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Outline

□ This topic covers binary search trees:
§ Abstract Sorted Lists
§ Background
§ Definition and examples
§ Implementation:

• FindMin, FindMax, insert, erase
• Previous smaller and next larger objects
• Finding the kth object
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Abstract Sorted Lists

□ Previously, we discussed Abstract Lists: the objects are 
linearly ordered by the programmer

□ We will now discuss the Abstract Sorted List:
§ The relation is based on an implicit linear ordering



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Abstract Sorted Lists (ASL)

□ Queries that may be made about data stored in a 
Sorted List ADT include:
§ Finding the smallest and largest values
§ Finding the kth largest value
§ Find the next larger or previous smaller objects of a given object
§ Iterate through objects within an interval [a, b]
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Limitation: ASL with Array or Linked Lists

□ If we implement an Abstract Sorted List using an array 
or a linked list, some operations take O(n)
§ To perform insertion, we may either traverse or copy, on 

average, O(n) objects
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Binary Search Trees

□ Using a binary tree, we can dictate an order on the two 
children

□ We will exploit this order:
§ All objects in the left sub-tree to be less than the object stored 

in the root node, and
§ All objects in the right sub-tree to be greater than the object in 

the root object

Recursive definition: Each of the two sub-trees will themselves be 
binary search trees
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Binary Search Trees

□ We can use this structure for searching

□ With a linear order, one of the following three must be 
true:

a < b a = b a > b

□ Examine the root node and if we have not found what 
we are looking for:
§ If the object is less than what is stored in the root node, 

continue searching in the left sub-tree
§ Otherwise, continue searching the right sub-tree
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Binary Search Trees: Good Example

□ Here are other examples of binary search trees:
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Binary Search Trees: Bad Example

□ Unfortunately, it is possible to construct unbalanced
binary search trees

§ This is equivalent to a linked list, i.e., O(n)
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Binary Search Trees: More Examples

□ All these binary search trees store the same data
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Note: No Duplicate Values

□ We will assume that in any binary tree, we are not 
storing duplicate values unless otherwise stated

□ You can always consider duplicate values with 
modifications to the algorithms we will cover
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Implementation: Binary Search Trees

□ Design with two classes: 

1) BinaryNode
§ Represent each node in the tree

2) BinarySearchTree
§ Represent the tree, which holds the root node (an instance of 

BinaryNode)
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Implementation: class BinaryNode

template <typename T>
struct BinaryNode {

T value;
BinaryNode *left;
BinaryNode *right;

BinaryNode<T>(const T &value, BinaryNode<T> *left, BinaryNode<T> *right)
: value{value}, left{left}, right{right} {}

BinaryNode<T>(T &&value, BinaryNode<T> *left, BinaryNode<T> *right)
: value{std::move(value)}, left{left}, right{right} {}

};

- A value has a template based type <T>
- If <T> is not comparable, you will need to override comparison operators

Recall the concept of reference variable from “T &value”
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Implementation: class BinarySearchTree

template <typename T>
class BinarySearchTree {
public:

BinarySearchTree() : root{nullptr} {}

const T &findMin() const;
const T &findMax() const;

bool find(const T &x) const;
void insert(const T &x);
void remove(const T &x);
// something more …

private:
BinaryNode<T> *root;
// something more …

};
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Finding the Minimum Object
const T &findMin() const {

if (isEmpty())
throw std::exception{};

return findMin(root)->value;
}

BinaryNode<T> *findMin(BinaryNode<T> *t) const {
if (t == nullptr)

return nullptr;
if (t->left == nullptr)

return t;
return findMin(t->left);

}

The run time: O(h)
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Finding the Maximum Object

minimum/maximum values are not necessarily leaf nodes

const T &findMax() const {
if (isEmpty())

throw std::exception{};
return findMax(root)->value;

}

BinaryNode<T> *findMax(BinaryNode<T> *t) const {
if (t != nullptr)

while (t->right != nullptr)
t = t->right;

return t;
}
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Find

□ To determine membership, traverse the tree based on 
the linear relationship:
§ If a node containing the value is found, e.g., 81, return true

§ If an empty node is reached, e.g., 36, return false:
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Find

□ The implementation is similar to findMin and findMax:
§ The run time is O(h)

bool find(const T &x) const { return contains(x, root); }

bool find(const T &x, BinaryNode<T> *t) const {
if (t == nullptr)

return false;
else if (x < t->value)

return find(x, t->left);
else if (t->value < x)

return find(x, t->right);
else

return true; // Match
}
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Insert

□ An insertion will be performed at an empty node:
§ Any empty node is a possible location for an insertion

□ The values which may be inserted at any empty node 
depend on the surrounding nodes
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Insert

□ For example, this node may hold 48, 49, or 50



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Insert

□ An insertion at this location must be 35, 36, 37, or 38
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Insert

□ This empty node may hold values from 71 to 74
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Insert

□ Like find, we will step through the tree
§ If we find the object already in the tree, we will return

• The object is already in the binary search tree (no duplicates)

§ Otherwise, we will arrive at an empty node
§ The object will be inserted into that location
§ The run time is O(h)
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Insert 52

□ In inserting the value 52, we traverse the tree until we 
reach an empty node
§ The left sub-tree of 54 is an empty node
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Insert 52

□ A new leaf node is created and assigned to the member 
variable left
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Insert 40

□ In inserting 40, we determine the right sub-tree of 39 
is an empty node
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Insert 40

□ A new leaf node storing 40 is created and assigned to 
the member variable right
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Insert

void insert(const T &x) { insert(x, root); }

void insert(const T &x, BinaryNode<T> *&t) {
if (t == nullptr)

t = new BinaryNode<T>{x, nullptr, nullptr};
else if (x < t->value)

insert(x, t->left);
else if (t->value < x)

insert(x, t->right);
else

; // Duplicate; do nothing
}
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Insert

□ Example questions:
§ In the given order, insert these objects into an initially empty 

binary search tree:
31  45  36  14  52  42  6  21  73  47  26 37  33  8

§ What values could be placed:
• To the left of 21?
• To the right of 26?
• To the left of 47?

§ How would we determine if 40 is in this binary search tree?
§ Which values could be inserted to increase the height of the 

tree?
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Erase

□ A node being erased is not always going to be a leaf node
□ There are three possible scenarios:

§ 1) The node is a leaf node,
§ 2) It has exactly one child, or
§ 3) It has two children (it is a full node)
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Erase: Leaf Node

□ A leaf node must be removed and the appropriate 
member variable of the parent is set to nullptr
§ Consider removing 75



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Erase: Leaf Node

□ The node is deleted and left of 81 is set to nullptr
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Erase: Leaf Node

□ Erasing the node containing 40 is similar
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Erase: Leaf Node

□ The node is deleted and right of 39 is set to nullptr
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Erase: Non-leaf node w/ one child

□ If a node has only one child, we can simply promote the 
sub-tree associated with the child
§ Consider removing 8 which has one left child
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Erase: Non-leaf node w/ one child

□ The node 8 is deleted and the left of 11 is updated to 
point to 3



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Erase: Non-leaf node w/ one child

□ There is no difference in promoting a single node or a 
sub-tree
§ To remove 39, it has a single child 11
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Erase: Non-leaf node w/ one child

□ The node containing 39 is deleted and left of 42 is 
updated to point to 11
§ Notice that order is still maintained
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Erase: Non-leaf node w/ one child

□ Consider erasing the node containing 99
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Erase: Non-leaf node w/ one child

□ The node is deleted and the left sub-tree is promoted:
§ The member variable right of 70 is set to point to 92
§ Again, the order of the tree is maintained
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Erase: Full node

□ Finally, we will consider the problem of erasing a full 
node, e.g., 42

□ We will perform two operations:
§ Replace 42 with the minimum object in the right sub-tree
§ Erase that object from the right sub-tree
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Erase: Full node

□ In this case, we replace 42 with 47
§ We temporarily have two copies of 47 in the tree
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Erase: Full node

□ We now recursively erase 47 from the right sub-tree
§ We note that 47 is a leaf node in the right sub-tree
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Erase: Full node

□ Leaf nodes are simply removed and left of 51 is set to 
nullptr
§ Notice that the tree is still sorted
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Erase: Full node

□ Suppose we want to erase the root 47 again:
§ We must copy the minimum of the right sub-tree
§ We could promote the maximum object in the left sub-tree and 

achieve similar results
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Erase: Full node

□ We copy 51 from the right sub-tree
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Erase: Full node

□ We must proceed by delete 51 from the right sub-tree
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Erase: Full node

□ In this case, the node storing 51 has just a single child
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Erase: Full node

□ We delete the node containing 51 and assign the 
member variable left of 70 to point to 59
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Erase: Full node

□ Note that after several removals, the remaining tree is 
still correctly sorted
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Erase: Full node
void remove(const T &x) { remove(x, root); }

void remove(const T &x, BinaryNode<T> *&t) {
if (t == nullptr)

return; // Item not found; do nothing
if (x < t->value)

remove(x, t->left);
else if (t->value < x)

remove(x, t->right);
else if (t->left != nullptr && t->right != nullptr) { // two children

t->value = findMin(t->right)->value;
remove(t->value, t->right);

}
else { // single child

BinaryNode<T> *oldNode = t;
t = (t->left != nullptr) ? t->left : t->right;
delete oldNode;

}
}
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Other Relation-based Operations

□ We will quickly consider two other relation-based 
queries that are very quick to calculate with an array of 
sorted objects:
§ Finding the previous and next values, and
§ Finding the kth value
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Previous and Next Objects

□ All the operations up to now have been operations 
which work on any container: count, insert, etc.
§ If these are the only relevant operations, use a hash table

□ Operations specific to linearly ordered data include:
§ Find the next larger and previous smaller objects of a given 

object which may or may not be in the container
§ Find the kth value of the container
§ Iterate through those objects that fall on an interval [a, b]

□ We will focus on finding the next largest object
§ The others will follow
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Previous and Next Objects

□ To find the next largest object:
§ If the node has a right sub-tree, the minimum object in that sub-

tree is the next-largest object 
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Previous and Next Objects

□ If, however, there is no right sub-tree:
§ It is the next largest object (if any) that exists in the path from 

the root to the node



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Previous and Next Objects

□ More generally: what is the next largest value of an 
arbitrary object?
§ This can be found with a single search from the root node to 

one of the leaves — an O(h) operation
§ This function returns the object if it did not find something 

greater than it
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Finding the kth Object
□ Another operation on sorted lists may be finding the kth

largest object
§ Recall that k goes from 0 to n – 1
§ If the left-sub-tree has ℓ = k values, return the current node,
§ If the left sub-tree has ℓ > k values, return the kth value of the left 

sub-tree,
§ Otherwise, the left sub-tree has ℓ < k values, so return the (k – ℓ –

1)th value of the right sub-tree

0 1 2 3 4 5 6 7 8 9 10 1112 13 1415 16 17

7 10

18

1 5
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Run Time: O(h)

□ Almost all of the relevant operations on a binary search 
tree are O(h)
§ If the tree is close to a linked list, the run times is O(n)

• Insert 1, 2, 3, 4, 5, 6, 7, ..., n into a empty binary search tree

§ The best we can do is if the tree is perfect: O(ln(n))
§ Our goal will be to find tree structures where we can maintain a 

height of Q(ln(n))

□ We will look at
§ AVL trees
§ B+ trees

both of which ensure that the height remains Q(ln(n))
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Summary

□ In this topic, we covered binary search trees
§ Described Abstract Sorted Lists
§ Problems using arrays and linked lists
§ Definition a binary search tree
§ Looked at the implementation of:

• Empty, size, height, count
• FindMin, FindMax, insert, erase
• Previous smaller and next larger objects
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Outline

□ Background
□ Define height balancing
□ Maintaining balance within a tree

§ AVL trees
§ Difference of heights
§ Maintaining balance after insertions and erases
§ Can we store AVL trees as arrays?
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Background

□ From previous lectures:
§ Binary search trees store linearly ordered data
§ Best case height: Q(ln(n))
§ Worst case height: O(n) 

□ Requirement:
§ Define and maintain a balance to ensure Q(ln(n)) height  
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Prototypical Examples

□ These two examples demonstrate how we can correct 
for imbalances:  starting with this tree, add 1:
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Prototypical Examples

□ This is more like a linked list; however, we can fix this…
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Prototypical Examples

□ Promote 2 to the root, demote 3 to be 2’s right child, 
and 1 remains the left child of 2.

□ The result is a perfect, though trivial tree
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Prototypical Examples

□ Alternatively, given this tree, insert 2 
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Prototypical Examples

□ Again, the product is a linked list; however, we can fix 
this, too
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Prototypical Examples

□ Promote 2 to the root, and assign 1 and 3 to be its 
children
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Prototypical Examples

□ The result is, again, a perfect tree

□ These examples may seem trivial, but they are the basis 
for the corrections in the next data structure we will see:  
AVL trees
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AVL Trees

□ We will focus on the first strategy: AVL trees
§ Named after Adelson-Velsky and Landis

□ Balance is defined by comparing the height of the two 
sub-trees

□ Recall:
§ An empty tree has height –1
§ A tree with a single node has height 0
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AVL Trees

□ A binary search tree is said to be AVL balanced if:
§ The difference in the heights between the left and right sub-

trees is at most 1, and
§ Both sub-trees are themselves AVL trees
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AVL Trees

□ AVL trees with 1, 2, 3, and 4 nodes:
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AVL Trees

□ Here is a larger AVL tree (42 nodes):
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AVL Trees

□ The root node is AVL-balanced:
§ Both sub-trees are of height 4:
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AVL Trees

□ All other nodes (e.g., AF and BL) are AVL balanced
§ The sub-trees differ in height by at most one
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Height of an AVL Tree

□ By the definition of complete trees, any complete binary 
search tree is an AVL tree

□ Thus an upper bound on the number of nodes in an AVL 
tree of height h is a perfect binary tree with 2h + 1 – 1 
nodes
§ What is an lower bound?
§ This will be the worst case of an AVL tree
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Height of an AVL Tree

□ Let F(h) be the fewest number of nodes in a tree of 
height h

□ From a previous slide:
F(0) = 1
F(1) = 2
F(2) = 4

□ Can we find F(h)?
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Height of an AVL Tree

□ The worst-case AVL tree of height h would have:
§ A worst-case AVL tree of height h – 1 on one side,
§ A worst-case AVL tree of height h – 2 on the other, and
§ The root node

□ We get:  F(h) = F(h – 1) + 1 + F(h – 2)
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Height of an AVL Tree
□ This is a recurrence relation:

□ The solution?
§ Note that F(h) + 1 = (F(h – 1) + 1) + (F(h – 2) + 1)
§ Therefore, F(h) + 1 is a Fibonacci number:

F(0) + 1 =   2 → F(0) =   1
F(1) + 1 =   3 → F(1) =   2
F(2) + 1 =   5 → F(2) =   4
F(3) + 1 =   8 → F(3) =   7
F(4) + 1 = 13 → F(4) = 12
F(5) + 1 = 21 → F(5) = 20
F(6) + 1 = 34 → F(6) = 33
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Height of an AVL Tree

□ This is approximately
F(h) ≈ 1.8944 f h – 1 

where f ≈ 1.6180 is the golden ratio
§ That is, F(h) = W(f h)
§ Check more: 

https://en.wikipedia.org/wiki/Golden_ratio#Relationship_to_Fibonacci_sequence

□ Thus, we may find the maximum value of h for a given n:

( ) ( )1log log 1 1.3277 1.4404 lg 1 1.3277
1.8944
n n nf f
+æ ö = + - = × + -ç ÷

è ø

https://en.wikipedia.org/wiki/Golden_ratio
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Height of an AVL Tree: Easier Proof?

𝐹 ℎ > 𝐹 ℎ − 1 + 𝐹 ℎ − 2 > 2𝐹 ℎ − 2

𝐹 ℎ > 2 ∗ 𝐹 ℎ − 2 > 2 ∗ 2 ∗ 𝐹 ℎ − 4 > … > 2!/#

𝑛 > 2!/#, so ℎ < 2 log(𝑛)
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Height of an AVL Tree: Looking Good?

□ In this example, n = 88, the worst- and best-case 
scenarios differ in height by only 2
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Height of an AVL Tree: Looking Bad?

□ If n = 106, the bounds on h are:
§ (best) The minimum height:    log2( 106 ) – 1 ≈ 19
§ (worst) The maximum height : logf ( 106 / 1.8944 ) < 28

□ The AVL Tree ensures the height balance, but such a 
balanced tree can be quite far from the ideal, perfect 
binary tree.
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Maintaining Balance

□ To maintain AVL balance, observe that:
§ Inserting a node can increase the height of a tree by at most 1
§ Removing a node can decrease the height of a tree by at most 1
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Maintaining Balance

□ Consider this AVL tree
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Maintaining Balance: Insert 15

□ Consider inserting 15 into this tree
§ In this case, the heights of none of the trees change
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Maintaining Balance: Insert 15

□ The tree remains balanced
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Maintaining Balance: Insert 42

□ Consider inserting 42 into this tree
§ Now we see the heights of two sub-trees have increased by one
§ The tree is still balanced
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Maintaining Balance

□ If a tree is AVL balanced, for an insertion to cause an 
imbalance:
§ The heights of the sub-trees must differ by 1
§ The insertion must increase the height of the deeper sub-tree by 1
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Maintaining Balance

□ Suppose we insert 23 into our initial tree
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Maintaining Balance

□ The heights of each of the sub-trees from here to the 
root are increased by one
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Maintaining Balance

□ However, only two of the nodes are unbalanced: 
17 and 36



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Maintaining Balance

□ However, only two of the nodes are unbalanced:  
17 and 36
§ We only have to fix the imbalance at the lowest node



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Maintaining Balance

□ We can promote 23 to where 17 is, and make 17 the left 
child of 23
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Maintaining Balance

□ Thus, that node is no longer unbalanced
§ Incidentally, the root node is now balanced as well
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Maintaining Balance

□ Consider adding 6:



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Maintaining Balance

□ The height of each of the trees in the path back to the 
root are increased by one
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Maintaining Balance

□ The height of each of the trees in the path back to the 
root are increased by one
§ However, only the root node is now unbalanced
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Maintaining Balance

□ To fix this, we will look at the general case…
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Maintaining Balance: Case 1

□ Consider the following setup
§ Each blue triangle represents a tree of height h
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Maintaining Balance: Case 1

□ Insert a into this tree: it falls into the left subtree BL of b
§ Assume BL remains balanced
§ Thus, the tree rooted at b is also balanced
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Maintaining Balance: Case 1

□ The tree rooted at node f is now unbalanced
§ We will correct the imbalance at this node
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Maintaining Balance: Case 1

□ Specifically, we will rotate these two nodes around the 
root:
§ Recall the first prototypical example
§ Promote node b to the root and demote node f to be the right 

child of b
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Maintaining Balance: Case 1

□ This requires the address of node f to be assigned to 
the p_right_tree member variable of node b
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Maintaining Balance: Case 1

□ Assign any former parent of node f to the address of 
node b

□ Assign the address of the tree BR to p_left_tree of 
node f
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Maintaining Balance: Case 1

□ The nodes b and f are now balanced and all remaining 
nodes of the subtrees are in their correct positions
§ The height of f is now h + 1 while b remains at height h + 2
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Maintaining Balance: Case 1

□ Additionally, height of the corrected tree rooted at b
equals the original height of the tree rooted at f
§ Thus, this insertion will no longer affect the balance of any 

ancestors all the way back to the root
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Maintaining Balance: Case 1

□ In our example case, the correction 
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Maintaining Balance: Case 1
□ In our three sample cases,

the node is now balanced
and the same height
as the tree before 
the insertion
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Maintaining Balance: Case 2

□ Alternatively, consider the insertion of c where b < c < f 
into our original tree
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Maintaining Balance: Case 2

□ Assume that the insertion of c increases the height of BR

§ Once again, f becomes unbalanced
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Maintaining Balance: Case 2

□ Here are examples of when the 
insertion of 14 may cause this
situation when h = –1, 0, and 1
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Maintaining Balance: Case 2

□ Unfortunately, the previous correction does not fix the 
imbalance at the root of this sub-tree: the new root, b, 
remains unbalanced
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Maintaining Balance: Case 2
□ In our three sample cases

with h = –1, 0, and 1,
doing the same thing
as before results in
a tree that is still 
unbalanced…
§ The imbalance is just

shifted to the other
side
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Maintaining Balance: Case 2

□ Re-label the tree by dividing the left subtree of f into a 
tree rooted at d with two subtrees of height h – 1
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Maintaining Balance: Case 2

□ Now an insertion causes an imbalance at f
§ The addition of either c or e will cause this
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Maintaining Balance: Case 2

□ We will rotate d, b, and f
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Maintaining Balance: Case 2

□ We will first rotate d, b, and f
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Maintaining Balance: Case 2

□ Then connect DL and DR as a subtree of b and f, 
respectively
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Maintaining Balance: Case 2

□ Now the tree rooted at d is balanced
§ After the correction, height of b and f become h + 1 and d is h + 2
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Maintaining Balance: Case 2

□ Again, the height of the root did not change
§ The heights of all three nodes changed in this process
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Maintaining Balance: Case 2
□ In our three sample cases

with h = –1, 0, and 1, the
node is now balanced
and the same height
as the tree before the
insertion
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Maintaining balance: Summary

□ There are two symmetric cases to those we have 
examined:
§ Insertions into the right-right sub-tree (Case 1)

§ Insertions into either the right-left sub-tree (Case 2)
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Time Complexity of Insertion

□ Both balances (i.e., Case 1 and Case 2) are Q(1)
□ All insertions are still Q(ln(n)) Why?
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Insertion

□ Consider this AVL tree
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Insertion: 73

□ Insert 73
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Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
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Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
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Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

71

Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 75 is that node
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Insertion: 73

□ The node 81 is unbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 75 is that node
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Insertion: 73

□ The tree is AVL balanced
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Insertion: 77

□ Insert 77
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Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
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Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
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Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
§ Promote the intermediate node to the imbalanced node
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Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
§ Promote the intermediate node to the imbalanced node
§ 81 is that value
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Insertion: 77

□ The node 87 is unbalanced
§ A left-right imbalance
§ Promote the intermediate node to the imbalanced node
§ 81 is that value
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Insertion: 77

□ The tree is balanced
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Insertion: 76

□ Insert 76
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Insertion: 76

□ The node 78 is unbalanced
§ A left-left imbalance
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Insertion: 76

□ The node 78 is unbalanced
§ Promote 77
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Insertion: 76

□ Again, balanced
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Insertion: 80

□ Insert 80
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Insertion: 80

□ The node 69 is unbalanced
§ A right-left imbalance
§ Promote the intermediate node to the imbalanced node
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Insertion: 80

□ The node 69 is unbalanced
§ A right-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 75 is that value
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Insertion: 80

□ Again, balanced
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Insertion: 74

□ Insert 74
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Insertion: 74

□ The node 72 is unbalanced
§ A right-right imbalance
§ Promote the intermediate node to the imbalanced node
§ 73 is that value
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Insertion: 74

□ The node 72 is unbalanced
§ A right-right imbalance
§ Promote the intermediate node to the imbalanced node
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Insertion: 74

□ Again, balanced
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Insertion: 64

□ Insert 64
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Insertion: 64

□ This causes no imbalances
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Insertion: 55

□ Insert 55
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Insertion: 55

□ The node 69 is imbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
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Insertion: 55

□ The node 69 is imbalanced
§ A left-left imbalance
§ Promote the intermediate node to the imbalanced node
§ 63 is that value
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Insertion: 55

□ The tree is now balanced
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Insertion: 70

□ Insert 70
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Insertion: 70

□ The root node is now imbalanced
§ A right-left imbalance
§ Promote the intermediate node to the root
§ 63 is that value
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Insertion: 70

□ The root node is imbalanced
§ A right-left imbalance
§ Promote the intermediate node to the root
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Insertion: 70

□ The result is AVL balanced



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

103

Erase

□ Removing a node from an AVL tree may cause more 
than one AVL imbalance
§ Like insert, erase must check after it has been successfully called 

on a child to see if it caused an imbalance
§ Unfortunately, it may cause O(h) imbalances that must be 

corrected
• Insertions will only cause one imbalance that must be fixed

§ Time complexity of deletion? Still O(h)
§ The movement of trees, however, may require that more than 

one node within the triplet has its height corrected
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Erase

□ Consider the following AVL tree
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Erase: 1

□ Suppose we erase the front node:  1
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Erase: 1

□ While its previous parent, 2, is not unbalanced, its 
grandparent 3 is
§ The imbalance is in the right-right subtree
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Erase: 1

□ We can correct this with a simple balance
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Erase: 1

□ The node of that subtree, 5, is now balanced
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Erase: 1

□ Recursing to the root, however, 8 is also unbalanced
§ This is a right-left imbalance
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Erase: 1

□ Promoting 11 to the root corrects the imbalance 
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Erase: 1

□ At this point, the node 11 is balanced
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Erase: 1

□ Still, the root node is unbalanced
§ This is a right-right imbalance
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Erase: 1

□ Again, a simple balance fixes the imbalance
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Erase: 1

□ The resulting tree is now AVL balanced
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Summary

□ In this topic we have covered:
§ AVL balance is defined by ensuring the difference in heights is 

0 or 1
§ Insertions and erases are like binary search trees
§ Each insertion requires at least one correction to maintain AVL 

balance
§ Erases may require O(h) corrections
§ These corrections require Q(1) time
§ Depth is Q( ln(n) )
∴ all O(h) operations are O( ln(n) )
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Outline

□ In this topic, we will cover:
§ The idea behind a red-black tree
§ Defining balance
§ Insertions and deletions
§ The benefits of red-black trees over AVL trees
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Red-Black Trees

□ A red black tree “colors” each node within a tree either 
red or black
§ This can be represented by a single bit
§ In AVL trees, balancing restricts the difference in heights to at 

most one
§ For red-black trees, we have a different set of rules related to 

the colors of the nodes
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AVL Vs. Red-Black Trees 

Average Worst-case

Space O(n) O(n)

Lookup O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

Average Worst-case

Space O(n) O(n)

Lookup O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

AVL tree Red-Black Tree

Asymptotic complexity 
for lookup/insert/delete is the same!
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AVL Vs. Red-Black Trees 

□ AVL Vs. RBTree
§ AVL maintains its balance more tight than RBTree

• Recall the definition

§ AVL performs better for lookup-intensive applications
§ RBTree provides faster worst-case performance for insert/delete
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Red-Black Trees

□ Define a null path within a binary tree as any path 
starting from the root where the last node is not a full 
node
§ Consider the following binary tree:
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Red-Black Trees

□ All null paths include:
(H, C, B) (H, C, F, D) (H, L, J, I) (H, L, P)
(H, C, B, A) (H, C, F, D, E) (H, L, J, K) (H, L, P, N, M)

(H, C, F, G) (H, L, P, N, O)
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Red-Black Trees

□ The three rules which define a red-black tree are
1. The root must be black,
2. If a node is red, its children must be black,
3. Each null path must have the same number of black nodes
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Red-Black Trees

□ These are two examples of red-black trees:
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Red-Black Trees

□ Theorem:
§ Every red node must be either

• A full node (with two black children), or
• A leaf node

□ Proof by contradiction:
§ Suppose node S has one child:

• The one child L must be black
• The null path ending at S has k black nodes
• Any null path containing the node L will

therefore have at least k + 1 black nodes
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Red-Black Trees

□ In our two examples, you will note that all red nodes are 
either full or leaf nodes
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Red-Black Trees

□ Another consequence is that if a node P has exactly one 
child:
§ The one child must be red,
§ The one child must be a leaf node, and
§ The node P must be black
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Red-Black Trees

□ All red-black trees with 1, 2, 3, and 4 nodes:
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Red-Black Trees

□ All red-black trees with 5 and 6 nodes:
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Red-Black Trees

□ All red-black trees with seven nodes—most are shallow:
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Red-Black Trees

□ Every perfect tree is a red-black tree if each node is 
colored black

□ A complete tree is a red-black tree if:
§ each node at the lowest depth is colored red, and
§ all other nodes are colored black

□ What is the worst case?
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Red-Black Trees

□ Any worst-case red-black tree must have an alternating 
red-black pattern down one side

□ The following are the worst-case red-black trees with 1 
and 2 black nodes per null path (i.e., heights 1 and 3)
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Red-Black Trees

□ To create the worst-case for paths with 3 black nodes 
per path, start with a black and red node and add the 
previous worst-case for paths with 2 nodes 
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Red-Black Trees

□ This, however, is not a red-black tree because the two 
top nodes do not have paths with three black nodes
§ To solve this, add the optimal red-black trees with two black 

nodes per path
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Red-Black Trees

□ That is, add two perfect trees with height 1 to each of 
the missing sub-trees
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Red-Black Trees

□ Thus, we have the worst-case for a red-black tree with 
three black nodes per path (or a red-black tree of height 5)
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Red-Black Trees

□ Note that the left sub-tree of the root has height 4 while 
the right has height 1
§ Thus, suggests that AVL trees may be better in maintaining 

“height balance”
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Revisit: Red-Black Trees vs. AVL

□ AVL trees are not as deep in the worst case as are red-
black trees
§ Therefore, AVL trees will perform better when numerous 

searches are being performed,
§ However, insertions and deletions will require:

• more rotations with AVL trees, and
• require recursions from and back to the root

§ Thus, AVL trees will perform worse in situations where there are 
numerous insertions and deletions
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Insertions

□ We will consider two types of insertions:
§ bottom-up (insertion at the leaves), and
§ top-down (insertion at the root)

□ The first will be instructional and we will use it to derive 
the second case
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Bottom-Up Insertions

□ After an insertion is performed, we must satisfy all the 
rules of a red-black tree:
#1. The root must be black,
#2. If a node is red, its children must be black, and
#3. Each path from a node to any of its descendants which are not   

a full node (i.e., two children) must have the same number of    
black nodes

□ #1 and #2 are local:  they affect a node and its neighbors

□ #3 is global: adding a new black node anywhere will 
cause all of its ancestors to become unbalanced 
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Bottom-Up Insertions

□ Thus, when we add a new node, we will add a red node 
§ Which breaks the local rule
§ But not breaking the global rule

□ We will then travel up the tree to the root, while fixing 
the requirement #1 and #2



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Bottom-Up Insertions

□ If the parent of the inserted node is already black, we 
are done
§ Otherwise, we must correct the problem

□ We will fix by following two steps:
§ Step #1) the initial insertion, and
§ Step #2) the recursive steps back to the root
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Bottom-Up Insertions: 
Step #1. Initial insertion
□ For the initial insertion, there are two possible cases:

§ Case #1: the grandparent has one red child, or

§ Case #2: the grandparent has two red children

A

C

B

A

C

B

A

C

B D
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Bottom-Up Insertions: 
Step #1. Initial insertion
□ Case #1 can be fixed with a rotation. 

Example: Inserting A

Consequently, we are finished...

A

C

B

A

C

B
A C

B

B C

A
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Bottom-Up Insertions: 
Step #1. Initial insertion
□ Case #2 seems to be fixed by just swapping the colors:

□ However, we now may cause a problem between the 
parent and the grandparent....
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Bottom-Up Insertions: 
Step #2. Recursive step back
□ Fortunately, dealing with problems caused within the 

tree are identical to the problems at the leaf nodes

□ Like before, there are two cases:
§ the grandparent has one red child, or
§ the grandparent has two red children



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Bottom-Up Insertions: 
Step #2. Recursive step back
□ Suppose that A and D, respectively were swapped.

□ If the grand parent had one red child (Case #1), we 
perform similar rotations as we have done before.

A was swapped, and the grand parent (D) 
has only one red child (B)

D was swapped, and the grand parent (F) 
has only one red child (B)



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Bottom-Up Insertions: 
Step #2. Recursive step back

□ If both children of the grandparent are red (Case #2), 
we swap colors, and recurs back to the root
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Bottom-Up Insertions: 
Step #2. Recursive step back

□ If, at the end, the root is red, it can be colored black
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Examples of Insertions

□ Given the following red-black tree, we will make a 
number of insertions
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Examples of Insertions: Insert 46

□ Adding 46 creates a red-red pair which can be corrected 
with a single rotation
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Examples of Insertions: Insert 46

□ Because the pivot is still black, we are finished
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Examples of Insertions: Insert 5

□ Similarly, adding 5 requires a single rotation
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Examples of Insertions: Insert 5

□ Which again, does not require any additional work
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Examples of Insertions: Insert 10

□ Adding 10 allows us to simply swap the color of the 
grand parent and the parent and the parent’s sibling
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Examples of Insertions: Insert 10

□ Because the parent of 5 is black, we are finished
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Examples of Insertions: Insert 90

□ Adding 90 again requires us to swap the colors of the 
grandparent and its two children
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Examples of Insertions: Insert 90

□ This causes a red-red parent-child pair, which now 
requires a rotation
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Examples of Insertions: Insert 90

□ A rotation does not require any subsequent 
modifications, so we are finished
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Examples of Insertions: Insert 95

□ Inserting 95 requires a single rotation
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Examples of Insertions: Insert 95

□ And consequently, we are finished
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Examples of Insertions: Insert 99

□ Adding 99 requires us to swap the colors of its 
grandparent and the grandparent’s children 
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Examples of Insertions: Insert 99

□ This causes another red-red child-parent conflict 
between 85 and 90 which must be fixed, again by 
swapping colors 
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Examples of Insertions: Insert 99

□ This results in another red-red parent-child conflict, this 
time, requiring a rotation
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Examples of Insertions: Insert 99

□ Thus, the rotation solves the problem
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Top-Down Insertions and Deletions

□ With a bottom-up insertion, it is first necessary to search 
the tree for the appropriate location, and only then 
recurs back to the root correcting any problems
§ This is similar to AVL trees

□ With red-black trees, it is possible to perform both 
insertions and deletions strictly by starting at the root, 
but not requiring the recurs back to the root
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Top-Down Insertions

□ The important observation is:
§ Rotations (Case #1) do not require recursive steps back to the 

root
§ Swapping (Case #2) may require recursive corrections going 

back all the way to the root

□ Therefore, while moving down from the root, 
automatically swap the colors of any black node with 
two red children
§ this may require at most one rotation at the parent of the now-

red node
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Examples of Top-Down Insertions

□ We will start with the same red-black tree as before, but 
make top-down insertions (no recursion):
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Examples of Top-Down Insertions: Insert 46

□ Adding 46 does not find any (necessarily black) parent 
with two red children
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Examples of Top-Down Insertions: Insert 46

□ However, it does require one rotation at the end
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Examples of Top-Down Insertions: Insert 5

□ Similarly, adding 5 does not meet any parent with two 
red children:
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Examples of Top-Down Insertions: Insert 5

□ A rotation solves the last problem
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Examples of Top-Down Insertions: Insert 10

□ To insert 10, we can spot that node 5 has two red 
children
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Examples of Top-Down Insertions: Insert 10

□ We swap the colors, and this does not cause a problem 
between 5 and 11
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Examples of Top-Down Insertions: Insert 10

□ We continue and place 10 in the appropriate location
§ No further rotations are required
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Examples of Top-Down Insertions: Insert 90

□ To add the node 90, we traverse down the right tree 
until we reach 85 which has two red children
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Examples of Top-Down Insertions: Insert 90

□ We swap the colors, however this creates a red-red pair 
between 85 and its parent
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Examples of Top-Down Insertions: Insert 90

□ We require only one rotation to solve this problem, and 
we are guaranteed that this will not cause any problem 
for its parents
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Examples of Top-Down Insertions: Insert 90

□ We continue to search down the right path and add 90 
in the appropriate location—no further corrections are 
required
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Examples of Top-Down Insertions: Insert 95

□ Next, adding 95, we traverse down the right-hand until 
we reach node 77 which has two red children
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Examples of Top-Down Insertions: Insert 95

□ We swap the colors, which causes a red-red parent-child 
combination which must be fixed by a rotation
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Examples of Top-Down Insertions: Insert 95

□ The rotation is around the root
§ Note this rotation was not necessary with the bottom-up 

insertion of 95
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Examples of Top-Down Insertions: Insert 95

□ We can now proceed to add 95 by following the right-
hand branch, and the insertion causes a red-red parent-
child combination
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Examples of Top-Down Insertions: Insert 95

□ This is fixed with a single rotation
§ We are guaranteed that this will not cause any further problems
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Compare Top-Down and Bottom-up Insertions

□ If we compare the result of doing bottom-up insertions 
(left, seen previously) and top-down insertions (right), we 
note the resulting trees are different, but both are still 
valid red-black trees
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Examples of Top-Down Insertions: Insert 99

□ If we add 99, the first thing we note is that the root has 
two red children, and therefore we swap the colors
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Examples of Top-Down Insertions: Insert 99

□ At this point, each path to a non-full node still has the 
same number of  black nodes, however, we violate the 
requirement that the root is black
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Examples of Top-Down Insertions: Insert 99

□ We change the color of the root to black
§ This adds one more black node to each path
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Examples of Top-Down Insertions: Insert 99

□ Moving to the right, we now reach node 90 which has 
two red children and therefore we swap the colors
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Examples of Top-Down Insertions: Insert 99

□ We continue down the right to add 99
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Examples of Top-Down Insertions: Insert 99

□ This does not violate any of the rules of the red-black 
tree and therefore we are finished
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Compare Top-Down and Bottom-up Insertions

□ Again, comparing the result of doing bottom-up 
insertions (left) and top-down insertions (right), we note 
the resulting trees are different, but both are still valid 
red-black trees
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Top-Down Deletions: Easy cases

□ If we are deleting a red leaf node X, then we are 
finished

□ If we are deleting a node X with one child, we only need 
to replace the value of the deleted node with the
value of the leaf node  
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Top-Down Deletions: Complex cases

□ If we are deleting a full node, we use the same strategy 
used in standard binary search trees:
§ replace the node with the minimum element in the right sub-

tree
§ then delete that element from the right sub-tree
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Top-Down Deletions: Complex cases
□ That minimum element must be:

§ Case #1: a red leaf node,
§ Case #2: a black node with a single red leaf node, or
§ Case #3: a black leaf node

□ The first two cases are easy to solve. 

□ For the last case, take the similar top-down insertion 
strategies.

□ See why RBTree is difficult? You should handle all 
different cases (nicely).
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Top-Down Deletions: Complex cases

□ That minimum element must be either:
§ Case #1: a red leaf node è Easy to solve

m

X

…

…

m

…

…

… …

X
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Top-Down Deletions: Complex cases

□ That minimum element must be either:
§ Case #2: a black node with a single red leaf node è Easy to solve

X

…

…

…

…

… …
X

m

?

m

?
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Top-Down Deletions: Complex cases

□ That minimum element must be either:
§ Case #3: a black leaf node 

è take the similar top-down insertion strategies.

X

…

…

…

…

… …

X

m m

See why RBTree is difficult? 
You should handle all different cases (nicely).
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Top-Down Deletions: Complex cases

□ Case # 3: Examples
§ Delete 9

6

4 8

2 5 7 9

6

4 8

2 5 7

6

4 8

2 5 7

Remove 9, but the black 
height of node 8 becomes 

an issue

Swapping the color 
solves the problem
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Top-Down Deletions: Complex cases

□ Case # 3: Examples
§ Delete 8

6

4 8

2 5 7

Deleting 8 is an easy case

6

4 7

2 5
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Top-Down Deletions: Complex cases

□ Case # 3: Examples
§ Delete 7

Remove 7, then the black 
height of 6 becomes 

unbalanced

4

2 6

5

6

4

2 5

6

4 7

2 5

Rotate and recolor 
solves the problem



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

87

Red-Black Trees

□ In this topic, we have covered red-black trees
§ simple rules govern how nodes must be distributed based on 

giving each node a color of either red or black
§ insertions and deletions may be performed without recursing 

back to the root
§ only one bit is required for the “color”
§ this makes them, under some circumstances, more suited than 

AVL trees
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Outline

□ Memory issues in designing data structures
□ B-Tree
□ B+Tree
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Memory Considerations

□ When we discuss data structures, we never specifically 
mention where the data would be stored.

□ In fact, memory hierarchy suggests that the design of 
data structures should be well aware of it
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Memory and Data Structures

□ Memory things to think about when designing data 
structures
§ Access speed
§ Cost per memory size
§ The unit size of access
§ Stream access vs. Random access
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Tree for very large datasets

□ Suppose you got very many pieces of information
§ e.g., 𝑛 = 2!"

§ Suppose each piece has 1KB data
§ Examples

• Student records, where each piece holds each student’s report
• Sales history, where each piece holds sale records per item

□ If you design the tree to store such data
§ The number of nodes: 230

§ Each node will occupy at least 1KB
§ Total? At lest 1TB
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Issues: Tree for very large datasets

□ Two performance issues
§ #1: How many times do you need to access the memory?

• Relevant to the height of a tree
• Binary search tree

ü Best case
ü Worst case

• AVL Tree
ü Best case
ü Worst case

§ #2: Can you store 1TB in the fast memory?
• No, your main memory is (very likely) smaller than 1TB
• So you will need to store the tree in the slow memory (i.e., a disk)
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Ideas

□ Solution to #1: Multiple keys per node
§ Load multiple keys at once
§ Reduce the height of the tree
§ Trees with this feature

• M-Way Search Trees, B-Tree, B+Tree

□ Solution to #2: No data in the internal nodes
§ Leaf nodes hold both keys/data, and internal nodes only hold 

keys
§ You “may” not need to access the slow memory when accessing 

the internal nodes
§ Trees with this feature

• B+Tree
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M-Way Search Trees

□ M-Way Search Trees: A search tree with maximum 
branching factor M
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B-Trees

□ Each node has keys up to M-1 keys
□ Order property

§ Subtree between two keys x and y contain leaves with values v
such that 𝑥 < 𝑣 < 𝑦
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B-Tree Structure Property (𝑀 ≥ 3)

□ Root (special case)
§ Has between 2 and 𝑀 children (or root could be a leaf node)

□ Internal nodes
§ Store up to 𝑀 − 1 keys
§ Have between ⌈𝑀/ ⌉2 and 𝑀 children

□ Leaf nodes
§ Store between ⌈𝑀/ ⌉2 − 1 and 𝑀 − 1 sorted keys
§ All at the same depth

□ Note: Our B-Tree assignment has a slight different structural 
property, but the key ideas are the same
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B-Tree: Example

□ B-Tree with M = 3
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B+Trees

□ Internal nodes have no data
§ Only leaf nodes have data

□ Each internal node still has (up to) 𝑀 − 1 keys

□ Order property
§ Subtree between two keys x and y contain leaves with values v 

such that 𝑥 ≤ 𝑣 < 𝑦
§ Note the symbol, ‘≤’

□ Leaf nodes have up to 𝐿 sorted keys
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B+Tree Structure Property

□ Root (special case)
§ Has between 2 and 𝑀 children (or root could be a leaf node)

□ Internal nodes
§ Store up to 𝑀 − 1 keys
§ Have between ⌈𝑀/ ⌉2 and 𝑀 children

□ Leaf nodes
§ Where data is stored
§ All at the same depth
§ Contain between ⌈𝐿/ ⌉2 and 𝐿 data items
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B+Tree: Example



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Disk Friendliness of B+Tree

□ Many keys stored in a node
§ All brought to memory/cache in one disk access

□ Internal nodes contain only keys
§ Only leaf nodes contain actual data
§ Much of tree structure can be loaded into memory irrespective 

of data object size
§ Data actually resides in disk



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Comparison: B+Tree vs. AVL Tree
□ Suppose again you have 𝑛 = 2!" items

§ AVL Tree
• Height: 43

§ B+Tree where M=256, L=256
• Height: 4.3

□ If you consider other factors, things are getting more 
interesting
§ The size of each item
§ The size of Cache
§ The size of DRAM
§ …

□ We never talked about the costs to balance the tree though
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Maintain the Balance of B+ Tree

□ How to make B+ Tree balanced?
§ Insertion idea (bottom-up approach)

• Step 1: Insert an item to the leaf
• Step 2: If the node overflows, 1) split the node and 2) add the key 

to the parent
• Step 3: If the parent overflows, go back to step 2
• You may need to increase the height

§ Deletion idea (bottom-up approach)
• Step 1: Remove an item from the leaf
• Step 2: If the node underflows, 1) adopt from (or merge with) the 

neighbor and 2) update the parent
• Step 3: If the parent underflows, go back to step 2
• You may need to decrease the height
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Applications

□ Databases
§ Index structure for MySQL
§ A hash table can be a better option (will cover later)

□ File systems
§ Apple’s HFS+, Microsoft NTFS, Linux’s EXT4 and btrfs

□ Real-world challenges in designing and implementing trees
§ Parallel access: Multi-core processors are everywhere
§ Distributed storage: Too large to store in a single computing node
§ You will learn more from advanced courses: operating systems, 

computer architecture, database, etc.
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