reference variable from “T &value”

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Implementation: class BinarySearchTree

template <typename T>
class BinarySearchTree {
public:

BinarySearchTree() : root{nullptr} {}

const T &findMin() const;
const T &findMax() const;

bool find(const T &x) const;
void insert(const T &x);
void remove(const T &x);
// something more …

private:
BinaryNode<T> *root;
// something more …

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Finding the Minimum Object
const T &findMin() const {

if (isEmpty())
throw std::exception{};

return findMin(root)->value;
}

BinaryNode<T> *findMin(BinaryNode<T> *t) const {
if (t == nullptr)

return nullptr;
if (t->left == nullptr)

return t;
return findMin(t->left);

}

The run time: O(h)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Finding the Maximum Object

minimum/maximum values are not necessarily leaf nodes

const T &findMax() const {
if (isEmpty())

throw std::exception{};
return findMax(root)->value;

}

BinaryNode<T> *findMax(BinaryNode<T> *t) const {
if (t != nullptr)

while (t->right != nullptr)
t = t->right;

return t;
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Find

□ To determine membership, traverse the tree based on
the linear relationship:
§ If a node containing the value is found, e.g., 81, return true

§ If an empty node is reached, e.g., 36, return false:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Find

□ The implementation is similar to findMin and findMax:
§ The run time is O(h)

bool find(const T &x) const { return contains(x, root); }

bool find(const T &x, BinaryNode<T> *t) const {
if (t == nullptr)

return false;
else if (x < t->value)

return find(x, t->left);
else if (t->value < x)

return find(x, t->right);
else

return true; // Match
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Insert

□ An insertion will be performed at an empty node:
§ Any empty node is a possible location for an insertion

□ The values which may be inserted at any empty node
depend on the surrounding nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Insert

□ For example, this node may hold 48, 49, or 50

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Insert

□ An insertion at this location must be 35, 36, 37, or 38

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Insert

□ This empty node may hold values from 71 to 74

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Insert

□ Like find, we will step through the tree
§ If we find the object already in the tree, we will return

• The object is already in the binary search tree (no duplicates)

§ Otherwise, we will arrive at an empty node
§ The object will be inserted into that location
§ The run time is O(h)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Insert 52

□ In inserting the value 52, we traverse the tree until we
reach an empty node
§ The left sub-tree of 54 is an empty node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Insert 52

□ A new leaf node is created and assigned to the member
variable left

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Insert 40

□ In inserting 40, we determine the right sub-tree of 39
is an empty node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Insert 40

□ A new leaf node storing 40 is created and assigned to
the member variable right

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Insert

void insert(const T &x) { insert(x, root); }

void insert(const T &x, BinaryNode<T> *&t) {
if (t == nullptr)

t = new BinaryNode<T>{x, nullptr, nullptr};
else if (x < t->value)

insert(x, t->left);
else if (t->value < x)

insert(x, t->right);
else

; // Duplicate; do nothing
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Insert

□ Example questions:
§ In the given order, insert these objects into an initially empty

binary search tree:
31 45 36 14 52 42 6 21 73 47 26 37 33 8

§ What values could be placed:
• To the left of 21?
• To the right of 26?
• To the left of 47?

§ How would we determine if 40 is in this binary search tree?
§ Which values could be inserted to increase the height of the

tree?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Erase

□ A node being erased is not always going to be a leaf node
□ There are three possible scenarios:

§ 1) The node is a leaf node,
§ 2) It has exactly one child, or
§ 3) It has two children (it is a full node)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Erase: Leaf Node

□ A leaf node must be removed and the appropriate
member variable of the parent is set to nullptr
§ Consider removing 75

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Erase: Leaf Node

□ The node is deleted and left of 81 is set to nullptr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Erase: Leaf Node

□ Erasing the node containing 40 is similar

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Erase: Leaf Node

□ The node is deleted and right of 39 is set to nullptr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Erase: Non-leaf node w/ one child

□ If a node has only one child, we can simply promote the
sub-tree associated with the child
§ Consider removing 8 which has one left child

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Erase: Non-leaf node w/ one child

□ The node 8 is deleted and the left of 11 is updated to
point to 3

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Erase: Non-leaf node w/ one child

□ There is no difference in promoting a single node or a
sub-tree
§ To remove 39, it has a single child 11

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Erase: Non-leaf node w/ one child

□ The node containing 39 is deleted and left of 42 is
updated to point to 11
§ Notice that order is still maintained

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Erase: Non-leaf node w/ one child

□ Consider erasing the node containing 99

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Erase: Non-leaf node w/ one child

□ The node is deleted and the left sub-tree is promoted:
§ The member variable right of 70 is set to point to 92
§ Again, the order of the tree is maintained

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Erase: Full node

□ Finally, we will consider the problem of erasing a full
node, e.g., 42

□ We will perform two operations:
§ Replace 42 with the minimum object in the right sub-tree
§ Erase that object from the right sub-tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Erase: Full node

□ In this case, we replace 42 with 47
§ We temporarily have two copies of 47 in the tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

43

Erase: Full node

□ We now recursively erase 47 from the right sub-tree
§ We note that 47 is a leaf node in the right sub-tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Erase: Full node

□ Leaf nodes are simply removed and left of 51 is set to
nullptr
§ Notice that the tree is still sorted

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Erase: Full node

□ Suppose we want to erase the root 47 again:
§ We must copy the minimum of the right sub-tree
§ We could promote the maximum object in the left sub-tree and

achieve similar results

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Erase: Full node

□ We copy 51 from the right sub-tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Erase: Full node

□ We must proceed by delete 51 from the right sub-tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Erase: Full node

□ In this case, the node storing 51 has just a single child

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Erase: Full node

□ We delete the node containing 51 and assign the
member variable left of 70 to point to 59

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Erase: Full node

□ Note that after several removals, the remaining tree is
still correctly sorted

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Erase: Full node
void remove(const T &x) { remove(x, root); }

void remove(const T &x, BinaryNode<T> *&t) {
if (t == nullptr)

return; // Item not found; do nothing
if (x < t->value)

remove(x, t->left);
else if (t->value < x)

remove(x, t->right);
else if (t->left != nullptr && t->right != nullptr) { // two children

t->value = findMin(t->right)->value;
remove(t->value, t->right);

}
else { // single child

BinaryNode<T> *oldNode = t;
t = (t->left != nullptr) ? t->left : t->right;
delete oldNode;

}
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Other Relation-based Operations

□ We will quickly consider two other relation-based
queries that are very quick to calculate with an array of
sorted objects:
§ Finding the previous and next values, and
§ Finding the kth value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Previous and Next Objects

□ All the operations up to now have been operations
which work on any container: count, insert, etc.
§ If these are the only relevant operations, use a hash table

□ Operations specific to linearly ordered data include:
§ Find the next larger and previous smaller objects of a given

object which may or may not be in the container
§ Find the kth value of the container
§ Iterate through those objects that fall on an interval [a, b]

□ We will focus on finding the next largest object
§ The others will follow

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Previous and Next Objects

□ To find the next largest object:
§ If the node has a right sub-tree, the minimum object in that sub-

tree is the next-largest object

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Previous and Next Objects

□ If, however, there is no right sub-tree:
§ It is the next largest object (if any) that exists in the path from

the root to the node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Previous and Next Objects

□ More generally: what is the next largest value of an
arbitrary object?
§ This can be found with a single search from the root node to

one of the leaves — an O(h) operation
§ This function returns the object if it did not find something

greater than it

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Finding the kth Object
□ Another operation on sorted lists may be finding the kth

largest object
§ Recall that k goes from 0 to n – 1
§ If the left-sub-tree has ℓ = k values, return the current node,
§ If the left sub-tree has ℓ > k values, return the kth value of the left

sub-tree,
§ Otherwise, the left sub-tree has ℓ < k values, so return the (k – ℓ –

1)th value of the right sub-tree

0 1 2 3 4 5 6 7 8 9 10 1112 13 1415 16 17

7 10

18

1 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Run Time: O(h)

□ Almost all of the relevant operations on a binary search
tree are O(h)
§ If the tree is close to a linked list, the run times is O(n)

• Insert 1, 2, 3, 4, 5, 6, 7, ..., n into a empty binary search tree

§ The best we can do is if the tree is perfect: O(ln(n))
§ Our goal will be to find tree structures where we can maintain a

height of Q(ln(n))

□ We will look at
§ AVL trees
§ B+ trees

both of which ensure that the height remains Q(ln(n))

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Summary

□ In this topic, we covered binary search trees
§ Described Abstract Sorted Lists
§ Problems using arrays and linked lists
§ Definition a binary search tree
§ Looked at the implementation of:

• Empty, size, height, count
• FindMin, FindMax, insert, erase
• Previous smaller and next larger objects

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

AVL Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ Background
□ Define height balancing
□ Maintaining balance within a tree

§ AVL trees
§ Difference of heights
§ Maintaining balance after insertions and erases
§ Can we store AVL trees as arrays?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Background

□ From previous lectures:
§ Binary search trees store linearly ordered data
§ Best case height: Q(ln(n))
§ Worst case height: O(n)

□ Requirement:
§ Define and maintain a balance to ensure Q(ln(n)) height

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Prototypical Examples

□ These two examples demonstrate how we can correct
for imbalances: starting with this tree, add 1:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Prototypical Examples

□ This is more like a linked list; however, we can fix this…

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Prototypical Examples

□ Promote 2 to the root, demote 3 to be 2’s right child,
and 1 remains the left child of 2.

□ The result is a perfect, though trivial tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Prototypical Examples

□ Alternatively, given this tree, insert 2

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Prototypical Examples

□ Again, the product is a linked list; however, we can fix
this, too

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Prototypical Examples

□ Promote 2 to the root, and assign 1 and 3 to be its
children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Prototypical Examples

□ The result is, again, a perfect tree

□ These examples may seem trivial, but they are the basis
for the corrections in the next data structure we will see:
AVL trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

AVL Trees

□ We will focus on the first strategy: AVL trees
§ Named after Adelson-Velsky and Landis

□ Balance is defined by comparing the height of the two
sub-trees

□ Recall:
§ An empty tree has height –1
§ A tree with a single node has height 0

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

AVL Trees

□ A binary search tree is said to be AVL balanced if:
§ The difference in the heights between the left and right sub-

trees is at most 1, and
§ Both sub-trees are themselves AVL trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

AVL Trees

□ AVL trees with 1, 2, 3, and 4 nodes:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

AVL Trees

□ Here is a larger AVL tree (42 nodes):

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

AVL Trees

□ The root node is AVL-balanced:
§ Both sub-trees are of height 4:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

AVL Trees

□ All other nodes (e.g., AF and BL) are AVL balanced
§ The sub-trees differ in height by at most one

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Height of an AVL Tree

□ By the definition of complete trees, any complete binary
search tree is an AVL tree

□ Thus an upper bound on the number of nodes in an AVL
tree of height h is a perfect binary tree with 2h + 1 – 1
nodes
§ What is an lower bound?
§ This will be the worst case of an AVL tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Height of an AVL Tree

□ Let F(h) be the fewest number of nodes in a tree of
height h

□ From a previous slide:
F(0) = 1
F(1) = 2
F(2) = 4

□ Can we find F(h)?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Height of an AVL Tree

□ The worst-case AVL tree of height h would have:
§ A worst-case AVL tree of height h – 1 on one side,
§ A worst-case AVL tree of height h – 2 on the other, and
§ The root node

□ We get: F(h) = F(h – 1) + 1 + F(h – 2)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Height of an AVL Tree
□ This is a recurrence relation:

□ The solution?
§ Note that F(h) + 1 = (F(h – 1) + 1) + (F(h – 2) + 1)
§ Therefore, F(h) + 1 is a Fibonacci number:

F(0) + 1 = 2 → F(0) = 1
F(1) + 1 = 3 → F(1) = 2
F(2) + 1 = 5 → F(2) = 4
F(3) + 1 = 8 → F(3) = 7
F(4) + 1 = 13 → F(4) = 12
F(5) + 1 = 21 → F(5) = 20
F(6) + 1 = 34 → F(6) = 33

ïî

ï
í

ì

>+-+-
=
=

=
11)2F()1F(
12
01

)F(
hhh
h
h

h

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Height of an AVL Tree

□ This is approximately
F(h) ≈ 1.8944 f h – 1

where f ≈ 1.6180 is the golden ratio
§ That is, F(h) = W(f h)
§ Check more:

https://en.wikipedia.org/wiki/Golden_ratio#Relationship_to_Fibonacci_sequence

□ Thus, we may find the maximum value of h for a given n:

() ()1log log 1 1.3277 1.4404 lg 1 1.3277
1.8944
n n nf f
+æ ö = + - = × + -ç ÷

è ø

https://en.wikipedia.org/wiki/Golden_ratio

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Height of an AVL Tree: Easier Proof?

𝐹 ℎ > 𝐹 ℎ − 1 + 𝐹 ℎ − 2 > 2𝐹 ℎ − 2

𝐹 ℎ > 2 ∗ 𝐹 ℎ − 2 > 2 ∗ 2 ∗ 𝐹 ℎ − 4 > … > 2!/#

𝑛 > 2!/#, so ℎ < 2 log(𝑛)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Height of an AVL Tree: Looking Good?

□ In this example, n = 88, the worst- and best-case
scenarios differ in height by only 2

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Height of an AVL Tree: Looking Bad?

□ If n = 106, the bounds on h are:
§ (best) The minimum height: log2(106) – 1 ≈ 19
§ (worst) The maximum height : logf (106 / 1.8944) < 28

□ The AVL Tree ensures the height balance, but such a
balanced tree can be quite far from the ideal, perfect
binary tree.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Maintaining Balance

□ To maintain AVL balance, observe that:
§ Inserting a node can increase the height of a tree by at most 1
§ Removing a node can decrease the height of a tree by at most 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Maintaining Balance

□ Consider this AVL tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Maintaining Balance: Insert 15

□ Consider inserting 15 into this tree
§ In this case, the heights of none of the trees change

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Maintaining Balance: Insert 15

□ The tree remains balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Maintaining Balance: Insert 42

□ Consider inserting 42 into this tree
§ Now we see the heights of two sub-trees have increased by one
§ The tree is still balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Maintaining Balance

□ If a tree is AVL balanced, for an insertion to cause an
imbalance:
§ The heights of the sub-trees must differ by 1
§ The insertion must increase the height of the deeper sub-tree by 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Maintaining Balance

□ Suppose we insert 23 into our initial tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Maintaining Balance

□ The heights of each of the sub-trees from here to the
root are increased by one

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Maintaining Balance

□ However, only two of the nodes are unbalanced:
17 and 36

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Maintaining Balance

□ However, only two of the nodes are unbalanced:
17 and 36
§ We only have to fix the imbalance at the lowest node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Maintaining Balance

□ We can promote 23 to where 17 is, and make 17 the left
child of 23

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Maintaining Balance

□ Thus, that node is no longer unbalanced
§ Incidentally, the root node is now balanced as well

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Maintaining Balance

□ Consider adding 6:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Maintaining Balance

□ The height of each of the trees in the path back to the
root are increased by one

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Maintaining Balance

□ The height of each of the trees in the path back to the
root are increased by one
§ However, only the root node is now unbalanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Maintaining Balance

□ To fix this, we will look at the general case…

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Maintaining Balance: Case 1

□ Consider the following setup
§ Each blue triangle represents a tree of height h

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Maintaining Balance: Case 1

□ Insert a into this tree: it falls into the left subtree BL of b
§ Assume BL remains balanced
§ Thus, the tree rooted at b is also balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

43

Maintaining Balance: Case 1

□ The tree rooted at node f is now unbalanced
§ We will correct the imbalance at this node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Maintaining Balance: Case 1

□ Specifically, we will rotate these two nodes around the
root:
§ Recall the first prototypical example
§ Promote node b to the root and demote node f to be the right

child of b

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Maintaining Balance: Case 1

□ This requires the address of node f to be assigned to
the p_right_tree member variable of node b

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Maintaining Balance: Case 1

□ Assign any former parent of node f to the address of
node b

□ Assign the address of the tree BR to p_left_tree of
node f

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Maintaining Balance: Case 1

□ The nodes b and f are now balanced and all remaining
nodes of the subtrees are in their correct positions
§ The height of f is now h + 1 while b remains at height h + 2

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Maintaining Balance: Case 1

□ Additionally, height of the corrected tree rooted at b
equals the original height of the tree rooted at f
§ Thus, this insertion will no longer affect the balance of any

ancestors all the way back to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Maintaining Balance: Case 1

□ In our example case, the correction

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Maintaining Balance: Case 1
□ In our three sample cases,

the node is now balanced
and the same height
as the tree before
the insertion

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Maintaining Balance: Case 2

□ Alternatively, consider the insertion of c where b < c < f
into our original tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Maintaining Balance: Case 2

□ Assume that the insertion of c increases the height of BR

§ Once again, f becomes unbalanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Maintaining Balance: Case 2

□ Here are examples of when the
insertion of 14 may cause this
situation when h = –1, 0, and 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Maintaining Balance: Case 2

□ Unfortunately, the previous correction does not fix the
imbalance at the root of this sub-tree: the new root, b,
remains unbalanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Maintaining Balance: Case 2
□ In our three sample cases

with h = –1, 0, and 1,
doing the same thing
as before results in
a tree that is still
unbalanced…
§ The imbalance is just

shifted to the other
side

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Maintaining Balance: Case 2

□ Re-label the tree by dividing the left subtree of f into a
tree rooted at d with two subtrees of height h – 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Maintaining Balance: Case 2

□ Now an insertion causes an imbalance at f
§ The addition of either c or e will cause this

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Maintaining Balance: Case 2

□ We will rotate d, b, and f

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Maintaining Balance: Case 2

□ We will first rotate d, b, and f

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

60

Maintaining Balance: Case 2

□ Then connect DL and DR as a subtree of b and f,
respectively

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

61

Maintaining Balance: Case 2

□ Now the tree rooted at d is balanced
§ After the correction, height of b and f become h + 1 and d is h + 2

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

62

Maintaining Balance: Case 2

□ Again, the height of the root did not change
§ The heights of all three nodes changed in this process

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

63

Maintaining Balance: Case 2
□ In our three sample cases

with h = –1, 0, and 1, the
node is now balanced
and the same height
as the tree before the
insertion

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

64

Maintaining balance: Summary

□ There are two symmetric cases to those we have
examined:
§ Insertions into the right-right sub-tree (Case 1)

§ Insertions into either the right-left sub-tree (Case 2)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

65

Time Complexity of Insertion

□ Both balances (i.e., Case 1 and Case 2) are Q(1)
□ All insertions are still Q(ln(n)) Why?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

66

Insertion

□ Consider this AVL tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

67

Insertion: 73

□ Insert 73

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

68

Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

69

Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

70

Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

71

Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 75 is that node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

72

Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 75 is that node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

73

Insertion: 73

□ The tree is AVL balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

74

Insertion: 77

□ Insert 77

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

75

Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

76

Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

77

Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
§ Promote the intermediate node to the imbalanced node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

78

Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
§ Promote the intermediate node to the imbalanced node
§ 81 is that value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

79

Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
§ Promote the intermediate node to the imbalanced node
§ 81 is that value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

80

Insertion: 77

□ The tree is balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

81

Insertion: 76

□ Insert 76

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

82

Insertion: 76

□ The node 78 is unbalanced
§ A left-left imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

83

Insertion: 76

□ The node 78 is unbalanced
§ Promote 77

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

84

Insertion: 76

□ Again, balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

85

Insertion: 80

□ Insert 80

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

86

Insertion: 80

□ The node 69 is unbalanced
§ A right-left imbalance
§ Promote the intermediate node to the imbalanced node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

87

Insertion: 80

□ The node 69 is unbalanced
§ A right-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 75 is that value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

88

Insertion: 80

□ Again, balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

89

Insertion: 74

□ Insert 74

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

90

Insertion: 74

□ The node 72 is unbalanced
§ A right-right imbalance
§ Promote the intermediate node to the imbalanced node
§ 73 is that value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

91

Insertion: 74

□ The node 72 is unbalanced
§ A right-right imbalance
§ Promote the intermediate node to the imbalanced node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

92

Insertion: 74

□ Again, balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

93

Insertion: 64

□ Insert 64

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

94

Insertion: 64

□ This causes no imbalances

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

95

Insertion: 55

□ Insert 55

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

96

Insertion: 55

□ The node 69 is imbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

97

Insertion: 55

□ The node 69 is imbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 63 is that value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

98

Insertion: 55

□ The tree is now balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

99

Insertion: 70

□ Insert 70

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

100

Insertion: 70

□ The root node is now imbalanced
§ A right-left imbalance
§ Promote the intermediate node to the root
§ 63 is that value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

101

Insertion: 70

□ The root node is imbalanced
§ A right-left imbalance
§ Promote the intermediate node to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

102

Insertion: 70

□ The result is AVL balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

103

Erase

□ Removing a node from an AVL tree may cause more
than one AVL imbalance
§ Like insert, erase must check after it has been successfully called

on a child to see if it caused an imbalance
§ Unfortunately, it may cause O(h) imbalances that must be

corrected
• Insertions will only cause one imbalance that must be fixed

§ Time complexity of deletion? Still O(h)
§ The movement of trees, however, may require that more than

one node within the triplet has its height corrected

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

104

Erase

□ Consider the following AVL tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

105

Erase: 1

□ Suppose we erase the front node: 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

106

Erase: 1

□ While its previous parent, 2, is not unbalanced, its
grandparent 3 is
§ The imbalance is in the right-right subtree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

107

Erase: 1

□ We can correct this with a simple balance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

108

Erase: 1

□ The node of that subtree, 5, is now balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

109

Erase: 1

□ Recursing to the root, however, 8 is also unbalanced
§ This is a right-left imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

110

Erase: 1

□ Promoting 11 to the root corrects the imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

111

Erase: 1

□ At this point, the node 11 is balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

112

Erase: 1

□ Still, the root node is unbalanced
§ This is a right-right imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

113

Erase: 1

□ Again, a simple balance fixes the imbalance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

114

Erase: 1

□ The resulting tree is now AVL balanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

115

Summary

□ In this topic we have covered:
§ AVL balance is defined by ensuring the difference in heights is

0 or 1
§ Insertions and erases are like binary search trees
§ Each insertion requires at least one correction to maintain AVL

balance
§ Erases may require O(h) corrections
§ These corrections require Q(1) time
§ Depth is Q(ln(n))
∴ all O(h) operations are O(ln(n))

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Red-Black Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ In this topic, we will cover:
§ The idea behind a red-black tree
§ Defining balance
§ Insertions and deletions
§ The benefits of red-black trees over AVL trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Red-Black Trees

□ A red black tree “colors” each node within a tree either
red or black
§ This can be represented by a single bit
§ In AVL trees, balancing restricts the difference in heights to at

most one
§ For red-black trees, we have a different set of rules related to

the colors of the nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

AVL Vs. Red-Black Trees

Average Worst-case

Space O(n) O(n)

Lookup O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

Average Worst-case

Space O(n) O(n)

Lookup O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

AVL tree Red-Black Tree

Asymptotic complexity
for lookup/insert/delete is the same!

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

AVL Vs. Red-Black Trees

□ AVL Vs. RBTree
§ AVL maintains its balance more tight than RBTree

• Recall the definition

§ AVL performs better for lookup-intensive applications
§ RBTree provides faster worst-case performance for insert/delete

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Red-Black Trees

□ Define a null path within a binary tree as any path
starting from the root where the last node is not a full
node
§ Consider the following binary tree:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Red-Black Trees

□ All null paths include:
(H, C, B) (H, C, F, D) (H, L, J, I) (H, L, P)
(H, C, B, A) (H, C, F, D, E) (H, L, J, K) (H, L, P, N, M)

(H, C, F, G) (H, L, P, N, O)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Red-Black Trees

□ The three rules which define a red-black tree are
1. The root must be black,
2. If a node is red, its children must be black,
3. Each null path must have the same number of black nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Red-Black Trees

□ These are two examples of red-black trees:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Red-Black Trees

□ Theorem:
§ Every red node must be either

• A full node (with two black children), or
• A leaf node

□ Proof by contradiction:
§ Suppose node S has one child:

• The one child L must be black
• The null path ending at S has k black nodes
• Any null path containing the node L will

therefore have at least k + 1 black nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Red-Black Trees

□ In our two examples, you will note that all red nodes are
either full or leaf nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Red-Black Trees

□ Another consequence is that if a node P has exactly one
child:
§ The one child must be red,
§ The one child must be a leaf node, and
§ The node P must be black

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Red-Black Trees

□ All red-black trees with 1, 2, 3, and 4 nodes:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Red-Black Trees

□ All red-black trees with 5 and 6 nodes:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Red-Black Trees

□ All red-black trees with seven nodes—most are shallow:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Red-Black Trees

□ Every perfect tree is a red-black tree if each node is
colored black

□ A complete tree is a red-black tree if:
§ each node at the lowest depth is colored red, and
§ all other nodes are colored black

□ What is the worst case?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Red-Black Trees

□ Any worst-case red-black tree must have an alternating
red-black pattern down one side

□ The following are the worst-case red-black trees with 1
and 2 black nodes per null path (i.e., heights 1 and 3)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Red-Black Trees

□ To create the worst-case for paths with 3 black nodes
per path, start with a black and red node and add the
previous worst-case for paths with 2 nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Red-Black Trees

□ This, however, is not a red-black tree because the two
top nodes do not have paths with three black nodes
§ To solve this, add the optimal red-black trees with two black

nodes per path

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Red-Black Trees

□ That is, add two perfect trees with height 1 to each of
the missing sub-trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Red-Black Trees

□ Thus, we have the worst-case for a red-black tree with
three black nodes per path (or a red-black tree of height 5)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Red-Black Trees

□ Note that the left sub-tree of the root has height 4 while
the right has height 1
§ Thus, suggests that AVL trees may be better in maintaining

“height balance”

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Revisit: Red-Black Trees vs. AVL

□ AVL trees are not as deep in the worst case as are red-
black trees
§ Therefore, AVL trees will perform better when numerous

searches are being performed,
§ However, insertions and deletions will require:

• more rotations with AVL trees, and
• require recursions from and back to the root

§ Thus, AVL trees will perform worse in situations where there are
numerous insertions and deletions

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Insertions

□ We will consider two types of insertions:
§ bottom-up (insertion at the leaves), and
§ top-down (insertion at the root)

□ The first will be instructional and we will use it to derive
the second case

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Bottom-Up Insertions

□ After an insertion is performed, we must satisfy all the
rules of a red-black tree:
#1. The root must be black,
#2. If a node is red, its children must be black, and
#3. Each path from a node to any of its descendants which are not

a full node (i.e., two children) must have the same number of
black nodes

□ #1 and #2 are local: they affect a node and its neighbors

□ #3 is global: adding a new black node anywhere will
cause all of its ancestors to become unbalanced

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Bottom-Up Insertions

□ Thus, when we add a new node, we will add a red node
§ Which breaks the local rule
§ But not breaking the global rule

□ We will then travel up the tree to the root, while fixing
the requirement #1 and #2

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Bottom-Up Insertions

□ If the parent of the inserted node is already black, we
are done
§ Otherwise, we must correct the problem

□ We will fix by following two steps:
§ Step #1) the initial insertion, and
§ Step #2) the recursive steps back to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Bottom-Up Insertions:
Step #1. Initial insertion
□ For the initial insertion, there are two possible cases:

§ Case #1: the grandparent has one red child, or

§ Case #2: the grandparent has two red children

A

C

B

A

C

B

A

C

B D

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Bottom-Up Insertions:
Step #1. Initial insertion
□ Case #1 can be fixed with a rotation.

Example: Inserting A

Consequently, we are finished...

A

C

B

A

C

B
A C

B

B C

A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Bottom-Up Insertions:
Step #1. Initial insertion
□ Case #2 seems to be fixed by just swapping the colors:

□ However, we now may cause a problem between the
parent and the grandparent....

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Bottom-Up Insertions:
Step #2. Recursive step back
□ Fortunately, dealing with problems caused within the

tree are identical to the problems at the leaf nodes

□ Like before, there are two cases:
§ the grandparent has one red child, or
§ the grandparent has two red children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Bottom-Up Insertions:
Step #2. Recursive step back
□ Suppose that A and D, respectively were swapped.

□ If the grand parent had one red child (Case #1), we
perform similar rotations as we have done before.

A was swapped, and the grand parent (D)
has only one red child (B)

D was swapped, and the grand parent (F)
has only one red child (B)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Bottom-Up Insertions:
Step #2. Recursive step back

□ If both children of the grandparent are red (Case #2),
we swap colors, and recurs back to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Bottom-Up Insertions:
Step #2. Recursive step back

□ If, at the end, the root is red, it can be colored black

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Examples of Insertions

□ Given the following red-black tree, we will make a
number of insertions

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Examples of Insertions: Insert 46

□ Adding 46 creates a red-red pair which can be corrected
with a single rotation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Examples of Insertions: Insert 46

□ Because the pivot is still black, we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Examples of Insertions: Insert 5

□ Similarly, adding 5 requires a single rotation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Examples of Insertions: Insert 5

□ Which again, does not require any additional work

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Examples of Insertions: Insert 10

□ Adding 10 allows us to simply swap the color of the
grand parent and the parent and the parent’s sibling

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Examples of Insertions: Insert 10

□ Because the parent of 5 is black, we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Examples of Insertions: Insert 90

□ Adding 90 again requires us to swap the colors of the
grandparent and its two children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

43

Examples of Insertions: Insert 90

□ This causes a red-red parent-child pair, which now
requires a rotation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Examples of Insertions: Insert 90

□ A rotation does not require any subsequent
modifications, so we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Examples of Insertions: Insert 95

□ Inserting 95 requires a single rotation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Examples of Insertions: Insert 95

□ And consequently, we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Examples of Insertions: Insert 99

□ Adding 99 requires us to swap the colors of its
grandparent and the grandparent’s children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Examples of Insertions: Insert 99

□ This causes another red-red child-parent conflict
between 85 and 90 which must be fixed, again by
swapping colors

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Examples of Insertions: Insert 99

□ This results in another red-red parent-child conflict, this
time, requiring a rotation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Examples of Insertions: Insert 99

□ Thus, the rotation solves the problem

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Top-Down Insertions and Deletions

□ With a bottom-up insertion, it is first necessary to search
the tree for the appropriate location, and only then
recurs back to the root correcting any problems
§ This is similar to AVL trees

□ With red-black trees, it is possible to perform both
insertions and deletions strictly by starting at the root,
but not requiring the recurs back to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Top-Down Insertions

□ The important observation is:
§ Rotations (Case #1) do not require recursive steps back to the

root
§ Swapping (Case #2) may require recursive corrections going

back all the way to the root

□ Therefore, while moving down from the root,
automatically swap the colors of any black node with
two red children
§ this may require at most one rotation at the parent of the now-

red node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Examples of Top-Down Insertions

□ We will start with the same red-black tree as before, but
make top-down insertions (no recursion):

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Examples of Top-Down Insertions: Insert 46

□ Adding 46 does not find any (necessarily black) parent
with two red children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Examples of Top-Down Insertions: Insert 46

□ However, it does require one rotation at the end

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Examples of Top-Down Insertions: Insert 5

□ Similarly, adding 5 does not meet any parent with two
red children:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Examples of Top-Down Insertions: Insert 5

□ A rotation solves the last problem

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Examples of Top-Down Insertions: Insert 10

□ To insert 10, we can spot that node 5 has two red
children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Examples of Top-Down Insertions: Insert 10

□ We swap the colors, and this does not cause a problem
between 5 and 11

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

60

Examples of Top-Down Insertions: Insert 10

□ We continue and place 10 in the appropriate location
§ No further rotations are required

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

61

Examples of Top-Down Insertions: Insert 90

□ To add the node 90, we traverse down the right tree
until we reach 85 which has two red children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

62

Examples of Top-Down Insertions: Insert 90

□ We swap the colors, however this creates a red-red pair
between 85 and its parent

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

63

Examples of Top-Down Insertions: Insert 90

□ We require only one rotation to solve this problem, and
we are guaranteed that this will not cause any problem
for its parents

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

64

Examples of Top-Down Insertions: Insert 90

□ We continue to search down the right path and add 90
in the appropriate location—no further corrections are
required

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

65

Examples of Top-Down Insertions: Insert 95

□ Next, adding 95, we traverse down the right-hand until
we reach node 77 which has two red children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

66

Examples of Top-Down Insertions: Insert 95

□ We swap the colors, which causes a red-red parent-child
combination which must be fixed by a rotation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

67

Examples of Top-Down Insertions: Insert 95

□ The rotation is around the root
§ Note this rotation was not necessary with the bottom-up

insertion of 95

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

68

Examples of Top-Down Insertions: Insert 95

□ We can now proceed to add 95 by following the right-
hand branch, and the insertion causes a red-red parent-
child combination

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

69

Examples of Top-Down Insertions: Insert 95

□ This is fixed with a single rotation
§ We are guaranteed that this will not cause any further problems

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

70

Compare Top-Down and Bottom-up Insertions

□ If we compare the result of doing bottom-up insertions
(left, seen previously) and top-down insertions (right), we
note the resulting trees are different, but both are still
valid red-black trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

71

Examples of Top-Down Insertions: Insert 99

□ If we add 99, the first thing we note is that the root has
two red children, and therefore we swap the colors

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

72

Examples of Top-Down Insertions: Insert 99

□ At this point, each path to a non-full node still has the
same number of black nodes, however, we violate the
requirement that the root is black

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

73

Examples of Top-Down Insertions: Insert 99

□ We change the color of the root to black
§ This adds one more black node to each path

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

74

Examples of Top-Down Insertions: Insert 99

□ Moving to the right, we now reach node 90 which has
two red children and therefore we swap the colors

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

75

Examples of Top-Down Insertions: Insert 99

□ We continue down the right to add 99

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

76

Examples of Top-Down Insertions: Insert 99

□ This does not violate any of the rules of the red-black
tree and therefore we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

77

Compare Top-Down and Bottom-up Insertions

□ Again, comparing the result of doing bottom-up
insertions (left) and top-down insertions (right), we note
the resulting trees are different, but both are still valid
red-black trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

78

Top-Down Deletions: Easy cases

□ If we are deleting a red leaf node X, then we are
finished

□ If we are deleting a node X with one child, we only need
to replace the value of the deleted node with the
value of the leaf node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

79

Top-Down Deletions: Complex cases

□ If we are deleting a full node, we use the same strategy
used in standard binary search trees:
§ replace the node with the minimum element in the right sub-

tree
§ then delete that element from the right sub-tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

80

Top-Down Deletions: Complex cases
□ That minimum element must be:

§ Case #1: a red leaf node,
§ Case #2: a black node with a single red leaf node, or
§ Case #3: a black leaf node

□ The first two cases are easy to solve.

□ For the last case, take the similar top-down insertion
strategies.

□ See why RBTree is difficult? You should handle all
different cases (nicely).

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

81

Top-Down Deletions: Complex cases

□ That minimum element must be either:
§ Case #1: a red leaf node è Easy to solve

m

X

…

…

m

…

…

… …

X

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

82

Top-Down Deletions: Complex cases

□ That minimum element must be either:
§ Case #2: a black node with a single red leaf node è Easy to solve

X

…

…

…

…

… …
X

m

?

m

?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

83

Top-Down Deletions: Complex cases

□ That minimum element must be either:
§ Case #3: a black leaf node

è take the similar top-down insertion strategies.

X

…

…

…

…

… …

X

m m

See why RBTree is difficult?
You should handle all different cases (nicely).

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

84

Top-Down Deletions: Complex cases

□ Case # 3: Examples
§ Delete 9

6

4 8

2 5 7 9

6

4 8

2 5 7

6

4 8

2 5 7

Remove 9, but the black
height of node 8 becomes

an issue

Swapping the color
solves the problem

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

85

Top-Down Deletions: Complex cases

□ Case # 3: Examples
§ Delete 8

6

4 8

2 5 7

Deleting 8 is an easy case

6

4 7

2 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

86

Top-Down Deletions: Complex cases

□ Case # 3: Examples
§ Delete 7

Remove 7, then the black
height of 6 becomes

unbalanced

4

2 6

5

6

4

2 5

6

4 7

2 5

Rotate and recolor
solves the problem

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

87

Red-Black Trees

□ In this topic, we have covered red-black trees
§ simple rules govern how nodes must be distributed based on

giving each node a color of either red or black
§ insertions and deletions may be performed without recursing

back to the root
§ only one bit is required for the “color”
§ this makes them, under some circumstances, more suited than

AVL trees

References
[1] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[2] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

B-Tree and B+Tree

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ Memory issues in designing data structures
□ B-Tree
□ B+Tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Memory Considerations

□ When we discuss data structures, we never specifically
mention where the data would be stored.

□ In fact, memory hierarchy suggests that the design of
data structures should be well aware of it

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Memory and Data Structures

□ Memory things to think about when designing data
structures
§ Access speed
§ Cost per memory size
§ The unit size of access
§ Stream access vs. Random access

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Tree for very large datasets

□ Suppose you got very many pieces of information
§ e.g., 𝑛 = 2!"

§ Suppose each piece has 1KB data
§ Examples

• Student records, where each piece holds each student’s report
• Sales history, where each piece holds sale records per item

□ If you design the tree to store such data
§ The number of nodes: 230

§ Each node will occupy at least 1KB
§ Total? At lest 1TB

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Issues: Tree for very large datasets

□ Two performance issues
§ #1: How many times do you need to access the memory?

• Relevant to the height of a tree
• Binary search tree

ü Best case
ü Worst case

• AVL Tree
ü Best case
ü Worst case

§ #2: Can you store 1TB in the fast memory?
• No, your main memory is (very likely) smaller than 1TB
• So you will need to store the tree in the slow memory (i.e., a disk)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Ideas

□ Solution to #1: Multiple keys per node
§ Load multiple keys at once
§ Reduce the height of the tree
§ Trees with this feature

• M-Way Search Trees, B-Tree, B+Tree

□ Solution to #2: No data in the internal nodes
§ Leaf nodes hold both keys/data, and internal nodes only hold

keys
§ You “may” not need to access the slow memory when accessing

the internal nodes
§ Trees with this feature

• B+Tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

M-Way Search Trees

□ M-Way Search Trees: A search tree with maximum
branching factor M

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

B-Trees

□ Each node has keys up to M-1 keys
□ Order property

§ Subtree between two keys x and y contain leaves with values v
such that 𝑥 < 𝑣 < 𝑦

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

B-Tree Structure Property (𝑀 ≥ 3)

□ Root (special case)
§ Has between 2 and 𝑀 children (or root could be a leaf node)

□ Internal nodes
§ Store up to 𝑀 − 1 keys
§ Have between ⌈𝑀/ ⌉2 and 𝑀 children

□ Leaf nodes
§ Store between ⌈𝑀/ ⌉2 − 1 and 𝑀 − 1 sorted keys
§ All at the same depth

□ Note: Our B-Tree assignment has a slight different structural
property, but the key ideas are the same

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

B-Tree: Example

□ B-Tree with M = 3

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

B+Trees

□ Internal nodes have no data
§ Only leaf nodes have data

□ Each internal node still has (up to) 𝑀 − 1 keys

□ Order property
§ Subtree between two keys x and y contain leaves with values v

such that 𝑥 ≤ 𝑣 < 𝑦
§ Note the symbol, ‘≤’

□ Leaf nodes have up to 𝐿 sorted keys

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

B+Tree Structure Property

□ Root (special case)
§ Has between 2 and 𝑀 children (or root could be a leaf node)

□ Internal nodes
§ Store up to 𝑀 − 1 keys
§ Have between ⌈𝑀/ ⌉2 and 𝑀 children

□ Leaf nodes
§ Where data is stored
§ All at the same depth
§ Contain between ⌈𝐿/ ⌉2 and 𝐿 data items

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

B+Tree: Example

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Disk Friendliness of B+Tree

□ Many keys stored in a node
§ All brought to memory/cache in one disk access

□ Internal nodes contain only keys
§ Only leaf nodes contain actual data
§ Much of tree structure can be loaded into memory irrespective

of data object size
§ Data actually resides in disk

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Comparison: B+Tree vs. AVL Tree
□ Suppose again you have 𝑛 = 2!" items

§ AVL Tree
• Height: 43

§ B+Tree where M=256, L=256
• Height: 4.3

□ If you consider other factors, things are getting more
interesting
§ The size of each item
§ The size of Cache
§ The size of DRAM
§ …

□ We never talked about the costs to balance the tree though

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Maintain the Balance of B+ Tree

□ How to make B+ Tree balanced?
§ Insertion idea (bottom-up approach)

• Step 1: Insert an item to the leaf
• Step 2: If the node overflows, 1) split the node and 2) add the key

to the parent
• Step 3: If the parent overflows, go back to step 2
• You may need to increase the height

§ Deletion idea (bottom-up approach)
• Step 1: Remove an item from the leaf
• Step 2: If the node underflows, 1) adopt from (or merge with) the

neighbor and 2) update the parent
• Step 3: If the parent underflows, go back to step 2
• You may need to decrease the height

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Applications

□ Databases
§ Index structure for MySQL
§ A hash table can be a better option (will cover later)

□ File systems
§ Apple’s HFS+, Microsoft NTFS, Linux’s EXT4 and btrfs

□ Real-world challenges in designing and implementing trees
§ Parallel access: Multi-core processors are everywhere
§ Distributed storage: Too large to store in a single computing node
§ You will learn more from advanced courses: operating systems,

computer architecture, database, etc.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

References
[1] Wikipedia, http://en.wikipedia.org/wiki/B+_tree
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, Ch. 19, p.381-99.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §4.7, p.159-64.
[4] Lecture slides by Brian Curless,

https://courses.cs.washington.edu/courses/cse326/08sp/lectures/markup/11-b-trees-markup.pdf

B+Tree: Leafs are linked listed [1]

	W10-1.Binary_search_trees.pdf
	W10-2.AVL_trees.pdf
	W10-3.Red_black_trees.pdf
	W10-4.B-trees.pdf

