
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Open Addressing

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ To handle collisions, chained hash tables require special
memory allocation
§ Can we create a hash table without additional memory

allocation?

□ We will deal with collisions by storing collisions in the
same table
§ We will define a rule, dictating where to look next

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Collision Handling in Hash Tables

□ Common strategies to handle collisions in hash tables
§ Closed addressing: Store all elements with hash collisions in a

secondary data structures (linked list, BST, etc.)
• Chained hash table

§ Perfect Hashing: Choose a hash function to ensure that
collisions don’t happen (if possible)

§ Open addressing: Define a rule to locate the next cell
• Linear probing, Quadratic probing, double hashing

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Open Addressing: Insert

□ Suppose an object hashes to bin 5
§ If bin 5 is empty, we can store the object in bin 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Open Addressing: Insert

□ Suppose, however, another object hashes to bin 5
§ Without a linked list, we cannot store the object in bin 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Open Addressing: Insert

□ We could have a rule which says:
§ Look in the next bin to see if it is occupied

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Open Addressing: Insert

□ The rule must be general enough to deal with the fact
that the next cell could also be occupied
§ For example, continue searching until the first empty bin is found
§ The rule must be simple — i.e., fast search

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Open Addressing: Insert

□ We could then store the object in the next location
§ Problem: we can only store as many objects as there are entries

in the array: the load factor l ≤ 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Open Addressing: Supporting Other Operations

□ The rule should support both search and remove.

□ Recall that our goal is Q(1) access times
§ Q. how do we avoid to access too many bins (on average)?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Open Addressing: Strategies

□ There are numerous strategies for defining the order in
which the bins should be searched:
§ Linear probing
§ Quadratic probing
§ Double hashing

□ There are many alternate strategies, as well:
§ Last come, first served

• Always place the object into the bin moving what may be there
already

§ Cuckoo hashing

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Linear Probing

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Linear Probing

□ The easiest method to probe is to search forward
linearly

□ Assume we are inserting into bin k:
§ If bin k is empty, we occupy it
§ Otherwise, check bin k + 1, k + 2, and so on, until an empty bin

is found
• If we reach the end of the array, go back to the front (bin 0)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Linear Probing

□ Consider a hash table with M = 16 bins

□ Given a hexadecimal number as input:
§ Suppose the hash function outputs the least significant 4-bits of

input
§ Example: for 6B72A16 , the initial bin is A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Insertion

□ Insert these numbers into this initially empty hash table:
19A, 207, 3AD, 488, 5BA, 680, 74C, 826, 946, ACD, B32, C8B,

DBE, E9C

0 1 2 3 4 5 6 7 8 9 A B C D E F

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Example

□ Start with the first four values:
19A, 207, 3AD, 488

0 1 2 3 4 5 6 7 8 9 A B C D E F

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Example

□ Start with the first four values:
19A, 207, 3AD, 488

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Example

□ Next we must insert 5BA

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Example

□ Next we must insert 5BA
§ Bin A is occupied
§ We search forward for the next empty bin

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Example

□ Next we are adding 680, 74C, 826

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Example

□ Next we are adding 680, 74C, 826
§ All the bins are empty—simply insert them

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Example

□ Next, we must insert 946

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Example

□ Next, we must insert 946
§ Bin 6 is occupied
§ The next empty bin is 9

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Example

□ Next, we must insert ACD

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Example

□ Next, we must insert ACD
§ Bin D is occupied
§ The next empty bin is E

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD ACD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Example

□ Next, we insert B32

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD ACD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Example

□ Next, we insert B32
§ Bin 2 is unoccupied

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Example

□ Next, we insert C8B

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Example

□ Next, we insert C8B
§ Bin B is occupied
§ The next empty bin is F

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Example

□ Next, we insert D59

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Example

□ Next, we insert D59
§ Bin 9 is occupied
§ The next empty bin is 1

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Example

□ Finally, insert E9C

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Example

□ Finally, insert E9C
§ Bin C is occupied
§ The next empty bin is 3

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Example

□ Having completed these insertions:
§ The load factor is l = 14/16 = 0.875
§ The average number of probes is 38/14 ≈ 2.71

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ Now the hash function outputs the least significant 5-bits of input
§ 680, B32, ACD, 5BA, 826, 207, 488, D59 may be immediately

placed
0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 AC
D B32 D59 5BA

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 19A resulted in a collision

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 AC
D B32 D59 5BA 19A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 946 resulted in a collision

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 AC
D B32 D59 5BA 19A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 74C fits into its bin

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 74C AC
D 946 B32 D59 5BA 19A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 3AD resulted in a collision

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 74C AC
D 3AD 946 B32 D59 5BA 19A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ Both E9C and C8B fit without a collision
§ The load factor is l = 14/32 = 0.4375
§ The average number of probes is 18/14 ≈ 1.29

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Searching

□ Testing for membership is similar to insertions:
Start at the appropriate bin, and searching forward until

1. The item is found,
2. An empty bin is found, or
3. We have traversed the entire array

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Searching

□ Searching for C8B

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Searching

□ Searching for C8B
§ Examine bins B, C, D, E, F
§ The value is found in Bin F

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

43

Searching

□ Searching for 23E

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Searching

□ Searching for 23E
§ Search bins E, F, 0, 1, 2, 3, 4
§ The last bin is empty; therefore, 23E is not in the table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C × 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Erasing

□ We cannot simply remove elements from the hash table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Erasing

□ We cannot simply remove elements from the hash table
§ For example, consider erasing 3AD

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Erasing

□ We cannot simply remove elements from the hash table
§ For example, consider erasing 3AD
§ If we just erase it, it is now an empty bin

• By our algorithm, we cannot find ACD, C8B and D59

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Erasing

□ Instead, you should mark the cell “erased”.
§ This “erased cell” is different from an empty cell---the search should

not stop at an erased cell

□ Each cell may be represented with the following states:
- Occupied
- Empty
- Erased

□ Your “cell” positioning algorithm should be different for
“search” and “insert”

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Primary Clustering

□ We have already observed the following phenomenon:
§ With more insertions, the contiguous regions (or clusters) get

larger

□ This results in longer search times

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Primary Clustering

□ We currently have three clusters of length four

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Primary Clustering

□ There is a 5/32≈16 % chance that an insertion will fill Bin A

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Primary Clustering

□ There is a 5/32≈16 % chance that an insertion will fill Bin A
§ This causes two clusters to coalesce into one larger cluster of

length 9

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Primary Clustering

□ There is now a 11/32 ≈ 34 % chance that the next
insertion will increase the length of this cluster

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Primary Clustering

□ As the cluster length increases, the probability of further
increasing the length increases

□ In general:
§ Suppose that a cluster is of length ℓ
§ An insertion either into any bin occupied by the chain or into the

locations immediately before or after it will increase the length
of the chain

§ This gives a probability of

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C AC
D 3AD 946 B32 D59 5BA 19A E9C

2
M
+!

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Run-time analysis

□ Recall: our goal is to keep all operations O(1).

□ Which operations should we analyze?
§ Search

• Unsuccessful search: After probing, we failed to find a key k in HT
• Successful search: After probing, we found a key k in HT

§ Insert
• The runtime would be the same as an unsuccessful search

§ Remove
• The runtime would be the same as a successful search

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Run-time Analysis: Unsuccessful Search

□ Theorem
Given a linear-probing hash table with the load factor l,
the expected number of probes in an unsuccessful search is
at most 1/(1- l), assuming uniform hashing

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Run-time Analysis: Unsuccessful Search

□ Proof (details in CLRS p274)
§ In an unsuccessful search

• every probe (except the last) accesses an occupied cell, which does not
contain the desired key

• The last probe accesses an empty cell

§ Let the random variable X be the number of probes made in an
unsuccessful search

§ Let the event Ai be the event that an i-th probe occurs, and it is to an
occupied cell (which does not contain the desired key)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Run-time Analysis: Insertion

□ Corollary
Inserting an element into a linear-probing hash table with load
factor l requires at most 1/(1- l) probes on average, assuming
uniform hashing

□ Proof sketch
An unsuccessful search implies that an empty cell is found, which
can be used for the insertion. So the insertion should take no more
than the unsuccessful search.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Run-time Analysis: Successful Search

□ Theorem
§ Given a linear-probing hash table, the expected number of probes in

a successful search is at most
𝟏
𝝀 𝐥𝐧

𝟏
𝟏 − 𝝀

- Assuming uniform hashing
- Assuming that each key in the table is equally likely to be search for.

□ Proof sketch (CLRS p276)
§ The successful search should take place after the insertion (w.r.t. key 𝑘)
§ The successful search would follow the same probing sequence as the

insertion
§ So we take the average of the probing sequence in the insertion is the

average number of successful probes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

60

Run-time analysis

□ The analysis shows that if we assume l is constant,
all operations are O(1) on average.

□ Still the analysis implicates that as l gets bigger,
the number of probes increases.
- Q. What’s the number of probes if the table is half full?
- Q. what’s the number of probes if the table is 90% full?

Average Worst

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

61

Run-time analysis

□ The analysis implies:
§ Choose M large enough so that we will not pass the load factor

• This could waste memory

§ Double the number of bins if the chosen load factor is reached
• Rehashing will be required

□ Q. Would other collision resolution methods help to
reduce the number of probes?
§ It won’t help the asymptotic complexity, but may help for some

cases
§ We will cover quadratic probing next

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

62

Quadratic Probing

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

63

Primary Clustering in Linear Probing

□ Recall Linear probing:
§ Look at bins k, k + 1, k + 2, k + 3, k + 4, …
§ Linear probing causes primary clustering
§ All entries follow the same search pattern for bins:

int initial = hashM(x);
for (int k = 0; k < M; ++k) {

bin = (initial + k) % M;
// ...

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

64

Description

□ Quadratic probing suggests moving forward by different
amounts

□ For example,
int initial = hashM(x);

for (int k = 0; k < M; ++k) {
bin = (initial + k*k) % M;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

65

Description

□ Problem:
§ Will initial + k*k step through all of the bins?
§ Here, the array size is 10:

M = 10;
initial = 5

for (int k = 0; k <= M; ++k) {
std::cout << (initial + k*k) % M << ' ';

}

§ The output is
5 6 9 4 1 0 1 4 9 6 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

66

Description

□ Problem:
§ Will initial + k*k step through all of the bins?
§ Now the array size is 12:

M = 12;
initial = 5

for (int k = 0; k <= M; ++k) {
std::cout << (initial + k*k) % M << ' ';

}

§ The output is now
5 6 9 2 9 6 5 6 9 2 9 6 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

67

Best in Theory: Making M Prime

□ Theorem:
If the table size is M = 𝑝 a prime number and a quadratic
probing is used, the first 𝑝/2 probes are distinct.

□ This theorem in fact implies that at least the half of slots
will be visited before the probe sequence repeats.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

68

Best in Theory: Making M Prime
□ Proof by contradiction:
Suppose there is a slot, which is visited twice during the first 𝑀/2 probes.

Let 𝑖 and 𝑗 be such two visits, where 0 ≤ 𝑖 < 𝑗 ≤ !
"
.

𝐻 + 𝑖2 %𝑀 = 𝐻 + 𝑗2 %𝑀
𝐻 + 𝑗2 = 𝐻 + 𝑖2 + 𝑘𝑀

𝑗2 = 𝑖2+ 𝑘𝑀
𝑗2− 𝑖2 = 𝑘𝑀

(𝑗 − 𝑖)(𝑗 + 𝑖) = 𝑘𝑀

Because 𝑀 is prime, either (𝑗 − 𝑖) or (𝑗 + 𝑖) should have a factor 𝑀.
In other words, either (𝑗 − 𝑖) or (𝑗 + 𝑖) should be divisible by 𝑀.

Case#1: (𝑗 − 𝑖) is divisible by 𝑀.
From assumption, 𝑖 < 𝑗 ≤ !

"
.

So (𝑗 − 𝑖) < 𝑀, which contradicts the case#1 constraint.

Case#2: (𝑗 + 𝑖) is divisible by 𝑀.

From assumption, 𝑖 < 𝑗 ≤ !
"
.

So (𝑗 + 𝑖) < 𝑀, which contradicts the case#2 constraint.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

69

Best in Theory: Making M Prime

□ Engineering difficulties in using a prime M in practice:
§ No optimized modulus operations

• The modulus operator % is relatively slow
• With a prime M, you cannot optimize with &, <<, or >>

§ Troublesome memory management
• Memory Fragmentation

§ Doubling the number of bins is difficult:
• You always need to find the next prime number
• What is the next prime after 263?

üYou can’t pick 2 * 263 as it’s not a prime number

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

70

Generic Use

□ More generally, we could consider an approach like:

int initial = hashM(x);

for (int k = 0; k < M; ++k) {
bin = (initial + c1*k + c2*k*k) % M;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

71

Practical Use: M = 2m with constraints

□ If we ensure M = 2m then choose
c1 = c2 = ½

int initial = hashM(x);

for (int k = 0; k < M; ++k) {
bin = (initial + (k + k*k)/2) % M;

}

§ Note that k + k*k is always even
§ This guarantees that all M entries are visited before the pattern

repeats!
• Proof sketch: Similar to the proof when 𝑀 is prime

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

72

Practical Use: M = 2m with constraints

□ For example:
§ Use an array size of 16:

M = 16;
initial = 5

for (int k = 0; k <= M; ++k) {
std::cout << (initial + (k + k*k)/2) % M << ' ';

}

§ The output is now
5 6 8 11 15 4 10 1 9 2 12 7 3 0 14 13 13

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

73

Practical Use: M = 2m with constraints

□ There is an even easier means of calculating this
approach

int bin = hashM(x);

for (int k = 0; k < M; ++k) {
bin = (bin + k) % M;

}

§ Recall that , so just keep adding the next highest
value

2

02

k

j

k k j
=

+
=å

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

74

Example

□ Consider a hash table with M = 16 bins

□ Given a 2-digit hexadecimal number:
§ The least-significant digit is the primary hash function (bin)
§ Example: for 6B7A16 , the initial bin is A

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

75

Example

□ Insert these numbers into this initially empty hash table
9A, 07, AD, 88, BA, 80, 4C, 26, 46, C9, 32, 7A, BF, 9C

0 1 2 3 4 5 6 7 8 9 A B C D E F

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

76

Example

□ Start with the first four values:
9A, 07, AD, 88

0 1 2 3 4 5 6 7 8 9 A B C D E F

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

77

Example

□ Start with the first four values:
9A, 07, AD, 88

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

78

Example

□ Next we must insert BA

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

79

Example

□ Next we must insert BA
§ The next bin is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A BA AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

80

Example

□ Next we are adding 80, 4C, 26

0 1 2 3 4 5 6 7 8 9 A B C D E F

07 88 9A BA AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

81

Example

□ Next we are adding 80, 4C, 26
§ All the bins are empty—simply insert them

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 9A BA 4C AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

82

Example

□ Next, we must insert 46

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 9A BA 4C AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

83

Example

□ Next, we must insert 46
§ Bin 6 is occupied
§ Bin 6 + 1 = 7 is occupied
§ Bin 7 + 2 = 9 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 46 9A BA 4C AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

84

Example

□ Next, we must insert C9

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 46 9A BA 4C AD

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

85

Example

□ Next, we must insert C9
§ Bin 9 is occupied
§ Bin 9 + 1 = A is occupied
§ Bin A + 2 = C is occupied
§ Bin C + 3 = F is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 26 07 88 46 9A BA 4C AD C9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

86

Example

□ Next, we insert 32
§ Bin 2 is unoccupied

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 32 26 07 88 46 9A BA 4C AD C9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

87

Example

□ Next, we insert 7A
§ Bin A is occupied
§ Bins A + 1 = B, B + 2 = D and D + 3 = 0 are occupied
§ Bin 0 + 4 = 4 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 32 7A 26 07 88 46 9A BA 4C AD C9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

88

Example

□ Next, we insert BF
§ Bin F is occupied
§ Bins F + 1 = 0 and 0 + 2 = 2 are occupied
§ Bin 2 + 3 = 5 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 32 7A BF 26 07 88 46 9A BA 4C AD C9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

89

Example

□ Finally, we insert 9C
§ Bin C is occupied
§ Bins C + 1 = D, D + 2 = F, F + 3 = 2, 2 + 4 = 6 and 6 + 5 = B are

occupied
§ Bin B + 6 = 1 is empty

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 9C 32 7A BF 26 07 88 46 9A BA 4C AD C9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

90

Example

□ Having completed these insertions:
§ The load factor is l = 14/16 = 0.875
§ The average number of probes is 32/14 ≈ 2.29

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 9C 32 7A BF 26 07 88 46 9A BA 4C AD C9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

91

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 80, 9C, 32, 7A, BF, 26, 07, 88 may be immediately placed

• We use the least-significant five bits for the initial bin

§ If the next least-significant digit is
• Even, use bins 0 – F
• Odd, use bins 10 – 1F

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 32 7A 9C BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

92

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 46 results in a collision

• We place it in bin 9

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 32 7A 9C BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

93

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 9A results in a collision

• We place it in bin 1B

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 32 7A 9A 9C BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

94

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ BA also results in a collision

• We place it in bin 1D

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 32 7A 9A 9C BA BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

95

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ 4C and AD don’t cause collisions

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 4C AD 32 7A 9A 9C BA BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

96

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ Finally, C9 causes a collision

• We place it in bin A

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 C9 4C AD 32 7A 9A 9C BA BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

97

Resizing the array

□ To double the capacity of the array, each value must be
rehashed
§ The load factor is l = 14/32 = 0.4375
§ The average number of probes is 20/14 ≈ 1.43

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 26 07 88 46 C9 4C AD 32 7A 9A 9C BA BF

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

98

Run-time Analysis

□ To summarize, quadratic probing shows the same
asymptotic complexity as linear probing.

Average Worst

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

99

Secondary clustering

□ Advantage of quadratic probing over linear probing
§ Quadratic probing avoids primary clustering

One weakness with quadratic problem
§ Objects initially placed in the same bin will follow the same

sequence
§ It forms yet another clustering, so called the secondary clustering
§ Q. how would you solve this problem?

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Hash_function
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

100

Reading Assignment #4 – Chapter 5 and 6
Quiz #3: 11/30 (4-5 questions, 50 mins, Lecture will follow)

Contents ix

Chapter 4 Trees 121
4.1 Preliminaries 121

4.1.1 Implementation of Trees 122
4.1.2 Tree Traversals with an Application 123

4.2 Binary Trees 126
4.2.1 Implementation 128
4.2.2 An Example: Expression Trees 128

4.3 The Search Tree ADT—Binary Search Trees 132
4.3.1 contains 134
4.3.2 findMin and findMax 135
4.3.3 insert 136
4.3.4 remove 139
4.3.5 Destructor and Copy Constructor 141
4.3.6 Average-Case Analysis 141

4.4 AVL Trees 144
4.4.1 Single Rotation 147
4.4.2 Double Rotation 149

4.5 Splay Trees 158
4.5.1 A Simple Idea (That Does Not Work) 158
4.5.2 Splaying 160

4.6 Tree Traversals (Revisited) 166
4.7 B-Trees 168
4.8 Sets and Maps in the Standard Library 173

4.8.1 Sets 173
4.8.2 Maps 174
4.8.3 Implementation of set and map 175
4.8.4 An Example That Uses Several Maps 176
Summary 181
Exercises 182
References 189

Chapter 5 Hashing 193
5.1 General Idea 193
5.2 Hash Function 194
5.3 Separate Chaining 196
5.4 Hash Tables without Linked Lists 201

5.4.1 Linear Probing 201
5.4.2 Quadratic Probing 202
5.4.3 Double Hashing 207

5.5 Rehashing 208
5.6 Hash Tables in the Standard Library 210

x Contents

5.7 Hash Tables with Worst-Case O(1) Access 212
5.7.1 Perfect Hashing 213
5.7.2 Cuckoo Hashing 215
5.7.3 Hopscotch Hashing 227

5.8 Universal Hashing 230
5.9 Extendible Hashing 233

Summary 236
Exercises 237
References 241

Chapter 6 Priority Queues (Heaps) 245
6.1 Model 245
6.2 Simple Implementations 246
6.3 Binary Heap 247

6.3.1 Structure Property 247
6.3.2 Heap-Order Property 248
6.3.3 Basic Heap Operations 249
6.3.4 Other Heap Operations 252

6.4 Applications of Priority Queues 257
6.4.1 The Selection Problem 258
6.4.2 Event Simulation 259

6.5 d-Heaps 260
6.6 Leftist Heaps 261

6.6.1 Leftist Heap Property 261
6.6.2 Leftist Heap Operations 262

6.7 Skew Heaps 269
6.8 Binomial Queues 271

6.8.1 Binomial Queue Structure 271
6.8.2 Binomial Queue Operations 271
6.8.3 Implementation of Binomial Queues 276

6.9 Priority Queues in the Standard Library 282
Summary 283
Exercises 283
References 288

Chapter 7 Sorting 291
7.1 Preliminaries 291
7.2 Insertion Sort 292

7.2.1 The Algorithm 292
7.2.2 STL Implementation of Insertion Sort 293
7.2.3 Analysis of Insertion Sort 294

7.3 A Lower Bound for Simple Sorting Algorithms 295

