

Transport Layer - High Performance Transport -

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

KPIs for Future Transport Layer Protocols

Guaranteed E2E Latency

(application's point of view)

KPIs in trade-off relation

Modified Fairness

E2E Latency is Everything

E2E Latency = First-byte-Delay + DataVolume/Throughput

Mark Glimour, "5G – Latency: New use cases and the need for network slicing," InformaTech reports, Feb. 2017.

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Ultimate Service: Low-latency Telepresence

 Low-latency telepresence is the idea of providing people the experience as if they are present at a place other than their physical location by making remote interactions indistinguishable from local interactions.

Latency Decomposition

Latency Reality in Cellular Networks

Tackling bufferbloat in 3G/4G networks, ACM IMC 2012

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Understanding the Problem and the Trick

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Latency Reality in 5G/LTE Networks

5G

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Core Challenges for Guaranteed E2E Latency

E2E latency: time taken to relocate an information object over a network (mostly Propagation delay + Queueing delay + Transmission delay + Retransmission delay)

E2E latency

Challenge 1+3: Low-Latency CC (+ Fast Convergence)

RTT in a cellular network with fluctuating bandwidth

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Low-Latency Transport Protocols

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

BBR (Bottleneck Bandwidth and Round-trip propagation time) $\ensuremath{\mathsf{Google}}$

- □ BBR cycles 4 operations (BBR is in the Linux kernel from 4.9)
 - STARTUP
 - DRAIN
 - PROBE_BW
 - PROBE_RTT

- exponential BW search
- drain the queue created during startup
- explore max BW, drain queue, cruise
- guarantee fairness among multiple BBR flows

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Latency Limit without Throughput Loss

Eliminating Probing Inefficiency

- Letting the cellular receiver infer the <u>available throughput</u> as well as <u>minimum achievable RTT</u> for tracking BDP
 - Packet reception pattern in the receiver has abundant information

14

- Consecutive packet interval ightarrow available PHY rate (at the chosen MCS)
- Per-radio frame reception \rightarrow available PHY rate + user scheduling situatior

SEOUL NATIONAL UNIVERSITY

Window Control Implementation

- \square ExLL: window control with MTE and mRE
 - Converges to the solution of a NUM (network utilization maximization): $\max_{x \ge 0} \sum_{i} \alpha_i \log x_i$

$$w_{i+1} = (1 - \gamma) \cdot w_i + \gamma \left(\frac{mRE_i}{R_i} \cdot w_i + \alpha \left(1 - \frac{T_i}{MTE_i} \right) \right)$$

Probes minRTT

RTT Probes max throughput, goes to 0 when MTE is achieved

ExLL receiver makes any CUBIC sender to be a low-latency sender.

Testbed with Reproducible Environment

Shield box (TESCOM, TC-5970C)

ExLL Provides Near-Ideal Performance

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

ExLL Provides Near-Ideal Performance

ExLL Provides Near-Ideal Performance

Low-Latency Transport with ML

□ People stated to test RL (e.g., Aurora [ICML'19]) for congestion control

 $R_t = \mathbb{E}\big[\sum_t \gamma^t \cdot r_t\big]$

 $r_t = 10 * throughput - 1000 * latency - 2000 * loss$

- Training for all possible cases is impossible. (Exploration inefficiency exists.)
- Fairness between flows has not been addressed.

Low-Latency Transport with ML

□ Throughput prediction for near-zero queueing (under mobility/handoff/user-contention)

PERCEIVE [MobiSys'20] 2-stage LSTM on Pixel 3 for cellular uplinks gives 6.25% tput error @ 224ms

8.73% tput error @ 22.3ms (with 10x model compression)

Challenge 2: Volume Reduction

 RE is a network (middlebox) technique that can remove duplicate data from within arbitrary network flows for traffic volume reduction.

End-host RE ~ Transmission with Dedup

B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan, R. Ramjee and G. Varghese, "EndRE: An End-System Redundancy Elimination Service for Enterprises," NSDI 2010.

SyncCoding: RE with Pre-Synced Data

Ultimate RE inside Transport Layer

Design Y that extremely reduces H(X|Y)!

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Challenge 3: Retransmission Delay

□ HINT: QUIC (Quick UDP Internet Connections)

- UDP based transport protocol with functions of TCP and TLS.
- Standardized as HTTP/3 (from 2018.11)

QUIC advantages

- Connection establishment latency
- Forward error correction
- Improved congestion control
- Multiplexing without head-of-line blocking
- Connection migration

QUIC Protocol: FEC

- Forward Error Correction
 - To recover from lost packets without waiting for a retransmission
 - QUIC uses a simple XOR FEC (with session multiplexing)

• <u>A more efficient FEC can be employed for the same purpose.</u>

