
Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Transport Layer
- High Performance Transport -

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

과제개요 | 연구필요성KPIs for Future Transport Layer Protocols

Fairness

High Throughput 
(+ fast convergence)

Low Latency

KPIs in trade-off relation

Guaranteed E2E Latency
(application’s point of view)

Modified Fairness



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

E2E Latency is Everything

Mark Glimour, “5G – Latency: New use cases and the need 
for network slicing,” InformaTech reports, Feb. 2017.

Distance to edge
or cloud matters.

E2E Latency

E2E Latency = First-byte-Delay + DataVolume/Throughput



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Ultimate Service: Low-latency Telepresence
□ Telepresence is a set of technologies providing people the experience 

as if they are present at a place other than their physical location by 
making remote interactions possible.

Environment data

Control dataObject data

Low-latency telepresence is the idea of providing people the experience 
as if they are present at a place other than their physical location 
by making remote interactions indistinguishable from local interactions.

within human reaction latency



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Latency Decomposition

Transmission
Delay

(1 us – 100ms) 

App
Delay

Scheduling
Delay

(< 1 ms) 

Propagation
Delay

(1 ms @ 200km)

Queueing
Delay

(< 500 ms) 

Processing
Delay
(< 1 us) 

Processing

Propagation

System
Access

Transmission

Queueing &
Scheduling

UntouchableRedundancy
elimination

Congestion
control

Socket control,
Encoder control

FPGA,
ASIC

Short TTI,
Priority sched



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Latency Reality in Cellular Networks

Mobile Devices

AT&T HSPA+

T-Mobile HSPA+

Sprint EVDO

Verizon EVDO

Internet Server

Exceptionally long RTT Flat TCP congestion window

Tackling bufferbloat in 3G/4G networks, ACM IMC 2012

https://dl.acm.org/doi/abs/10.1145/2398776.2398810?casa_token=ity1H7-T0LYAAAAA:k7SxmtQgiKf-WuxxrZ8pkfZbNS3ZwOnDH9foax9u4MtpodUV7LNmumIbNys_lRK4Hp8vdwaA7mcraA


Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Understanding the Problem and the Trick

Packet loss in 
cellular links

Putting a large 
buffer in the BS 

Static limit in rwnd
(rmem_max)

Very few 
packet losses

TCP congestion
control failure

Extremely long
queue in buffer

Extremely long
RTT (latency)

Link-level 
recovery

min(cwnd,rwnd)

𝑇𝑝𝑢𝑡~
𝑟𝑤𝑛𝑑
𝑅𝑇𝑇

DRWA (Dynamic 
Receive Window 

Adjustment)
𝑇𝑝𝑢𝑡~

𝑟𝑤𝑛𝑑(Δ𝑅𝑇𝑇)
𝑅𝑇𝑇

A potential solution (delay-based control)



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Latency Reality in 5G/LTE Networks

5G
(NSA)

LTE

Mean, Min RTT
118.15, 35.28 ms
(~3x inflation)

Mean, Min RTT
226.10, 37.05 ms
(~6x inflation)



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Core Challenges for Guaranteed E2E Latency
E2E latency: time taken to relocate an information object over a network 
(mostly Propagation delay + Queueing delay + Transmission delay + Retransmission delay)

Object volume

E2
E 

la
te

nc
y

Propagation delay

Latency under networks 
with near-zero queueing

0

Latency under congested networks

Target latency

RE     

=
volume
data rate

desired service quality

5 ms
10 ms

2. Redundancy 
elimination (socket)

1. Low-latency 
transport protocol
(congestion control) 3. Fast Convergence

(+ PHY evolution)

4. Zero 
retransmission
(socket)



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Challenge 1+3: Low-Latency CC (+ Fast Convergence)

BDP

Throughput

W
in

d
ow

 s
iz

e

CUBIC excessively fills up!

N
et

w
or

k 
b

an
d

w
id

th

time                                                             time

è

RTT in a cellular network with fluctuating bandwidth

RT
T

time

&

B
ot

tle
ne

ck
B

an
d

w
id

th

(min) RTT

BDP
(bandwidth-delay product)

Current TCP (CUBIC)

D
at

a 
ra

te
RT

T

Amount in flightBDP

RTT

Transport protocol controls “windows (W)”
Data rate (W/RTT) is the result of sending W over RTT.

Ideal window control

Ideal latency 
without throughput loss



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Low-Latency Transport Protocols

Learnability
(SIGCOMM`14)

BBR
(QUEUE`16)

TCP CUBIC
(SIGOPS`08)

REMY-CC
(SIGCOMM`13)

DRWA 
(IMC`12)

Sprout
(NSDI`13)

VERUS
(SIGCOMM`15)

PropRate
(CoNEXT`17)

COPA
(NSDI`18)

ExLL
(CoNEXT`18)

Cellular-oriented

AURORA
(ICML`19)

VERUS
builds delay profiles from its window controls

Figure 6: Verus time framework

Based on the sign of �Di, Verus decides whether
to increase or decrease the sending window. If �Di

is negative, it is an indication that the network/channel
conditions are improving and thus more data can be
sent to the network. If the �Di is positive, the net-
work/channel conditions may be experiencing conges-
tion or negative changes and thus Verus should reduce
the data rate. Verus estimates the delay that the net-
work should have Dest,i+1 as follows:

Dest,i+1 =

8
>>>><

>>>>:

Dest,i � �2 if Dmax,i

Dmin
> R

max[Dmin, (Dest,i � �1)] elif �Di > 0

Dest,i + �2 otherwise
(4)

whereDmin is the minimum delay experienced by Verus,
�1 and �2 are increment/decrement parameters, and R is
the maximum tolerable ratio between Dmax and Dmin.2

Verus then uses the delay estimate Dest,i+1 to find the
corresponding sending window Wi+1 on the delay pro-
file (see Figure 5).

At the beginning of epoch i+ 1, Verus calculates the
number of packets to send during this epoch. The num-
ber of packets to be sent within the next sending window
Wi+1 are calculated as follows:

Si+1 = max[0, (Wi+1 +
2�n
n�1 ·Wi)]

with n =
⌃
RTT
"

⌥ (5)

where Si+1 is the number of packets to send during the
epoch, Wi+1 is the estimated sending window for the
future, Wi is the current sending window at the end
of epoch i (i.e. the sending window at the time before
making the next epoch decision), and n is the number
of epochs per estimated network RTT.
Loss Handler

If Verus detects a packet loss or timeout, the sending
window is reduced and the new Wi+1 is multiplied by a
multiplicative reduction factor as:

Wi+1 = M ·Wloss (6)

2R is used to tune the protocol trade-o↵ between delay
and throughput. We show in the evaluation section the
e↵ect of the value of R.

where, Wloss is the sending window in which the loss
occurred, and M is the multiplicative decrease factor.
We choose the sending window of the lost packet Wloss

because that sending window was responsible for the
packet loss.

Once a loss is identified and the sending window is
multiplicatively decreased, Verus enters a loss recovery
phase. During the loss recovery phase, the delay profile
is no longer updated. The loss recovery phase is im-
portant because Verus builds its delay profile to reflect
what could be sent without incurring network losses.
Packets that arrive after a loss would have lower bu↵er
delays and hence are not considered.

During the loss recovery phase and upon receiving
an acknowledgement, the sending window Wi+1 is in-
creased by 1/(Wi+1) (similar to TCP). Verus exits the
loss recovery phase once acknowledgments of packets
sent after the loss are received, i.e. if the protocol re-
ceives an acknowledgement with a sending window that
is smaller than or equal to the current sending window.
Verus also uses a timeout mechanism similar to TCP in
case all packets are lost.

5. VERUS IMPLEMENTATION
Our prototype implementation of Verus consists of

sender and receiver applications written in C++. The
sender application runs in a multi-threaded environ-
ment and uses the real time extension library librt. As
the underlying transport protocol, UDP is used to trans-
mit the generated packets. A number of implementation
details must be addressed in order to realize the Verus
protocol in practice. These include delay profile ini-
tialization and maintenance, handling of timeouts and
retransmissions, and setting of parameters.

5.1 Delay Profile Initialization and Main-
tenance

Verus relies heavily on the delay profile, which re-
flects the relationship between the network delay and
the sending window without congesting the network.
The initial creation of the delay profile is handled dur-
ing Verus’ slow start phase. Verus’ slow start is similar
to TCP’s slow start; where the sender begins by sending
a single packet towards the receiver and upon receiving
an acknowledgement the sender increments the sending
window by one, which leads to exponential growth of
the sending window.

Verus maintains a list of sent packets and stores the
sending timestamp as well as the sending window with
which the packet was sent. The sender uses this infor-
mation to calculate the packet RTT (i.e. delay) and
records a (delay, sending window) tuple. Once one of
the exit conditions for Verus slow start are met, the
sender will have a number of delay/sending window tu-
ples to build the delay profile. The delay profile is con-
structed from the stored tuples using the cubic spline
interpolation from the ALGLB library.

Reduce window if max delay out of a bound

Given more window budget if max delay within the bound

Verus’ slow start phase has two exit conditions:

• encountering a packet loss: this can be deduced
from acknowledgement sequence numbers

• the RTT delay exceeds the predefined threshold:
this threshold is set as N x minimum delay (e.g.,
N=15)

During the course of operation, the delay profile needs
to be updated and maintained over time to capture
channel changes. The delay profile is updated as follows:
for every received acknowledgement at the sender, the
delay value of the point that corresponds to the send-
ing window of the acknowledged packet is updated with
the new RTT delay. This update is performed using an
Exponentially Weighted Moving Averaging (EWMA)
function to allow the delay profile to evolve. Due to
the high computational e↵ort of the cubic spline inter-
polation, this calculation is not performed after every
acknowledgement, but instead at certain intervals. In
Section 5.3 we discuss reasonable update intervals in
more detail.

Figure 7b illustrates how the delay profile may evolve
over time. For clarity, only every fifth interpolation is
shown and we restricted the channel trace to 200 s. The
three curves of each color correspond to the same col-
ored region shown in the throughput graph in Figure 7a.
It can be observed that the delay profile curve changes
over time with respect to the fluctuations of the chan-
nel, i.e. the smaller the available throughput is, the
steeper the delay profile becomes.

(a) Channel trace for downlink

0 50 100 150 200
Sending Window W(t) (# packets)

0
50

100
150
200
250
300
350
400

D
el

ay
D

(t
)(

m
s)

(b) Verus delay profile evolution (excluding slow start)

Figure 7: Channel trace and the corresponding Verus
delay profile curve evolution

5.2 Timeouts and Retransmissions
Although Verus is a congestion avoidance protocol

designed to handle the fluctuating capacities of a cellu-
lar channel, packet losses are sometimes inevitable as an
intrinsic property of the cellular medium. Our current
implementation of Verus is built on top of UDP. Verus
uses sequence numbers to keep track of received packets
and their RTTs. These sequence numbers are used to
identify packet losses at the sender. To deal with packet
reordering, our implementation does the following: for
every missing sequence number Verus creates a timeout
timer of 3*delay. If the missing packet arrives before
the timer expires, no packet loss is identified; other-
wise, the sending window is multiplicatively decreased
and the missing packet is retransmitted.

5.3 Verus Parameter Settings
Verus makes use of a variety of parameters and the

selection of these parameters influences the performance
of the protocol or substantially changes the overall pro-
tocol behavior. The e↵ects of parameter changes are
mainly reflected in throughput, delay, and fairness among
flows. In our sensitivity analysis we wanted to identify
the specific e↵ects of parameter settings and to under-
stand their relation to common scenarios.

Our sensitivity analysis of Verus parameters were per-
formed using the OPNET network simulator. In order
to emulate real cellular network behavior in OPNET, we
collected channel traces in uplink and downlink direc-
tion from a commercial cellular network provider (Eti-
salat) and replayed these channel conditions in OPNET
to schedule flows under contention.

The setup for collecting the traces consists of four
Android smartphones (3x Samsung Galaxy S4 and 1x
Sony Xperia Z1) and one server. As the server is con-
nected via a fiber link directly to Etisalat’s backbone
network so that additional delays and unwanted back-
ground tra�c are minimized. All smartphones are run-
ning a native sender and receiver application to commu-
nicate with a server located in our premises. The server
runs the same sender and receiver application. Both
endpoints, server and smartphones, send UDP packets
with an MTU size of 1400 bytes simultaneously with a
constant data rate to the other endpoint. The corre-
sponding endpoint acts as a sink and records the times-
tamp of each packet arrival. We use this bi-directional
setup to measure downlink and uplink of the channel.

As the measurement is executed on the 3G HSPA+
cellular network, the data rate for each device is set to
5 Mbps and 2.5 Mbps for downlink and uplink, respec-
tively. These data rates are close to the upper limits
of the network, but do not necessarily reflect the max-
imum capacity of the cellular network. The maximum
capacity of the channel is di�cult to determine and de-
pends on many factors, e.g. cross-competing tra�c, mo-
bility, and interference. We expect that by using these
data rates the channel is not over-saturated and packet
bu↵ering is minimized under ideal channel conditions.

515

Rebuild profile in every 1s



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

BBR (Bottleneck Bandwidth and Round-trip propagation time)

□ BBR cycles 4 operations (BBR is in the Linux kernel from 4.9)
§ STARTUP - exponential BW search
§ DRAIN - drain the queue created during startup 
§ PROBE_BW - explore max BW, drain queue, cruise 
§ PROBE_RTT - guarantee fairness among multiple BBR flows

STARTUP DRAIN

PROBE_BW PROBE_RTT



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Latency Limit without Throughput Loss
CoNEXT ’18, December 4–7, 2018, Heraklion/Crete, Greece Anon.

The understanding of the aforementioned factors has im-
portant implications on the design of an extremely low-
latency congestion control and its best performance in through-
put and delay. In particular, to cope with highly dynamic
channel conditions in cellular networks, it is vital to obtain
both achievable maximum throughput and minimum RTT
as quickly and accurately as possible, so that the congestion
control algorithm can always exploit up-to-date BDP for
low-latency control.

1.2 Gap from Ideal Latency: Existing
Latency Optimized Protocols

In order to check the latency performance of existing low
latency congestion control algorithms including Cubic, we
perform our ownmeasurement with an Android smartphone
over a static LTE channel as shown in Figure 1. We compare
the performance (mean and 95-th percentile) of existing la-
tency optimized congestion control protocols along with
a simple protocol that sends at a constant rate (� ⇥ BDP ).
The minimum RTT and maximum throughput achievable
for the tested channel are about 47 ms and 90 Mbps, respec-
tively. While Cubic su�ers from long packet latency of 230
ms, BBR [10], PropRate [19] and Verus [30] achieve 104 ms,
71 ms, and 76 ms, respectively, with similar or much lower
throughput1. Low-latency algorithms show signi�cant RTT
suppression compared to Cubic, but their latency perfor-
mance is still far from the ideal one characterized by send-
ing the BDP variants (� = 0.9, 1.0, 1.1), which is to achieve
about 68 ms at 90 Mbps throughput. It is intriguing that BBR
and PropRate that are designed to track and utilize the BDP
of the network are performing not as good as sending the
BDP. However, considering the overhead from cycling sev-
eral modes of operation to probe bandwidth and RTT, the
existence of the performance gap is not surprising.

1.3 ExLL Contributions
To bridge the gap, we propose a new low-latency conges-
tion control for mobile cellular networks, namely ExLL (Ex-
tremely Low Latency) that reduces latency as close to the
minimum RTT while retaining the same level of throughput
that Cubic achieves. To obtain such performance, instead
of probing the network, ExLL estimates the bandwidth of
cellular channels by analyzing the packet reception pattern
at an LTE subframe granularity in the downlink and also
estimates the minimum RTT more realistically by incorpo-
rating SR periodicity in the uplink. As these estimations can
be done reliably at each UE, ExLL takes the receiver-side

1We test protocols based on the source code provided by the authors. Tuning
them to operate more aggressively to achieve maximum throughput is
possible, which may, however, lead to signi�cant increase in latency. Thus,
we do not modify or tune them.

40 60 80 100 200 300 400 500
Latency (ms)

0

20

40

60

80

100

T
p

u
t 

(M
b

p
s)

0.9xBDP
1.0xBDP
1.1xBDP
Cubic [14]
BBR [10]
PropRate [19]
Verus [30]
Sprout [28]
Vegas [8]
95-th percentile

F����� 1. Mean and 95-th percentile RTT against the
average throughput of various congestion control al-
gorithms compared with that of sending a static con-
gestion window around BDP over a real LTE network.

design as its �rst choice. With the bandwidth and latency
estimations, ExLL adopts the control feedback in FAST [27]
to compute its receive window (RWND). This receiver-side
ExLL design is immediately deployable to cellular UEs with-
out compromising servers as it makes the congestion control
protocol running on the servers set its congestion window
(CWND) based on the RWND from ExLL receiver. Further-
more, ExLL can be implemented as sender-side as well. We
later demonstrate that both implementations have a minor
performance gap in practice.
Our comprehensive experiments carried out over com-

mercial LTE networks con�rm that ExLL can always achieve
shorter RTT which is much closer to the minimum RTT
while retaining similar throughput of Cubic. More speci�-
cally, in a stationary scenario where an Android smartphone
is stably connected to an LTE network with 50 ms of its min-
imum RTT and 75 Mbps of its maximum throughput, ExLL
attains on average 66 ms RTT while maintaining throughput
of 72 Mbps; BBR and Cubic attain about 110 ms and 261 ms
RTT with about 70 Mbps and 75 Mbps. PropRate and Verus
show lower throughput about 59 Mbps and 39 Mbps and
attain around 61 ms and 92 ms RTT. In a mobile scenario
where a smartphone user moves between good (-95 dBm)
and bad channels (-125 dBm), ExLL retains around 61 ms and
45 Mbps while BBR and Cubic stay around 78 ms and 395 ms
with about 40 Mbps and 46 Mbps. PropRate and Verus shows
53 ms and 63 ms but is with only 23 Mbps and 34 Mbps.

In summary, our contributions are three-fold.

• We develop novel techniques that can estimate the
cellular link bandwidth and realistic minimum RTT
without explicit probing, which can be easily extended
to next-generation cellular technologies such as 5G.
• We incorporate the control logic of FAST into ExLL to
minimize the latency even in dynamic cellular channel
conditions.

Tested over a stable LTE channel with 45ms minRTT

Ideal inflation ratio (IR) ~1.50

~2.44 ~5.23



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Eliminating Probing Inefficiency
□ Letting the cellular receiver infer the available throughput 

as well as minimum achievable RTT for tracking BDP

§ Packet reception pattern in the receiver has abundant information
• Consecutive packet interval à available PHY rate (at the chosen MCS)
• Per-radio frame reception à available PHY rate + user scheduling situation   

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion/Crete, Greece

10 ms
1 ms

(a) Downlink packet reception patterns in the beginning of a new �ow

10 ms
1 ms

(b) Downlink packet reception patterns after a few seconds

F����� 4. Snapshot of received packets over time when downloading data with Cubic at the UE and the detailed
packet receptions mapped onto allocated subframes (colored) in radio frames for the UE.

5 3 8 2 7 2

F����� 5. Sample calculation of F ( fi ) and C ( fi ) from
packet receptions in a given radio frame fi .

Mbps, respectively. The operation of F ( fi ) is as simple as
counting the received bytes during one radio frame divided
by 10 ms. In a special case where fi does not include any
allocated subframe, such fi is ignored. We also de�ne a mi-
croscopic bandwidth estimation function, C (·), which fo-
cuses more on average packet reception intervals within a
subframe to estimate the maximum channel bandwidth as
follows:

C ( fi ) =

P
j 2S (fi ) bi j/�ti j
|S ( fi ) |

, (1)

where bi j , �ti j , and S ( fi ) denote the amount of received
bytes within j-th subframe (si j ) of i-th radio frame, the time
gap between the �rst packet and the last packet reception
within si j and the index set of allocated subframes in fi ,
respectively. By de�nition, C (·) captures the total channel
bandwidth before it is split to multiple users. Therefore, in
case when a BS is occupied by a single UE, C (·) is close to
F (·). But in case with the BS serving multiple UEs, C (·) is
much larger than F (·). Figure 5 illustrates how F (·) and C (·)
are computed for a sample radio frame.
F and C over dynamic channels: Figures 6 (a) and (b)
present F (·) , C (·), and the measured throughput on the UE
in the carrier-aggregated channels of 30 MHz and 40 MHz,
respectively, when the UE downloads data for 30 seconds
from a server running Cubic. Two interesting observations
are found from these �gures: 1) F (·) very precisely tracks

0 10 20 30

Time (s)

0

100

200

300

400

500
T

p
u
t 

(M
b
p
s)

 Measured Tput (Cubic)
 Bandwidth estimation, F ( )
 Bandwidth estimation, C ( )

(a) Measurements from a real LTE
network with 30 MHz channel

0 10 20 30

Time (s)

0

100

200

300

400

500

T
p
u
t 

(M
b
p
s)

(b) Measurements from a real LTE
network with 40 MHz channel

F����� 6. Comparison of measured throughput with
Cubic and bandwidth estimations from F (·) and C (·)
over time done by UE.

F����� 7. Concept of SR periodicity for cellular uplink
scheduling in comparison with downlink scheduling.

the achievable network bandwidth before it measures the
actual throughput, 2) C (·) estimates the channel bandwidth
of 300 Mbps or 400 Mbps from 30 MHz or 40 MHz channel
very precisely and quickly. When the MCS is degraded due
to a poor channel condition, F (·) and C (·) instantly detect it
as shown in the �gures. C (·) estimates the best case perfor-
mance for a single UE, but even when eNB serves only one
UE, the achievable throughput can be lower thanC (·) due to
QoS settings of eNB such as UE-AMBR (aggregate maximum
bitrate)3 [4, 5]. We �nd both metrics F (·) and C (·) are useful
for di�erent purposes. In Section 4.3 and 4.5, we detail the
usage of them.
3This is de�ned to limit total throughput for each UE. Since such QoS set-
tings are invisible to UEs, we �nd that estimating the achievable bandwidth
at a UE by including the observed idle RBs [29] may lead to overestimation.



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Window Control Implementation
□ ExLL: window control with MTE and mRE

§ Converges to the solution of a NUM (network utilization maximization):

𝑤!"# = 1 − 𝛾 ⋅ 𝑤! + 𝛾
𝑚𝑅𝐸!
𝑅!

⋅ 𝑤! + 𝛼 1 −
𝑇!

𝑀𝑇𝐸!

ExLL receiver makes any CUBIC sender to be a low-latency sender.

Probes max throughput, goes to 0 when MTE is achievedProbes minRTT

7

The equilibrium values of windows and delays of the
network defined by (6)–(8) can be characterized as follows.
Consider the utility maximization problem

s.t. (9)

and the following (dual) problem:

(10)

Theorem 1: Suppose has full row rank. The unique
equilibrium point of the network defined by (6)–(8)
exists and is such that is the
unique maximizer of (9) and is the unique minimizer of
(10). This implies in particular that the equilibrium rate is
-weighted proportionally fair.
Theorem 1 implies that FAST TCP has the same equilibrium

properties as TCP Vegas [25], [26]. Its throughput is given by

(11)

In particular, it does not penalize sources with large prop-
agation delays . The relation (11) also implies that, in
equilibrium, source maintains packets in the buffers along
its path [25], [26]. Hence, the total amount of buffering in the
network must be at least packets in order to reach the
equilibrium.
We now turn to the stability of the algorithm. Global

stability in a general network in the presence of feedback
delay is an open problem (see [49], [50] for stability analysis
for the single-link-single-source case). State-of-the-art results
either prove global stability while ignoring feedback delay, or
local stability in the presence of feedback delay. Our stability
result is restricted to a single link in the absence of delay.
Theorem 2: Suppose there is a single link with capacity .

Then the network defined by (6)–(8) is globally stable, and
converges geometrically to the unique equilibrium .
The basic idea of the proof is to show that the iteration

from to defined by (6)–(8) is a contraction
mapping. Hence converges geometrically to the unique
equilibrium.
Some properties follow from the proof of Theorem 2.
Corollary 3: 1) Starting from any initial point

, the link is fully utilized, i.e., equality
holds in (8), after a finite time.

2) The queue length is lower and upper bounded after a
finite amount of time.

VI. PERFORMANCE
We have conducted some preliminary experiments on our

dummynet [51] testbed comparing performance of various new
TCP algorithms as well as the Linux TCP implementation. It
is important to evaluate them not only in static environments,
but also dynamic environments where flows come and go;
and not only in terms of end-to-end throughput, but also
queue behavior in the network. In this study, we compare
performance among TCP connections of the same protocol
sharing a single bottleneck link. In summary,
1) FAST TCP achieved the best overall performance in
each of the four evaluation criteria: throughput, fairness,
responsiveness, and stability.

2) Both HSTCP and STCP improved throughput and re-
sponsiveness of Linux TCP, although both showed fair-
ness problems and oscillations with higher frequencies
and larger magnitudes.

In the following subsections, we will describe in detail our
experimental setup, evaluation criteria, and results.

A. Testbed and kernel instrumentation
We constructed a testbed of a sender and a receiver both

running Linux, and an emulated router running FreeBSD. Each
testbed machine has dual Xeon 2.66 GHz, 2 GB of main
memory, and dual on-board Intel PRO/1000 Gigabit Ethernet
interfaces. We have tested these machines to ensure each is
able to achieve a peak throughput of 940 Mbps with the
standard Linux TCP protocol using iperf.

 queue 
monitor

Sender ReceiverRouter

 sender
monitor

iperf iperf

50 ms
100 ms
150 ms
200 ms

Fig. 5. Testbed and the experimental setup.Figure 5 shows the setup of the testbed. The testbed router
supports paths of various delays and a single bottleneck
capacity with a fixed buffer size. It has monitoring capability
at the sender and the router. The receiver runs different TCP
traffic sinks with different port numbers for connections with
different RTTs. We set up and run different experiments from
the sender using an automatic script generator to start multiple
iperf sessions to emulate multiple TCP connections.
Our testbed router ran dummynet [51] under FreeBSD. We

configured dummynet to create paths or pipes of different
delays, 50, 100, 150, and 200ms, using different destination
port numbers on the receiving machine. We then created
another pipe to emulate a bottleneck capacity of 800 Mbps and
a buffer size of 2,000 packets, shared by all the delay pipes.
Due to our need to emulate a high-speed bottleneck capacity,
we increased the scheduling granularity of dummynet events.
We recompiled the FreeBSD kernel so the task scheduler ran
every 1 ms. We also increased the size of the IP layer interrupt
queue (ipintrq) to 3000 to accommodate large bursts of
packets.
We instrumented both the sender and the dummynet router

to capture relevant information for protocol evaluation. For
each connection on the sending machine, the kernel monitor
captured the congestion window, the observed baseRTT, and
the observed queueing delay. On the dummynet router, the
kernel monitor captured the throughput at the dummynet
bottleneck, the number of lost packets, and the average queue
size every two seconds. We retrieved the measurement data
after the completion of each experiment in order to avoid disk
I/O that may have interfered with the experiment itself.
We tested four TCP implementations: FAST, HSTCP, STCP,

and Reno (Linux implementation). The FAST TCP is based on
Linux 2.4.20 kernel, while the rest of the TCP protocols are
based on Linux 2.4.19 kernel. We ran tests and did not observe
any appreciable difference between the two plain Linux ker-
nels, and the TCP source codes of the two kernels are nearly
identical. Linux TCP implementation includes all of the latest
RFCs such as New Reno, SACK, D-SACK, and TCP high
performance extensions. There are two versions of HSTCP
[52], [53]. We present the results of the implementation in
[52], but our tests show that the implementation in [53] has
comparable performance.
In all of our experiments, the bottleneck capacity is 800

Mbps—roughly 66 packets/ms, and the maximum buffer size
is 2000 packets.



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Testbed with Reproducible Environment



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

ExLL Provides Near-Ideal Performance

Extremely
suppressed
latency

Guaranteed
fairness

3 BBR flows over LTE 3 ExLL flows over LTE



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

ExLL Provides Near-Ideal Performance

Tested over a stable LTE channel with 45ms minRTT

ExLL ~1.50 BBR ~2.29 CUBIC ~5.63



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

ExLL Provides Near-Ideal Performance

Tested over a mobile LTE channel with 42ms minRTT

ExLL ~1.43

BBR ~1.86 (17% tput loss)

CUBIC ~9.29



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Low-Latency Transport with ML

A Deep Reinforcement Learning Perspective on Internet Congestion Control

that available bandwidth has decreased considerably, and
that no packet loss when the sending rate exceeds 20 Mbps
indicates that the available bandwidth is higher (40 Mbps).

1.3. Our Contribution

We formulate a novel framework for RL-based congestion
control protocol design, which extends the recently intro-
duced Performance-oriented Congestion Control (PCC) ap-
proach (Dong et al., 2015; 2018). We discuss challenges
involved in casting congestion control as an RL task. We
also describe remaining challenges facing the real-world
adoption of RL-based congestion control schemes, such as
fairness, safety, and generalization, which are not trivial to
address within conventional RL formalism.

We utilize our framework to design Aurora. Aurora em-
ploys deep RL (Sutton et al., 1998; Schulman et al., 2015)
to generate a policy for mapping observed network statistics
(e.g., latency, throughput) to choices of rates. Our prelim-
inary evaluation results suggest training Aurora in simple,
simulated environments is sufficient to generate congestion
control policies that perform well also in very different net-
work domains and which are comparable to, or outperform,
recent state-of-the-art handcrafted protocols.

Our code1 is open-sourced as an OpenAI Gym environment
and an accompanying testing module, to be used by RL
researchers and practitioners to evaluate their algorithms.

2. RL Approach to Internet CC
We next provide a high-level overview of RL and explain
how congestion control can be formulated as an RL task.

2.1. Background: Reinforcement Learning

In RL (Sutton et al., 1998), an agent solves a sequential de-
cision making problem by interacting with an environment.

At each discrete time step t 2 0, 1, ..., the agent observes a
(locally perceptible) state of the environment st, and selects
an action at. At the following time step t + 1, the agent
observes a reward rt, representing its loss/gain after time t,
as well as the next state st+1.2 The agent’s goal is to choose
a policy ⇡ mapping states to actions that maximize the
expected cumulative discounted return Rt = E

⇥P
t �t · rt

⇤
,

for � 2
⇥
0, 1

�
. The parameter � is termed the discount

factor. For large or continuous state and action spaces,
this problem is intractable, and recent advances in deep RL

1https://github.com/PCCproject/PCC-RL
2In our setting, the next state is drawn from the environment’s

transition dynamics, taking into account the agent’s action, the
actions of other agents, and parameters unavailable to the agent,
e.g. link capacity. This makes the problem an instance of a partially
observable Markov decision process (Kaelbling et al., 1998).

employ deep neural networks to approximate the optimal
⇡ (Schulman et al., 2015; Silver et al., 2017).

2.2. Congestion Control as RL

We formulate congestion control as a sequential decision
making problem under the RL framework.
Actions are changes to sending rate. In our formulation,
the agent is the sender of traffic and its actions translate to
changes in sending rates. To formalize this, we adopt the
notion of monitor intervals (MIs) from (Dong et al., 2015;
2018). Time is divided into consecutive intervals. In the
beginning of each MI t, the sender can adjust its sending
rate xt, which then remains fixed throughout the MI. After
experimenting with several options, we chose to express
actions as changes to the current rate (see Section 3.1).3

States are bounded histories of network statistics. Af-
ter the sender selects rate xt at MI t, it observes the results
of sending at that rate and computes a statistics vector vt
from received packet-acknowledgements. We restrict our
attention below to statistics vectors consisting of the follow-
ing: (i) latency gradient (Dong et al., 2018), the derivative
of latency with respect to time; (ii) latency ratio (Winstein
& Balakrishnan, 2013), the ratio of the current MI’s mean
latency to minimum observed mean latency of any MI in
the connection’s history; and (iii) sending ratio, the ratio of
packets sent to packets acknowledged by the receiver.

Networks greatly vary in terms of available bandwidth, la-
tency, and loss rate. Our choice of elements comprising the
statistics vector is intended to improve the generalization
of our models by avoiding statistics that are expected to
be highly variable across connections for no better reason
than variation in link properties (e.g., the absolute value of
experienced latency in milliseconds).

The agent’s selection of the next rate change is a function
of a fixed-length history of the above statistics vectors col-
lected from packet acknowledgements sent by the receiver.
Considering a bounded-length history, instead of just the
most recent statistics, allows our agent to detect trends and
changes in network conditions and react more appropriately.
Thus, the state at time t, st, is defined to be:

st = (vt�(k+d), . . . , vt�d),

for a predetermined constant k > 0 and a small number d
representing the delay between choosing a sending rate and
gathering results. We discuss how the length of the history,
i.e., k, affects performance in Section 3.3.
Setting rewards. The reward resulting from sending at a
certain rate at a certain time may depend on the performance

3While our action formulation (periodic rate changes) is less
nuanced than allowing the sender to choose the exact timing of
each packet transmission, such a formulation is too expensive to
realize with today’s transmission speeds.

A Deep Reinforcement Learning Perspective on Internet Congestion Control

requirements of the specific application; some applications
(e.g., online gaming) might require very low latency while
for others (e.g., large file transfers) high bandwidth is much
more crucial; some services might prefer low-but-constant
bandwidth (no “jitter”), while others may desire higher band-
width and be more tolerant to bandwidth variation. We
discuss specific reward functions in Section 3.1.

The effects of an action (change in rate) could potentially
have non-immediate consequences, e.g., sending at too fast
a pace could overload buffers and result in future packet
losses and delays. In RL, long-horizon decision making is
captured via the discount factor �. We discuss the impact of
� in our framework in Section 3.3.

2.3. Other Considered Approaches

We considered alternative formulations of congestion con-
trol as a learning task (most notably as a bandits problem)
and alternative model architectures (including linear mod-
els) prior to settling on the ones presented here.

Our results (see Figure 5) show that to learn a reasonable
policy, the discount factor � cannot be too low (e.g., �
should be at least 0.5), with high discount factors (� = 0.99)
resulting in much faster learning. This is in agreement with
the sequential nature of the task, in which rewards might be
delayed due to effects such as limited buffer size on the link
and increase in latency as a consequence of increase in link
occupancy.

In addition, training linear models resulted in much worse
performance—noticeably worse than even a single layer
neural network. We also tried simple random search and
hill-climbing for linear models, whic (Mania et al., 2018)
recently showed performs well on continuous Mujoco tasks,
but these were not competitive in our context.

In our experiments (Section 4), a discount of 0.99 resulted
in much faster learning (though eventually reaching a per-
formance similar to 0.5 - see Figure 5), showing that the
stronger signal from delayed rewards is important.

3. Introducing Aurora
In this section we introduce Aurora: a specific implementa-
tion of RL for congestion control, based on the formulation
above, that achieves state-of-the-art results. Our code is
available at our github repo.

3.1. Architecture
RL inputs and outputs. We choose to map our agent’s
output based on the statistic vectors discussed in Section 2
to a change in sending rate xt�1 according to:

xt =

⇢
xt�1 ⇤ (1 + ↵at) at � 0
xt�1/(1 � ↵at) at < 0

where ↵ is a scaling factor used to dampen oscillations (we
use ↵ = 0.025).
Neural network. Neural network architectures vary signif-
icantly and research suggests new architectures at an incred-
ible rate, so choosing the optimal architecture is impractical.
We show, however, that even a simple architecture, i.e., a
small fully connected neural network, produces good results.
We tested several options for the number of hidden layers
and number of neurons per layer and chose an architecture
with two hidden layers composed of 32 ! 16 neurons and
tanh nonlinearity. After training three replicas of each con-
sidered architecture, this one produced the highest average
training reward and exhibited high performance throughout
our evaluation process (see Section 4).
Reward function. We trained Aurora with a linear reward
function that rewards throughput while penalizing loss and
latency. State-of-the-art PCC-Vivace (Dong et al., 2018)
and Copa (Arun & Balakrishnan, 2018) try to optimize
reward functions with different exponents and logarithms of
these components, but have similar goals (high throughput,
low latency, with PCC-Vivace penalizing loss as well). We
choose the following linear function instead:

10 ⇤ throughput � 1000 ⇤ latency � 2000 ⇤ loss

where throughput is measured in packets per second,
latency in seconds, and loss is the proportion of all packets
sent but not acknowledged. The scale of each factor was
chosen to force models to balance throughput and latency
for our chosen training parameters. In Section 4 we discuss
the objective functions (or lack thereof) for other algorithms
where we demonstrate Aurora’s throughput-latency tradeoff.

3.2. Training

We train our agent in an open-source gym environment
described in detail in Section 5. This environment simulates
network links with a range of parameters. Our model was
trained using the PPO algorithm (Schulman et al., 2017), as
implemented in the stable-baselines python package (based
on Dhariwal et al. 2017).

3.3. Choice of Parameters

While many parameters affect the quality of our final model,
we next discuss two significant parameter choices: history
length, and discount factor.
History length. A history length of k means that the
agent makes a decision based on the k latest MIs worth of
data. Intuitively, increasing history length should increase
performance, as extra information is given. We trained
models with k ranging from 1 to 10 MIs. Figure 4 shows
the training reward of these models. Eventually, a model
with k = 2 was comparable to the model with k = 10, but
a model with a single history does not learn a comparable

A Deep Reinforcement Learning Perspective on Internet Congestion Control

that available bandwidth has decreased considerably, and
that no packet loss when the sending rate exceeds 20 Mbps
indicates that the available bandwidth is higher (40 Mbps).

1.3. Our Contribution

We formulate a novel framework for RL-based congestion
control protocol design, which extends the recently intro-
duced Performance-oriented Congestion Control (PCC) ap-
proach (Dong et al., 2015; 2018). We discuss challenges
involved in casting congestion control as an RL task. We
also describe remaining challenges facing the real-world
adoption of RL-based congestion control schemes, such as
fairness, safety, and generalization, which are not trivial to
address within conventional RL formalism.

We utilize our framework to design Aurora. Aurora em-
ploys deep RL (Sutton et al., 1998; Schulman et al., 2015)
to generate a policy for mapping observed network statistics
(e.g., latency, throughput) to choices of rates. Our prelim-
inary evaluation results suggest training Aurora in simple,
simulated environments is sufficient to generate congestion
control policies that perform well also in very different net-
work domains and which are comparable to, or outperform,
recent state-of-the-art handcrafted protocols.

Our code1 is open-sourced as an OpenAI Gym environment
and an accompanying testing module, to be used by RL
researchers and practitioners to evaluate their algorithms.

2. RL Approach to Internet CC
We next provide a high-level overview of RL and explain
how congestion control can be formulated as an RL task.

2.1. Background: Reinforcement Learning

In RL (Sutton et al., 1998), an agent solves a sequential de-
cision making problem by interacting with an environment.

At each discrete time step t 2 0, 1, ..., the agent observes a
(locally perceptible) state of the environment st, and selects
an action at. At the following time step t + 1, the agent
observes a reward rt, representing its loss/gain after time t,
as well as the next state st+1.2 The agent’s goal is to choose
a policy ⇡ mapping states to actions that maximize the
expected cumulative discounted return Rt = E

⇥P
t �t · rt

⇤
,

for � 2
⇥
0, 1

�
. The parameter � is termed the discount

factor. For large or continuous state and action spaces,
this problem is intractable, and recent advances in deep RL

1https://github.com/PCCproject/PCC-RL
2In our setting, the next state is drawn from the environment’s

transition dynamics, taking into account the agent’s action, the
actions of other agents, and parameters unavailable to the agent,
e.g. link capacity. This makes the problem an instance of a partially
observable Markov decision process (Kaelbling et al., 1998).

employ deep neural networks to approximate the optimal
⇡ (Schulman et al., 2015; Silver et al., 2017).

2.2. Congestion Control as RL

We formulate congestion control as a sequential decision
making problem under the RL framework.
Actions are changes to sending rate. In our formulation,
the agent is the sender of traffic and its actions translate to
changes in sending rates. To formalize this, we adopt the
notion of monitor intervals (MIs) from (Dong et al., 2015;
2018). Time is divided into consecutive intervals. In the
beginning of each MI t, the sender can adjust its sending
rate xt, which then remains fixed throughout the MI. After
experimenting with several options, we chose to express
actions as changes to the current rate (see Section 3.1).3

States are bounded histories of network statistics. Af-
ter the sender selects rate xt at MI t, it observes the results
of sending at that rate and computes a statistics vector vt
from received packet-acknowledgements. We restrict our
attention below to statistics vectors consisting of the follow-
ing: (i) latency gradient (Dong et al., 2018), the derivative
of latency with respect to time; (ii) latency ratio (Winstein
& Balakrishnan, 2013), the ratio of the current MI’s mean
latency to minimum observed mean latency of any MI in
the connection’s history; and (iii) sending ratio, the ratio of
packets sent to packets acknowledged by the receiver.

Networks greatly vary in terms of available bandwidth, la-
tency, and loss rate. Our choice of elements comprising the
statistics vector is intended to improve the generalization
of our models by avoiding statistics that are expected to
be highly variable across connections for no better reason
than variation in link properties (e.g., the absolute value of
experienced latency in milliseconds).

The agent’s selection of the next rate change is a function
of a fixed-length history of the above statistics vectors col-
lected from packet acknowledgements sent by the receiver.
Considering a bounded-length history, instead of just the
most recent statistics, allows our agent to detect trends and
changes in network conditions and react more appropriately.
Thus, the state at time t, st, is defined to be:

st = (vt�(k+d), . . . , vt�d),

for a predetermined constant k > 0 and a small number d
representing the delay between choosing a sending rate and
gathering results. We discuss how the length of the history,
i.e., k, affects performance in Section 3.3.
Setting rewards. The reward resulting from sending at a
certain rate at a certain time may depend on the performance

3While our action formulation (periodic rate changes) is less
nuanced than allowing the sender to choose the exact timing of
each packet transmission, such a formulation is too expensive to
realize with today’s transmission speeds.

A Deep Reinforcement Learning Perspective on Internet Congestion Control

that available bandwidth has decreased considerably, and
that no packet loss when the sending rate exceeds 20 Mbps
indicates that the available bandwidth is higher (40 Mbps).

1.3. Our Contribution

We formulate a novel framework for RL-based congestion
control protocol design, which extends the recently intro-
duced Performance-oriented Congestion Control (PCC) ap-
proach (Dong et al., 2015; 2018). We discuss challenges
involved in casting congestion control as an RL task. We
also describe remaining challenges facing the real-world
adoption of RL-based congestion control schemes, such as
fairness, safety, and generalization, which are not trivial to
address within conventional RL formalism.

We utilize our framework to design Aurora. Aurora em-
ploys deep RL (Sutton et al., 1998; Schulman et al., 2015)
to generate a policy for mapping observed network statistics
(e.g., latency, throughput) to choices of rates. Our prelim-
inary evaluation results suggest training Aurora in simple,
simulated environments is sufficient to generate congestion
control policies that perform well also in very different net-
work domains and which are comparable to, or outperform,
recent state-of-the-art handcrafted protocols.

Our code1 is open-sourced as an OpenAI Gym environment
and an accompanying testing module, to be used by RL
researchers and practitioners to evaluate their algorithms.

2. RL Approach to Internet CC
We next provide a high-level overview of RL and explain
how congestion control can be formulated as an RL task.

2.1. Background: Reinforcement Learning

In RL (Sutton et al., 1998), an agent solves a sequential de-
cision making problem by interacting with an environment.

At each discrete time step t 2 0, 1, ..., the agent observes a
(locally perceptible) state of the environment st, and selects
an action at. At the following time step t + 1, the agent
observes a reward rt, representing its loss/gain after time t,
as well as the next state st+1.2 The agent’s goal is to choose
a policy ⇡ mapping states to actions that maximize the
expected cumulative discounted return Rt = E

⇥P
t �t · rt

⇤
,

for � 2
⇥
0, 1

�
. The parameter � is termed the discount

factor. For large or continuous state and action spaces,
this problem is intractable, and recent advances in deep RL

1https://github.com/PCCproject/PCC-RL
2In our setting, the next state is drawn from the environment’s

transition dynamics, taking into account the agent’s action, the
actions of other agents, and parameters unavailable to the agent,
e.g. link capacity. This makes the problem an instance of a partially
observable Markov decision process (Kaelbling et al., 1998).

employ deep neural networks to approximate the optimal
⇡ (Schulman et al., 2015; Silver et al., 2017).

2.2. Congestion Control as RL

We formulate congestion control as a sequential decision
making problem under the RL framework.
Actions are changes to sending rate. In our formulation,
the agent is the sender of traffic and its actions translate to
changes in sending rates. To formalize this, we adopt the
notion of monitor intervals (MIs) from (Dong et al., 2015;
2018). Time is divided into consecutive intervals. In the
beginning of each MI t, the sender can adjust its sending
rate xt, which then remains fixed throughout the MI. After
experimenting with several options, we chose to express
actions as changes to the current rate (see Section 3.1).3

States are bounded histories of network statistics. Af-
ter the sender selects rate xt at MI t, it observes the results
of sending at that rate and computes a statistics vector vt
from received packet-acknowledgements. We restrict our
attention below to statistics vectors consisting of the follow-
ing: (i) latency gradient (Dong et al., 2018), the derivative
of latency with respect to time; (ii) latency ratio (Winstein
& Balakrishnan, 2013), the ratio of the current MI’s mean
latency to minimum observed mean latency of any MI in
the connection’s history; and (iii) sending ratio, the ratio of
packets sent to packets acknowledged by the receiver.

Networks greatly vary in terms of available bandwidth, la-
tency, and loss rate. Our choice of elements comprising the
statistics vector is intended to improve the generalization
of our models by avoiding statistics that are expected to
be highly variable across connections for no better reason
than variation in link properties (e.g., the absolute value of
experienced latency in milliseconds).

The agent’s selection of the next rate change is a function
of a fixed-length history of the above statistics vectors col-
lected from packet acknowledgements sent by the receiver.
Considering a bounded-length history, instead of just the
most recent statistics, allows our agent to detect trends and
changes in network conditions and react more appropriately.
Thus, the state at time t, st, is defined to be:

st = (vt�(k+d), . . . , vt�d),

for a predetermined constant k > 0 and a small number d
representing the delay between choosing a sending rate and
gathering results. We discuss how the length of the history,
i.e., k, affects performance in Section 3.3.
Setting rewards. The reward resulting from sending at a
certain rate at a certain time may depend on the performance

3While our action formulation (periodic rate changes) is less
nuanced than allowing the sender to choose the exact timing of
each packet transmission, such a formulation is too expensive to
realize with today’s transmission speeds.

• Training for all possible cases is impossible. (Exploration inefficiency exists.)
• Fairness between flows has not been addressed. 

◻ People stated to test RL (e.g.,  Aurora [ICML’19]) for congestion control

Simulated network with 30ms minRTT
Th

ro
ug

hp
ut

 (M
b

p
s)

Latency (ms)
30 40 50 60 70 80



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Low-Latency Transport with ML
Tr

ai
ne

d 
w

ith
 

48
 h

ou
rs

 o
f l

og
 (2

34
.2

G
B

)

with MobileInsight

◻ Throughput prediction for near-zero queueing 
(under mobility/handoff/user-contention)

PERCEIVE [MobiSys’20] 2-stage LSTM on Pixel 3 for cellular uplinks gives
6.25% tput error @ 224ms
8.73% tput error @ 22.3ms (with 10x model compression) 



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Challenge 2: Volume Reduction

Fingerprints of chunks in a file

Stored chunks 
and fingerprints

A list of matched fingerprints

Unique chunks

File

Chunk

Fingerprint

Chunking

Hashing

End-host RE ~ Transmission with Dedup

□ RE is a network (middlebox) technique that can remove duplicate data 
from within arbitrary network flows for traffic volume reduction.

B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan, R. Ramjee and G. Varghese,
”EndRE: An End-System Redundancy Elimination Service for Enterprises,” NSDI 2010.



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

JPEG ImagesPDF Files

SyncCoding SyncCoding

SyncCoding

vs.

Dedup(n)
(using n-byte chunk)

RFC Documents Web Source Codes

Compression efficiency =
compressed amount

original size

SyncCoding SyncCoding

Unless the documents of interest are exactly the same or are
just different versions of the same file, redundancy elimination
with 1kB chunk is not realistic. While OpenDedup only dedu-
plicates exactly matching chunks, more recent Deduplication
techniques such as [20] can find chunks with differences of a
few bytes and are known to be more effective.

III. LZMA PRIMER

SynCoding is implemented based on LZMA. Therefore, in
order to explain how SyncCoding is implemented, we give a
short primer of LZ77 and LZMA algorithms.

LZ77 encodes a sequence of symbols by maintaining a
sliding window of size w within which the blocks of symbols
appeared in the window are systematically constructed as a
tree. Since the window is sliding, the blocks of symbols
captured in the tree will change as the encoding proceeds.
The compression of bits in LZ77 occurs when a repeated
block of symbols is replaced with a length-distance pair, where
the length and the distance denote the length of the block of
symbols and the bit-wise distance from the current position
to the position where the same block of symbols appeared
earlier within the window. Every time a block of symbol
is replaced by a length-distance pair, LZ77 tries to find the
longest matching block in the window in order to reduce
the number of encoded length-distance pairs as the reduction
directly affects the compression efficiency. A sample encoding
with LZ77 when the window size is 4 is illustrated in Fig. 1
(a). The window size in LZ77 which is static may bring a
performance issue. When the window size is small, the amount
of blocks of symbols that can be kept in the window is limited,
hence reducing the chances of compression.

LZMA works very similarly to LZ77 but with two major
improvements. The first is that LZMA adopts a dynamic
window that has its initial size as one and grows as the
encoding proceeds. Because the window grows, LZMA does
not suffer from being constrained by a small static window
size. The second is that LZMA further reduces the number
of bits representing a length-distance pair by specifying a few
special encoded bits that are used when the current distance
is the same with the distances that are most recently encoded.
Reusing the distance information with fewer bits helps a
lot when the data to compress has a repetitive nature (e.g.,
repetitive sentences or paragraphs in a file). The look up of
the distances is typically done for the last four pairs. A sample
encoding with LZMA is depicted in Fig. 1 (b). These small
changes cause LZMA can compress data more than LZ77 [21].

The optimality of LZ77 was proved earlier by Ziv and
Lempel [22] in the sense that the total number of bits required
to encode a data with LZ77 converges to the entropy rate of
the data, where the entropy rate is defined with the symbol-
by-symbol manner. Since LZMA is more efficient than LZ77,
it is not difficult to prove that LZMA also converges to the
entropy rate by extending the proof in [22].

Now, our interest lies in how the number of bits required for
SyncCoding can be compared with that of LZMA and whether

(1,d)

(Length, Distance)

(3,4)

(1,2)

(2,4)

a a b c d a b c b a b d

Sliding window

Longest match

a a b c d a b c b a b d

a a b c d a b c b a b d

a a b c d a b c b a b d

No match

(1,d)

(Length, Distance)

(3,4)

(1,2)

(2,4) è (2)2

a a b c d a b c b a b d

Dynamic window

a a b c d a b c b a b d

a a b c d a b c b a b d

a a b c d a b c b a b d

(a) Encoding of LZ77

(1,d)

(Length, Distance)

(3,4)

(1,2)

(2,4)

a a b c d a b c b a b d

Sliding window

Longest match

a a b c d a b c b a b d

a a b c d a b c b a b d

a a b c d a b c b a b d

No match

(1,d)

(Length, Distance)

(3,4)

(1,2)

(2,4) è (2)2

a a b c d a b c b a b d

Dynamic window

a a b c d a b c b a b d

a a b c d a b c b a b d

a a b c d a b c b a b d
Longest match

(b) Encoding of LZMA

Fig. 1. Sample encoding of (a) LZ77 and (b) LZMA over
a sequence of symbols. Whenever a match exists, the longest
match is encoded with a length-distance pair. No match lets the
symbol be encoded. When there is a distance value repeated
recently, LZMA points to it instead of directly encoding it.

it is less or more. To this end, we explain how the number of
bits required for LZMA can be mathematically evaluated.

Let TLZMA({S}N1 ) be the total required bits of the output
encoded by LZMA for a given sequence of N symbols {S}N1 .
Suppose that pLZMA is the number of phrases to be encoded
in LZMA, where a phrase is defined by a block of symbols.
Note that as encoding progresses, the length of a new phrase
(i.e., the number of symbols in the phrase) is determined by
the longest matching sub-sequence of symbols that can be
found in the sliding window. Then, TLZMA({S}N1 ) becomes
the bits required to encode all the length-distance pairs for
the phrases,

PpLZMA
i=1 {f(li) + g(di)}, where li is the length of

phrase i, di is the matching distance of phrase i, and f(li)
and g(di) denote the bits to encode li and di, respectively.
The matching distance di is the bit-wise distance from the
current position to the previous position of the same phrase.

LZMA uses comma-free binary encoding [22] for f(li),
which is also used in LZ77. The comma-free binary encod-
ing consists of two parts: 1) the prefix and 2) the binary
encoding of li, denoted by b(li). According to [22], the
prefix and the binary encoding occupies 2dlog2dlog2(li + 1)ee
and dlog2(li + 1)e bits, respectively. The summation of those
quantifies f(li) of LZMA.

g(di) in LZMA falls into either of the following three cases.
When the distance to encode is not the same with any of
the four recently used distances, the distance is encoded by
the binary encoding of a fixed number of digits which is
determined by the size of the sliding window w. Therefore
g(di) always goes to log2(w). There is one exception when
li = 1 (i.e., the phrase consists of a single symbol), the
symbol itself is encoded instead of the distance being encoded.
Therefore, g(di) = log2 C, where C denotes the size of the
symbol space (i.e., character space for a text encoding). When
the distance is repeated from the four recently used distances,
there exist two bit mappings of 4 bits or 5 bits by the following
cases: 1) g(di) = 4 when the distance matches with the first or
the second lastly used distance, 2) g(di) = 5 when the distance
matches with the third or the fourth lastly used distance.

By the equations above, we can estimate the best case of
LZMA, that happens when all the distances to encode for the
phrases whose length is larger than two are found from the
first or the second lastly used distance, i.e., g(di) = 4. Thus,
we have the following lower bound for TLZMA({S}N1 ).

R1R2 TargetR3…

Selected References to encode a Target

Encode longest-matches

Dedup(8): ~1/2
SyncCoding: ~ 1/6

Dedup(8): ~1/2
SyncCoding: ~ 1/25

Dedup(8): ~0.9
SyncCoding: ~ 0.6

Dedup(8): ~0.99
SyncCoding: ~ 0.97

SyncCoding: RE with Pre-Synced Data



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Ultimate RE inside Transport Layer

X

Transmitting H(X)

Y

Y

Transmitting H(X|Y)

Design Y that extremely reduces H(X|Y)!



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Challenge 3: Retransmission Delay

□ HINT: QUIC (Quick UDP Internet Connections)
§ UDP based transport protocol with functions of TCP and TLS.
§ Standardized as HTTP/3 (from 2018.11)

□ QUIC advantages
§ Connection establishment latency
§ Forward error correction
§ Improved congestion control
§ Multiplexing without head-of-line blocking
§ Connection migration



Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

QUIC Protocol: FEC

□ Forward Error Correction
§ To recover from lost packets without waiting for a retransmission
§ QUIC uses a simple XOR FEC (with session multiplexing)

§ A more efficient FEC can be employed for the same purpose. 


