Hash Tables

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QUEDD
I Introduction to Data Structures, ECE430.217, 2021 FALL

¥

“%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

Outline

0 Discuss storing unrelated/unordered data
= |P addresses and domain names

0o Consider conversions between these two forms

0 Introduce the idea of hashing:
= Reducing O(In(n)) operations to O(1)

0 Consider some of the weaknesses

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

e
Problem: IP Addresses

0 Examples:
= You want to map an IP address to a corresponding domain name

0 A 32-bit IP address is often written as four byte values
from O to 255

= Consider IP Address
e 10010011 00101111 01101010 00011010,
e This can be written as 147.47.106.50

= Suppose its domain name is
e ece.snu.ac.kr

= \We use domain names because |IP addresses are not human
readable

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

..,
Example: IP Addresses

0 Given an IP address, if we wanted to quickly find any

associated domain name, we could create an array of
size 232 (4294967296) of strings:

int const MAX IP ADDRESSES = 4294967296;
string domain_name[MAX_IP_ADDRESSES];

0 Forexample, 147.47.106.50 can be translated
» As 147 * 2563 + 47 x 2562 + 106 * 256 + 50 = 2469358130,

domain_name[2469358130] = “ece.snu.ac.kr":
Can we use much less memory than this?

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Goals and Requirements

0 Our goal

= Store data so that all operations are (1) time

0 Requirement
= The memory requirement should be ©(n)

o Can we achieve this goal with data structures we covered
before?

= Lists, stack, queue, trees, ...

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Goals and Requirements

0 In general, we would like to:

» Create an array of size M
= Store each of n objects in one of the M bins

» Have some means of determining the bin in which an object is
stored

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

|dea: Grade Table Example

0 Let's try a simpler problem

= How do | store your examination grades so that | can access your grades in
O(1) time?

0 Observation: SNU ID is an 9-digit number
= We can't create an array of size 107
= We can create an array of size 1000 though

How could you convert an 9-digit number into a 3-digit number?

First three digits might cause a problem
e almost all students start with 2017, 2018, 2019, ...

The last four digits, however, are (somehow) random

0 Therefore, | could store the examination grade for SNU ID 202101011
= grade[011] = 99;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

8

|dea: Grade Table Example

o Consequently, | have a function, mapping a student ID
to a 3-digit number

= We can store something in that location

454

= Storing it, accessing it, and erasing may take ©(1) 455
= Problem: two or more students may map 456 | 86

to the same number: 457

e Vayne has ID 200703456 jzz

e Teemo has ID 200301456 260

e Both would map to 456 461

462
463 79

464

465

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Probability of Collision

0o Question:

= What is the likelihood that in a class of size 100 that no two
students will have the same last three digits?

= Not very high:
1 999 998 997 901 0.005959
1000 1000 1000 1000~

» Probability of having collision(s): 1 — 0.005959 = 0.994041

= Implication: If you insert 100 students to the table, there will be
at least one collision at the probability of more than 99.4%

e So highly likely there will be a collision if only using the last three
digits

Check the birthday problem: https://en.wikipedia.org/wiki/Birthday problem

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

https://en.wikipedia.org/wiki/Birthday_problem

10

The hashing problem

0 The process of mapping an object or a number onto an
integer in a given range is called hashing

0 Problem: multiple objects may hash to the same value
= Such an event is termed a collision

0 Hash tables use a hash function together with a
mechanism for dealing with collisions

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

1M

The hash process

Object (having a key/value pair)

|

32-bit integer

|

Map to an index O, ..., M -1

|

Deal with collisions Chained hash tables
Open addressing
Linear probing
Quadratic probing ‘/
Double hashing

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_
SEOUL NATIONAL UNIVERSITY AB

Summary

0 Discuss storing unordered data
o Discuss IP addresses and domain names
o Discussed the issues with collisions

References

[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_table
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 39 Ed., Addison Wesley.

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

12

LAB

Hash Functions

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QUEDD
I Introduction to Data Structures, ECE430.217, 2021 FALL

¥

“%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

14

Definitions

0 What is a hash of an object?

0 From Merriam-Webster:
» arestatement of something that is already known

0 The ultimate goal is to map onto an integer range
0,1,2,...,M-1

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB

15

The Hash process

Input key

32-bit integer

v

Map to an index O, ..., M -1

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_A
SEOUL NATIONAL UNIVERSITY B

16

|deal properties of a hash function

0 A hash function is a function mapping an input key to a
certain integer range (say O to 232 here)

0 Necessary properties of such a hash function h are:
= Ta. Computation should be fast, ideally ®(1)
* 1b. The hash value must be deterministic
* |t must always return the same output
e fx=y = h(x) = h(y)

= 1c. If two objects are randomly chosen, there should be only a
one-in-232 chance that they have the same hash value

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

17

Types of hash functions

0 Hash functions for different types of input keys
= General class object
= |nteger
= String

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

18
Hash Function for Class Object
0 The easiest solution is to give each object a unique
number
class Product {
private:
unsigned int hash_value;
static unsigned int hash_count;
public:
Product();
unsigned int hash() const;
¥
Product: :Product() {
unsigned int Product::hash_count = 0; hash_value = hash_count;
++hash_count;
}
unsigned int Product::hash() const {
return hash_value;
}
Introduction to Data Structures, ECE430.217, 2021 FALL
o SJEEOUEN;TI(;NALUNIVERSITY NXC|LAB

Hash Function for Class Object

0 If we only need the hash value while the object exists in
memory, you may use the address:

unsigned int Product::hash() const {
return reinterpret_cast<unsigned int>(this);

Check more: https://en.cppreference.com/w/cpp/language/reinterpret cast

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

19

LAB

https://en.cppreference.com/w/cpp/language/reinterpret_cast

20

Hash Function for Integer
0 Knuth's Multiplicative Method

hash(i) =i * 2654435761 mod 2732

= 2654435761 is the golden ratio of 232
» 2654435761 and 27232 have no common factors

* So the multiplication produces a complete mapping of the key to
hash result with no overlap

* Having common factor n would only map to 1/n possible hashes

= |ssue: This preserves the divisibility. So for example, if your keys
were even, their hashes are always even too.

Reference: Integer hash function, Thomas Wang https://gist.github.com/badboy/6267743

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

21

Hash Function for Integer

0 Robert Jenkin’s 32-bit integer hash function

uint32_t hash(uint32_t a)
{

(a+0x7ed55d16) + (a<<12);
(a”@xc761c23c) ~ (a>>19);
(a+0x165667b1l) + (a<<5);

(a+0xd3a2646¢c) ~ (a<<9);

(a+0xfd7046c5) + (a<<3);

(a”@xb55a4f09) ~ (a>>16);
return a;

[« « DI oD I« DA <D B o]
1l

Reference: Integer hash function, Thomas Wang https://gist.github.com/badboy/6267743

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

22

Hash Function for Integer

o It's difficult to tell if your hash function is good or bad
0 It depends on the distribution of input keys

0 What should be the goodness measure of your hash
function?

* You may need an empirical evaluation?

s Check “Avalanche effect”

* One bit change in an input key results in significant changes in an
output hash
* https://en.wikipedia.org/wiki/Avalanche_effect

* Note: We don't talk about the crypto hash functions here

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

https://en.wikipedia.org/wiki/Avalanche_effect

Hash Function for String

0 Two strings are equal if all the characters are equal and
in the identical order

0 A string is simply an array of bytes:
» Each byte stores a value from 0O to 255

0 Any hash function must be a function of these bytes

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

23

LAB

24
Hash Function for String
0 We could, for example, just add the characters:
unsigned int hash(const string &str) {
unsigned int hash_value = 0;
for (int k = @; k < str.length(); ++k) {
hash value += str[k];
}
return hash_value;
}
Introductionstgcg)jtaNS;;ulgllJ\lr:st 55:5\/4;3;_;5, 2021 FALL N x c I.AB

25
Hash Function for String
o Not very good:
= Words with the same characters hash to the same code:
e "form" and "from"
Introductionstgcg)jtaNS;[rulgllilr:st EE:E\/ASS;-;\Z’ 2021 FALL N x c I_AB

26

Hash Function for String

0 Let the individual characters represent the coefficients
of a polynomial in x:

p(x)=cox" 14+ x" 2+ +e, x2+c, ,x+c,

0 Use Horner's rule to evaluate this polynomial at a prime
number, e.g., x = 12347

unsigned int hash(string const &str) {
unsigned int hash_value = 0;

for (int k = @; k < str.length(); ++k) {
hash_value = 12347*hash_value + str[k];

}

return hash_value;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Hash functions here |= Cryptographic Hash

o All the hash functions discussed here are not cryptographic hash functions
= MD5, SHA-1, SHA-512 SHA-256
= https://en.wikipedia.org/wiki/Cryptographic_hash_function

https://en.bitcoinwiki.org/wiki/SHA-256

o Cryptographic hash functions have following security properties
= Pre-image resistance
e Given h, it is difficult to find m such that h = hash(m)
= Second pre-image resistance
e Given my, it is difficult to find m, such that hash(m,) = hash (m,)
= Collision resistance
e Difficult to find any m; and m, such that hash(m,) = hash(m,)

= Be careful on the definition of being “difficult” \ ﬁﬁ]

PROOF OF WORK

https://blog.bankofhodlers.com/the-value-of-proof-of-work/

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

https://en.wikipedia.org/wiki/Cryptographic_hash_function

Mapping down to O, ..., M-1

0 So far, we computed 32-bit hash values for different

input keys

= Class object
= |nteger

= String

0 Practically, we will require a hash value on the range

0, ..., M-1:
= The modulus operator %
= Review of bitwise operations

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

28

LAB

Modulus operator

0 Easiest method: return the value modulus M

unsigned int hash M(unsigned int n, unsigned int M) {
return n % M;

0 General modulus operation is expensive

0 Modulus operations can be fast if M = 2m

= Using bitwise/logical operations

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

29

LAB

30

Modulus operator with bitwise operations

0 2™ can be represented with a left-shift operation (i.e., 1
<< m)

24 = 10000,

0 Modulus operations on 2™ can be represented with a
bitwise AND operation

0 For example, suppose you want to compute
100011100101, % 10000,

0 This is equivalent to zero out all but the last 4 bits using
bitwise AND operation:

1000 1110 0101, & 0000 VPO 1111, — OV VOO 0101,

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Implementation of Modulus operations

0 The implementation using the modulus/remainder
operator:

unsigned int hash M(unsigned int n, unsigned int m) {
return n & ((1 << m) - 1);

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

31

LAB

32
Summary
0 We have seen how a number of objects can be mapped
onto a 32-bit integer
0 We considered
» Hash functions for
* |nteger
® String
e Class object
= Map a 32-bit integer onto a smallerrange 0, 1, ..., M =1
References
[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_function
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 34 Ed., Addison Wesley.
Introductionstg(g)jtaNS;;ulgllJ\lr:st 5&:5\/4;3;_;5, 2021 FALL N x c I_AB

