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Outline

□ Discuss storing unrelated/unordered data
§ IP addresses and domain names

□ Consider conversions between these two forms

□ Introduce the idea of hashing:
§ Reducing O(ln(n)) operations to O(1)

□ Consider some of the weaknesses 
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Problem: IP Addresses

□ Examples:
§ You want to map an IP address to a corresponding domain name

□ A 32-bit IP address is often written as four byte values 
from 0 to 255
§ Consider IP Address

• 10010011 00101111 01101010 000110102

• This can be written as 147.47.106.50

§ Suppose its domain name is 
• ece.snu.ac.kr

§ We use domain names because IP addresses are not human 
readable 
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Example: IP Addresses

□ Given an IP address, if we wanted to quickly find any 
associated domain name, we could create an array of 
size 232 (4294967296) of strings:

int const MAX_IP_ADDRESSES = 4294967296;
string domain_name[MAX_IP_ADDRESSES];

□ For example, 147.47.106.50 can be translated
§ As 147 ∗ 2563 + 47 ∗ 2562 + 106 ∗ 256 + 50 = 2469358130,

□ domain_name[2469358130] = “ece.snu.ac.kr";
□ Can we use much less memory than this?
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Goals and Requirements

□ Our goal
§ Store data so that all operations are Q(1) time

□ Requirement
§ The memory requirement should be Q(n)

□ Can we achieve this goal with data structures we covered 
before?
§ Lists, stack, queue, trees, …
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Goals and Requirements

□ In general, we would like to:
§ Create an array of size M
§ Store each of n objects in one of the M bins
§ Have some means of determining the bin in which an object is 

stored
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Idea: Grade Table Example
□ Let’s try a simpler problem

§ How do I store your examination grades so that I can access your grades in 
Q(1) time?

□ Observation: SNU ID is an 9-digit number
§ We can’t create an array of size 109

§ We can create an array of size 1000 though
§ How could you convert an 9-digit number into a 3-digit number?
§ First three digits might cause a problem

• almost all students start with 2017, 2018, 2019, …

§ The last four digits, however, are (somehow) random

□ Therefore, I could store the examination grade for SNU ID 202101011
§ grade[011] = 99;
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Idea: Grade Table Example

□ Consequently, I have a function, mapping a student ID 
to a 3-digit number
§ We can store something in that location
§ Storing it, accessing it, and erasing may take Q(1)
§ Problem:  two or more students may map

to the same number:
• Vayne has ID 200703456
• Teemo has ID 200301456
• Both would map to 456

454

455

456 86

457

458

459

460

461

462

463 79

464

465

...
...

...
...
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Probability of Collision

□ Question:
§ What is the likelihood that in a class of size 100 that no two 

students will have the same last three digits?
§ Not very high:

§ Probability of having collision(s): 1 − 0.005959 = 0.994041
§ Implication: If you insert 100 students to the table, there will be 

at least one collision at the probability of more than 99.4%
• So highly likely there will be a collision if only using the last three 

digits

1 ⋅
999
1000

⋅
998
1000

⋅
997
1000

⋅ ⋯ ⋅
901
1000

≈ 0.005959

Check the birthday problem: https://en.wikipedia.org/wiki/Birthday_problem

https://en.wikipedia.org/wiki/Birthday_problem
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The hashing problem

□ The process of mapping an object or a number onto an 
integer in a given range is called hashing

□ Problem: multiple objects may hash to the same value
§ Such an event is termed a collision

□ Hash tables use a hash function together with a 
mechanism for dealing with collisions
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The hash process
Object (having a key/value pair)

32-bit integer

Map to an index 0, ..., M – 1

Deal with collisions Chained hash tables
Open addressing

Linear probing
Quadratic probing
Double hashing
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Summary

□ Discuss storing unordered data
□ Discuss IP addresses and domain names
□ Discussed the issues with collisions

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_table
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
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Definitions

□ What is a hash of an object?
□ From Merriam-Webster:

§ a restatement of something that is already known

□ The ultimate goal is to map onto an integer range
0, 1, 2, ..., M – 1
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The Hash process

Input key

32-bit integer

Map to an index 0, ..., M – 1
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Ideal properties of a hash function

□ A hash function is a function mapping an input key to a 
certain integer range (say 0 to 232 here)

□ Necessary properties of such a hash function h are:
§ 1a. Computation should be fast, ideally Q(1)
§ 1b. The hash value must be deterministic

• It must always return the same output
• If x = y   ⇒ h(x) = h(y)

§ 1c. If two objects are randomly chosen, there should be only a 
one-in-232 chance that they have the same hash value
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Types of hash functions

□ Hash functions for different types of input keys
§ General class object
§ Integer
§ String
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Hash Function for Class Object

□ The easiest solution is to give each object a unique 
number

class Product {
private:

unsigned int hash_value;
static unsigned int hash_count;

public:
Product();
unsigned int hash() const;

};

unsigned int Product::hash_count = 0;
Product::Product() {

hash_value = hash_count;
++hash_count;

}

unsigned int Product::hash() const {
return hash_value;

}
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Hash Function for Class Object

□ If we only need the hash value while the object exists in 
memory, you may use the address:

unsigned int Product::hash() const {
return reinterpret_cast<unsigned int>( this );

}

Check more: https://en.cppreference.com/w/cpp/language/reinterpret_cast

https://en.cppreference.com/w/cpp/language/reinterpret_cast


Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Hash Function for Integer

□ Knuth’s Multiplicative Method

§ 2654435761 is the golden ratio of 2^32
§ 2654435761 and 2^32 have no common factors

• So the multiplication produces a complete mapping of the key to 
hash result with no overlap

• Having common factor n would only map to 1/n possible hashes

§ Issue: This preserves the divisibility. So for example, if your keys 
were even, their hashes are always even too.

hash(i) = i * 2654435761 mod 2^32

Reference: Integer hash function, Thomas Wang https://gist.github.com/badboy/6267743
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Hash Function for Integer

□ Robert Jenkin’s 32-bit integer hash function

Reference: Integer hash function, Thomas Wang https://gist.github.com/badboy/6267743
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Hash Function for Integer

□ It’s difficult to tell if your hash function is good or bad
□ It depends on the distribution of input keys
□ What should be the goodness measure of your hash 

function?
§ You may need an empirical evaluation?
§ Check “Avalanche effect”

• One bit change in an input key results in significant changes in an 
output hash

• https://en.wikipedia.org/wiki/Avalanche_effect
• Note: We don’t talk about the crypto hash functions here

https://en.wikipedia.org/wiki/Avalanche_effect
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Hash Function for String

□ Two strings are equal if all the characters are equal and 
in the identical order

□ A string is simply an array of bytes:
§ Each byte stores a value from 0 to 255

□ Any hash function must be a function of these bytes
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Hash Function for String

□ We could, for example, just add the characters:

unsigned int hash( const string &str ) {
unsigned int hash_value = 0;

for ( int k = 0; k < str.length(); ++k ) {
hash_value += str[k];

}

return hash_value;
}
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Hash Function for String

□ Not very good:
§ Words with the same characters hash to the same code:

• "form" and "from"



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Hash Function for String

□ Let the individual characters represent the coefficients 
of a polynomial in x:
p(x) = c0 xn – 1 + c1 xn – 2 + ··· + cn – 3 x2 + cn – 2 x + cn – 1

□ Use Horner’s rule to evaluate this polynomial at a prime 
number, e.g., x = 12347:

unsigned int hash( string const &str ) {
unsigned int hash_value = 0;

for ( int k = 0; k < str.length(); ++k ) {
hash_value = 12347*hash_value + str[k];

}
return hash_value;

}



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Hash functions here != Cryptographic Hash
□ All the hash functions discussed here are not cryptographic hash functions

§ MD5, SHA-1, SHA-512
§ https://en.wikipedia.org/wiki/Cryptographic_hash_function

□ Cryptographic hash functions have following security properties
§ Pre-image resistance

• Given h, it is difficult to find m such that h = hash(m)

§ Second pre-image resistance
• Given m1, it is difficult to find m2 such that hash(m1) = hash (m2)

§ Collision resistance
• Difficult to find any m1 and m2 such that hash(m1) = hash(m2)

§ Be careful on the definition of being “difficult”

https://blog.bankofhodlers.com/the-value-of-proof-of-work/

https://en.bitcoinwiki.org/wiki/SHA-256

https://en.wikipedia.org/wiki/Cryptographic_hash_function
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Mapping down to 0, …, M-1

□ So far, we computed 32-bit hash values for different 
input keys
§ Class object
§ Integer
§ String

□ Practically, we will require a hash value on the range 
0, ..., M–1:
§ The modulus operator %
§ Review of bitwise operations
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Modulus operator

□ Easiest method:  return the value modulus M

unsigned int hash_M( unsigned int n, unsigned int M ) {
return n % M;

}

□ General modulus operation is expensive

□ Modulus operations can be fast if M = 2m

§ Using bitwise/logical operations 
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Modulus operator with bitwise operations

□ 2m can be represented with a left-shift operation (i.e., 1 
<< m)

24 = 100002

□ Modulus operations on 2m can be represented with a 
bitwise AND operation

□ For example, suppose you want to compute
1000111001012 % 100002

□ This is equivalent to zero out all but the last 4 bits using 
bitwise AND operation:

1000 1110 01012 & 0000 0000 11112 → 0000 0000 01012
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Implementation of Modulus operations

□ The implementation using the modulus/remainder 
operator:

unsigned int hash_M( unsigned int n, unsigned int m ) {
return n & ((1 << m) – 1);

}



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Summary

□ We have seen how a number of objects can be mapped 
onto a 32-bit integer

□ We considered
§ Hash functions for

• Integer
• String
• Class object

§ Map a 32-bit integer onto a smaller range 0, 1, ..., M – 1
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