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Outline

□ To handle collisions, chained hash tables require special 
memory allocation 
§ Can we create a hash table without additional memory 

allocation?

□ We will deal with collisions by storing collisions in the 
same table
§ We will define a rule, dictating where to look next
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Collision Handling in Hash Tables

□ Common strategies to handle collisions in hash tables
§ Closed addressing: Store all elements with hash collisions in a 

secondary data structures (linked list, BST, etc.)
• Chained hash table

§ Perfect Hashing: Choose a hash function to ensure that 
collisions don’t happen (if possible) 

§ Open addressing: Define a rule to locate the next cell
• Linear probing, Quadratic probing, double hashing
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Open Addressing: Insert

□ Suppose an object hashes to bin 5
§ If bin 5 is empty, we can store the object in bin 5



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Open Addressing: Insert

□ Suppose, however, another object hashes to bin 5
§ Without a linked list, we cannot store the object in bin 5
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Open Addressing: Insert

□ We could have a rule which says:
§ Look in the next bin to see if it is occupied
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Open Addressing: Insert

□ The rule must be general enough to deal with the fact 
that the next cell could also be occupied
§ For example, continue searching until the first empty bin is found
§ The rule must be simple — i.e., fast search
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Open Addressing: Insert

□ We could then store the object in the next location
§ Problem:  we can only store as many objects as there are entries 

in the array:  the load factor l ≤ 1
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Open Addressing: Supporting Other Operations

□ The rule should support both search and remove.

□ Recall that our goal is Q(1) access times
§ Q. how do we avoid to access too many bins (on average)?
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Open Addressing: Strategies

□ There are numerous strategies for defining the order in 
which the bins should be searched:
§ Linear probing
§ Quadratic probing
§ Double hashing

□ There are many alternate strategies, as well:
§ Last come, first served

• Always place the object into the bin moving what may be there 
already

§ Cuckoo hashing
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Linear Probing
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Linear Probing

□ The easiest method to probe is to search forward 
linearly

□ Assume we are inserting into bin k:
§ If bin k is empty, we occupy it
§ Otherwise, check bin k + 1, k + 2, and so on, until an empty bin 

is found
• If we reach the end of the array, go back to the front (bin 0)
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Linear Probing

□ Consider a hash table with M = 16 bins

□ Given a hexadecimal number as input:
§ Suppose the hash function outputs the least significant 4-bits of 

input
§ Example: for 6B72A16 , the initial bin is A
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Insertion

□ Insert these numbers into this initially empty hash table:
19A, 207, 3AD, 488, 5BA, 680, 74C, 826, 946, ACD, B32, C8B, 

DBE, E9C

0 1 2 3 4 5 6 7 8 9 A B C D E F
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Example

□ Start with the first four values:
19A, 207, 3AD, 488

0 1 2 3 4 5 6 7 8 9 A B C D E F
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Example

□ Start with the first four values:
19A, 207, 3AD, 488

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD
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Example

□ Next we must insert 5BA

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD
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Example

□ Next we must insert 5BA
§ Bin A is occupied
§ We search forward for the next empty bin

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD
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Example

□ Next we are adding 680, 74C, 826

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD
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Example

□ Next we are adding 680, 74C, 826
§ All the bins are empty—simply insert them

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD
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Example

□ Next, we must insert 946

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD
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Example

□ Next, we must insert 946
§ Bin 6 is occupied
§ The next empty bin is 9

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD
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Example

□ Next, we must insert ACD

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Example

□ Next, we must insert ACD
§ Bin D is occupied
§ The next empty bin is E

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD ACD
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Example

□ Next, we insert B32

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD ACD
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Example

□ Next, we insert B32
§ Bin 2 is unoccupied

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD
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Example

□ Next, we insert C8B

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD
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Example

□ Next, we insert C8B
§ Bin B is occupied
§ The next empty bin is F

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Example

□ Next, we insert D59

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Example

□ Next, we insert D59
§ Bin 9 is occupied
§ The next empty bin is 1

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Example

□ Finally, insert E9C

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Example

□ Finally, insert E9C
§ Bin C is occupied
§ The next empty bin is 3

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Example

□ Having completed these insertions:
§ The load factor is l = 14/16 = 0.875
§ The average number of probes is 38/14 ≈ 2.71

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ Now the hash function outputs the least significant 5-bits of input
§ 680, B32, ACD, 5BA, 826, 207, 488, D59 may be immediately 

placed
0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 AC
D B32 D59 5BA
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 19A resulted in a collision

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 AC
D B32 D59 5BA 19A 
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 946 resulted in a collision

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 AC
D B32 D59 5BA 19A 
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 74C fits into its bin

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 74C AC
D 946 B32 D59 5BA 19A 
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 3AD resulted in a collision

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 74C AC
D 3AD 946 B32 D59 5BA 19A 
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ Both E9C and C8B fit without a collision
§ The load factor is l = 14/32 = 0.4375
§ The average number of probes is 18/14 ≈ 1.29

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C
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Searching

□ Testing for membership is similar to insertions:
Start at the appropriate bin, and searching forward until

1. The item is found,
2. An empty bin is found, or
3. We have traversed the entire array

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Searching

□ Searching for C8B

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Searching

□ Searching for C8B
§ Examine bins B, C, D, E, F
§ The value is found in Bin F

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Searching

□ Searching for 23E

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Searching

□ Searching for 23E
§ Search bins E, F, 0, 1, 2, 3, 4
§ The last bin is empty; therefore, 23E is not in the table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C × 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Erasing

□ We cannot simply remove elements from the hash table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Erasing

□ We cannot simply remove elements from the hash table
§ For example, consider erasing 3AD

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B
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Erasing

□ We cannot simply remove elements from the hash table
§ For example, consider erasing 3AD
§ If we just erase it, it is now an empty bin

• By our algorithm, we cannot find ACD, C8B and D59

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B
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Erasing

□ Instead, you should mark the cell “erased”. 
§ This “erased cell” is different from an empty cell---the search should 

not stop at an erased cell

□ Each cell may be represented with the following states:
- Occupied
- Empty
- Erased     

□ Your “cell” positioning algorithm should be different for 
“search” and “insert”

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B
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Primary Clustering

□ We have already observed the following phenomenon:
§ With more insertions, the contiguous regions (or clusters) get 

larger

□ This results in longer search times

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C
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Primary Clustering

□ We currently have three clusters of length four

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C
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Primary Clustering

□ There is a 5/32≈16 % chance that an insertion will fill Bin A

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C
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Primary Clustering

□ There is a 5/32≈16 % chance that an insertion will fill Bin A
§ This causes two clusters to coalesce into one larger cluster of 

length 9

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C
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Primary Clustering

□ There is now a 11/32 ≈ 34 % chance that the next 
insertion will increase the length of this cluster

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C
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Primary Clustering

□ As the cluster length increases, the probability of further 
increasing the length increases

□ In general:
§ Suppose that a cluster is of length ℓ
§ An insertion either into any bin occupied by the chain or into the 

locations immediately before or after it will increase the length 
of the chain

§ This gives a probability of 

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

2
M
+!
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Run-time analysis

□ Recall: our goal is to keep all operations O(1).

□ Which operations should we analyze?
§ Search

• Unsuccessful search: After probing, we failed to find a key k in HT
• Successful search: After probing, we found a key k in HT

§ Insert
• The runtime would be the same as an unsuccessful search

§ Remove
• The runtime would be the same as a successful search
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Run-time Analysis: Unsuccessful Search

□ Theorem
Given a linear-probing hash table with the load factor l, 
the expected number of probes in an unsuccessful search is 
at most 1/(1- l), assuming uniform hashing
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Run-time Analysis: Unsuccessful Search

□ Proof (details in CLRS p274)
§ In an unsuccessful search

• every probe (except the last) accesses an occupied cell, which does not 
contain the desired key

• The last probe accesses an empty cell

§ Let the random variable X be the number of probes made in an 
unsuccessful search

§ Let the event Ai be the event that an i-th probe occurs, and it is to an 
occupied cell (which does not contain the desired key)
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Run-time Analysis: Insertion

□ Corollary
Inserting an element into a linear-probing hash table with load 
factor l requires at most 1/(1- l) probes on average, assuming 
uniform hashing

□ Proof sketch
An unsuccessful search implies that an empty cell is found, which 
can be used for the insertion. So the insertion should take no more 
than the unsuccessful search.
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Run-time Analysis: Successful Search

□ Theorem
§ Given a linear-probing hash table, the expected number of probes in 

a successful search is at most 
𝟏
𝝀 𝐥𝐧

𝟏
𝟏 − 𝝀

- Assuming uniform hashing
- Assuming that each key in the table is equally likely to be search for.

□ Proof sketch (CLRS p276)
§ The successful search should take place after the insertion (w.r.t. key 𝑘)
§ The successful search would follow the same probing sequence as the 

insertion
§ So we take the average of the probing sequence in the insertion is the 

average number of successful probes
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Run-time analysis

□ The analysis shows that if we assume l is constant, 
all operations are O(1) on average.

□ Still the analysis implicates that as l gets bigger, 
the number of probes increases.
- Q. What’s the number of probes if the table is half full?
- Q. what’s the number of probes if the table is 90% full?

Average Worst

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)
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Run-time analysis

□ The analysis implies:
§ Choose M large enough so that we will not pass the load factor

• This could waste memory

§ Double the number of bins if the chosen load factor is reached
• Rehashing will be required

□ Q. Would other collision resolution methods help to 
reduce the number of probes?
§ It won’t help the asymptotic complexity, but may help for some 

cases
§ We will cover quadratic probing next
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Quadratic Probing
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Primary Clustering in Linear Probing

□ Recall Linear probing:
§ Look at bins k, k + 1, k + 2, k + 3, k + 4, …
§ Linear probing causes primary clustering
§ All entries follow the same search pattern for bins:

int initial = hashM(x);
for ( int k = 0; k < M; ++k ) {

bin = (initial + k) % M;
// ...

}
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Description

□ Quadratic probing suggests moving forward by different 
amounts

□ For example,
int initial = hashM(x);

for ( int k = 0; k < M; ++k ) {
bin = (initial + k*k) % M;

}
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Description

□ Problem:
§ Will initial + k*k step through all of the bins?
§ Here, the array size is 10:

M = 10;
initial = 5

for ( int k = 0; k <= M; ++k ) {
std::cout << (initial + k*k) % M << ' ';

}

§ The output is
5 6 9 4 1 0 1 4 9 6 5



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

66

Description

□ Problem:
§ Will initial + k*k step through all of the bins?
§ Now the array size is 12:

M = 12;
initial = 5

for ( int k = 0; k <= M; ++k ) {
std::cout << (initial + k*k) % M << ' ';

}

§ The output is now
5 6 9 2 9 6 5 6 9 2 9 6 5
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Best in Theory: Making M Prime

□ Theorem:
If the table size is M = 𝑝 a prime number and a quadratic 
probing is used, the first 𝑝/2 probes are distinct. 

□ This theorem in fact implies that at least the half of slots 
will be visited before the probe sequence repeats.
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Best in Theory: Making M Prime
□ Proof by contradiction:
Suppose there is a slot, which is visited twice during the first 𝑀/2 probes. 

Let 𝑖 and 𝑗 be such two visits, where 0 ≤ 𝑖 < 𝑗 ≤ !
"
.

𝐻 + 𝑖2 %𝑀 = 𝐻 + 𝑗2 %𝑀
𝐻 + 𝑗2 = 𝐻 + 𝑖2 + 𝑘𝑀

𝑗2 = 𝑖2+ 𝑘𝑀
𝑗2− 𝑖2 = 𝑘𝑀

(𝑗 − 𝑖)(𝑗 + 𝑖) = 𝑘𝑀

Because 𝑀 is prime, either (𝑗 − 𝑖) or (𝑗 + 𝑖) should have a factor 𝑀. 
In other words, either (𝑗 − 𝑖) or (𝑗 + 𝑖) should be divisible by 𝑀.

Case#1: (𝑗 − 𝑖) is divisible by 𝑀.
From assumption, 𝑖 < 𝑗 ≤ !

"
. 

So (𝑗 − 𝑖) < 𝑀, which contradicts the case#1 constraint.

Case#2: (𝑗 + 𝑖) is divisible by 𝑀.

From assumption, 𝑖 < 𝑗 ≤ !
"
. 

So (𝑗 + 𝑖) < 𝑀, which contradicts the case#2 constraint.
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Best in Theory: Making M Prime

□ Engineering difficulties in using a prime M in practice:
§ No optimized modulus operations

• The modulus operator % is relatively slow
• With a prime M, you cannot optimize with &, <<, or >>

§ Troublesome memory management
• Memory Fragmentation

§ Doubling the number of bins is difficult:
• You always need to find the next prime number
• What is the next prime after 263? 

üYou can’t pick 2 * 263 as it’s not a prime number
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Generic Use

□ More generally, we could consider an approach like:

int initial = hashM(x);

for ( int k = 0; k < M; ++k ) {
bin = (initial + c1*k + c2*k*k) % M;

}
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Practical Use: M = 2m  with constraints

□ If we ensure M = 2m then choose
c1 = c2 = ½ 

int initial = hashM(x);

for ( int k = 0; k < M; ++k ) {
bin = (initial + (k + k*k)/2) % M;

}

§ Note that k + k*k is always even
§ This guarantees that all M entries are visited before the pattern 

repeats!
• Proof sketch: Similar to the proof when 𝑀 is prime
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Practical Use: M = 2m  with constraints

□ For example:
§ Use an array size of 16:

M = 16;
initial = 5

for ( int k = 0; k <= M; ++k ) {
std::cout << (initial + (k + k*k)/2) % M << ' ';

}

§ The output is now
5 6 8 11 15 4 10 1 9 2 12 7 3 0 14 13 13
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Practical Use: M = 2m  with constraints

□ There is an even easier means of calculating this 
approach

int bin = hashM(x);

for ( int k = 0; k < M; ++k ) {
bin = (bin + k) % M;

}

§ Recall that                         , so just keep adding the next highest 
value

2

02

k

j

k k j
=

+
=å



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

74

Example

□ Consider a hash table with M = 16 bins

□ Given a 2-digit hexadecimal number:
§ The least-significant digit is the primary hash function (bin)
§ Example: for 6B7A16 , the initial bin is A
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Example

□ Insert these numbers into this initially empty hash table
9A, 07, AD, 88, BA, 80, 4C, 26, 46, C9, 32, 7A, BF, 9C

0 1 2 3 4 5 6 7 8 9 A B C D E F
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Example

□ Start with the first four values:
9A, 07, AD, 88

0 1 2 3 4 5 6 7 8 9 A B C D E F
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Example

□ Start with the first four values:
9A, 07, AD, 88

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A AD
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Example

□ Next we must insert BA

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A AD
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Example

□ Next we must insert BA
§ The next bin is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A BA AD
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Example

□ Next we are adding 80, 4C, 26

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A BA AD
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Example

□ Next we are adding 80, 4C, 26
§ All the bins are empty—simply insert them

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 9A BA 4C AD
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Example

□ Next, we must insert 46

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 9A BA 4C AD
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Example

□ Next, we must insert 46
§ Bin 6 is occupied
§ Bin 6 + 1 = 7 is occupied
§ Bin 7 + 2 = 9 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 46 9A BA 4C AD
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Example

□ Next, we must insert C9

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 46 9A BA 4C AD
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Example

□ Next, we must insert C9
§ Bin 9 is occupied
§ Bin 9 + 1 = A is occupied
§ Bin A + 2 = C is occupied
§ Bin C + 3 = F is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 46 9A BA 4C AD C9
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Example

□ Next, we insert 32
§ Bin 2 is unoccupied

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 32 26 07 88 46 9A BA 4C AD C9
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Example

□ Next, we insert 7A
§ Bin A is occupied
§ Bins A + 1 = B, B + 2 = D and D + 3 = 0 are occupied
§ Bin 0 + 4 = 4 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 32 7A 26 07 88 46 9A BA 4C AD C9
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Example

□ Next, we insert BF
§ Bin F is occupied
§ Bins F + 1 = 0 and 0 + 2 = 2 are occupied
§ Bin 2 + 3 = 5 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 32 7A BF 26 07 88 46 9A BA 4C AD C9
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Example

□ Finally, we insert 9C
§ Bin C is occupied
§ Bins C + 1 = D, D + 2 = F, F + 3 = 2, 2 + 4 = 6 and 6 + 5 = B are 

occupied
§ Bin B + 6 = 1 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 9C 32 7A BF 26 07 88 46 9A BA 4C AD C9
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Example

□ Having completed these insertions:
§ The load factor is l = 14/16 = 0.875
§ The average number of probes is 32/14 ≈ 2.29

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 9C 32 7A BF 26 07 88 46 9A BA 4C AD C9
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 80, 9C, 32, 7A, BF, 26, 07, 88 may be immediately placed

• We use the least-significant five bits for the initial bin

§ If the next least-significant digit is
• Even, use bins 0 – F
• Odd, use bins 10 – 1F

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 32 7A 9C BF
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 46 results in a collision

• We place it in bin 9

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 32 7A 9C BF
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 9A results in a collision

• We place it in bin 1B

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 32 7A 9A 9C BF
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ BA also results in a collision

• We place it in bin 1D

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 32 7A 9A 9C BA BF
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ 4C and AD don’t cause collisions

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 4C AD 32 7A 9A 9C BA BF
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ Finally, C9 causes a collision

• We place it in bin A

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 C9 4C AD 32 7A 9A 9C BA BF
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Resizing the array

□ To double the capacity of the array, each value must be 
rehashed
§ The load factor is l = 14/32 = 0.4375
§ The average number of probes is 20/14 ≈ 1.43

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 C9 4C AD 32 7A 9A 9C BA BF
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Run-time Analysis

□ To summarize, quadratic probing shows the same 
asymptotic complexity as linear probing.

Average Worst

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)
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Secondary clustering

□ Advantage of quadratic probing over linear probing
§ Quadratic probing avoids primary clustering

One weakness with quadratic problem
§ Objects initially placed in the same bin will follow the same 

sequence
§ It forms yet another clustering, so called the secondary clustering
§ Q. how would you solve this problem?

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_function
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley.



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

100

Reading Assignment #4 – Chapter 5 and 6
Quiz #3: 11/30 (4-5 questions, 50 mins, Lecture will follow)
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