
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Hash Tables

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ Discuss storing unrelated/unordered data
§ IP addresses and domain names

□ Consider conversions between these two forms

□ Introduce the idea of hashing:
§ Reducing O(ln(n)) operations to O(1)

□ Consider some of the weaknesses

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Problem: IP Addresses

□ Examples:
§ You want to map an IP address to a corresponding domain name

□ A 32-bit IP address is often written as four byte values
from 0 to 255
§ Consider IP Address

• 10010011 00101111 01101010 000110102

• This can be written as 147.47.106.50

§ Suppose its domain name is
• ece.snu.ac.kr

§ We use domain names because IP addresses are not human
readable

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Example: IP Addresses

□ Given an IP address, if we wanted to quickly find any
associated domain name, we could create an array of
size 232 (4294967296) of strings:

int const MAX_IP_ADDRESSES = 4294967296;
string domain_name[MAX_IP_ADDRESSES];

□ For example, 147.47.106.50 can be translated
§ As 147 ∗ 2563 + 47 ∗ 2562 + 106 ∗ 256 + 50 = 2469358130,

□ domain_name[2469358130] = “ece.snu.ac.kr";
□ Can we use much less memory than this?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Goals and Requirements

□ Our goal
§ Store data so that all operations are Q(1) time

□ Requirement
§ The memory requirement should be Q(n)

□ Can we achieve this goal with data structures we covered
before?
§ Lists, stack, queue, trees, …

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Goals and Requirements

□ In general, we would like to:
§ Create an array of size M
§ Store each of n objects in one of the M bins
§ Have some means of determining the bin in which an object is

stored

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Idea: Grade Table Example
□ Let’s try a simpler problem

§ How do I store your examination grades so that I can access your grades in
Q(1) time?

□ Observation: SNU ID is an 9-digit number
§ We can’t create an array of size 109

§ We can create an array of size 1000 though
§ How could you convert an 9-digit number into a 3-digit number?
§ First three digits might cause a problem

• almost all students start with 2017, 2018, 2019, …

§ The last four digits, however, are (somehow) random

□ Therefore, I could store the examination grade for SNU ID 202101011
§ grade[011] = 99;

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Idea: Grade Table Example

□ Consequently, I have a function, mapping a student ID
to a 3-digit number
§ We can store something in that location
§ Storing it, accessing it, and erasing may take Q(1)
§ Problem: two or more students may map

to the same number:
• Vayne has ID 200703456
• Teemo has ID 200301456
• Both would map to 456

454

455

456 86

457

458

459

460

461

462

463 79

464

465

...
...

...
...

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Probability of Collision

□ Question:
§ What is the likelihood that in a class of size 100 that no two

students will have the same last three digits?
§ Not very high:

§ Probability of having collision(s): 1 − 0.005959 = 0.994041
§ Implication: If you insert 100 students to the table, there will be

at least one collision at the probability of more than 99.4%
• So highly likely there will be a collision if only using the last three

digits

1 ⋅
999
1000

⋅
998
1000

⋅
997
1000

⋅ ⋯ ⋅
901
1000

≈ 0.005959

Check the birthday problem: https://en.wikipedia.org/wiki/Birthday_problem

https://en.wikipedia.org/wiki/Birthday_problem

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

The hashing problem

□ The process of mapping an object or a number onto an
integer in a given range is called hashing

□ Problem: multiple objects may hash to the same value
§ Such an event is termed a collision

□ Hash tables use a hash function together with a
mechanism for dealing with collisions

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

The hash process
Object (having a key/value pair)

32-bit integer

Map to an index 0, ..., M – 1

Deal with collisions Chained hash tables
Open addressing

Linear probing
Quadratic probing
Double hashing

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Summary

□ Discuss storing unordered data
□ Discuss IP addresses and domain names
□ Discussed the issues with collisions

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_table
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Hash Functions

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Definitions

□ What is a hash of an object?
□ From Merriam-Webster:

§ a restatement of something that is already known

□ The ultimate goal is to map onto an integer range
0, 1, 2, ..., M – 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

The Hash process

Input key

32-bit integer

Map to an index 0, ..., M – 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Ideal properties of a hash function

□ A hash function is a function mapping an input key to a
certain integer range (say 0 to 232 here)

□ Necessary properties of such a hash function h are:
§ 1a. Computation should be fast, ideally Q(1)
§ 1b. The hash value must be deterministic

• It must always return the same output
• If x = y ⇒ h(x) = h(y)

§ 1c. If two objects are randomly chosen, there should be only a
one-in-232 chance that they have the same hash value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Types of hash functions

□ Hash functions for different types of input keys
§ General class object
§ Integer
§ String

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Hash Function for Class Object

□ The easiest solution is to give each object a unique
number

class Product {
private:

unsigned int hash_value;
static unsigned int hash_count;

public:
Product();
unsigned int hash() const;

};

unsigned int Product::hash_count = 0;
Product::Product() {

hash_value = hash_count;
++hash_count;

}

unsigned int Product::hash() const {
return hash_value;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Hash Function for Class Object

□ If we only need the hash value while the object exists in
memory, you may use the address:

unsigned int Product::hash() const {
return reinterpret_cast<unsigned int>(this);

}

Check more: https://en.cppreference.com/w/cpp/language/reinterpret_cast

https://en.cppreference.com/w/cpp/language/reinterpret_cast

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Hash Function for Integer

□ Knuth’s Multiplicative Method

§ 2654435761 is the golden ratio of 2^32
§ 2654435761 and 2^32 have no common factors

• So the multiplication produces a complete mapping of the key to
hash result with no overlap

• Having common factor n would only map to 1/n possible hashes

§ Issue: This preserves the divisibility. So for example, if your keys
were even, their hashes are always even too.

hash(i) = i * 2654435761 mod 2^32

Reference: Integer hash function, Thomas Wang https://gist.github.com/badboy/6267743

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Hash Function for Integer

□ Robert Jenkin’s 32-bit integer hash function

Reference: Integer hash function, Thomas Wang https://gist.github.com/badboy/6267743

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Hash Function for Integer

□ It’s difficult to tell if your hash function is good or bad
□ It depends on the distribution of input keys
□ What should be the goodness measure of your hash

function?
§ You may need an empirical evaluation?
§ Check “Avalanche effect”

• One bit change in an input key results in significant changes in an
output hash

• https://en.wikipedia.org/wiki/Avalanche_effect
• Note: We don’t talk about the crypto hash functions here

https://en.wikipedia.org/wiki/Avalanche_effect

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Hash Function for String

□ Two strings are equal if all the characters are equal and
in the identical order

□ A string is simply an array of bytes:
§ Each byte stores a value from 0 to 255

□ Any hash function must be a function of these bytes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Hash Function for String

□ We could, for example, just add the characters:

unsigned int hash(const string &str) {
unsigned int hash_value = 0;

for (int k = 0; k < str.length(); ++k) {
hash_value += str[k];

}

return hash_value;
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Hash Function for String

□ Not very good:
§ Words with the same characters hash to the same code:

• "form" and "from"

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Hash Function for String

□ Let the individual characters represent the coefficients
of a polynomial in x:
p(x) = c0 xn – 1 + c1 xn – 2 + ··· + cn – 3 x2 + cn – 2 x + cn – 1

□ Use Horner’s rule to evaluate this polynomial at a prime
number, e.g., x = 12347:

unsigned int hash(string const &str) {
unsigned int hash_value = 0;

for (int k = 0; k < str.length(); ++k) {
hash_value = 12347*hash_value + str[k];

}
return hash_value;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Hash functions here != Cryptographic Hash
□ All the hash functions discussed here are not cryptographic hash functions

§ MD5, SHA-1, SHA-512
§ https://en.wikipedia.org/wiki/Cryptographic_hash_function

□ Cryptographic hash functions have following security properties
§ Pre-image resistance

• Given h, it is difficult to find m such that h = hash(m)

§ Second pre-image resistance
• Given m1, it is difficult to find m2 such that hash(m1) = hash (m2)

§ Collision resistance
• Difficult to find any m1 and m2 such that hash(m1) = hash(m2)

§ Be careful on the definition of being “difficult”

https://blog.bankofhodlers.com/the-value-of-proof-of-work/

https://en.bitcoinwiki.org/wiki/SHA-256

https://en.wikipedia.org/wiki/Cryptographic_hash_function

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Mapping down to 0, …, M-1

□ So far, we computed 32-bit hash values for different
input keys
§ Class object
§ Integer
§ String

□ Practically, we will require a hash value on the range
0, ..., M–1:
§ The modulus operator %
§ Review of bitwise operations

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Modulus operator

□ Easiest method: return the value modulus M

unsigned int hash_M(unsigned int n, unsigned int M) {
return n % M;

}

□ General modulus operation is expensive

□ Modulus operations can be fast if M = 2m

§ Using bitwise/logical operations

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Modulus operator with bitwise operations

□ 2m can be represented with a left-shift operation (i.e., 1
<< m)

24 = 100002

□ Modulus operations on 2m can be represented with a
bitwise AND operation

□ For example, suppose you want to compute
1000111001012 % 100002

□ This is equivalent to zero out all but the last 4 bits using
bitwise AND operation:

1000 1110 01012 & 0000 0000 11112 → 0000 0000 01012

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Implementation of Modulus operations

□ The implementation using the modulus/remainder
operator:

unsigned int hash_M(unsigned int n, unsigned int m) {
return n & ((1 << m) – 1);

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Summary

□ We have seen how a number of objects can be mapped
onto a 32-bit integer

□ We considered
§ Hash functions for

• Integer
• String
• Class object

§ Map a 32-bit integer onto a smaller range 0, 1, ..., M – 1

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_function
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley.

