
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Abstract Priority Queues

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline
□ This topic will:

§ Review queues
§ Discuss the concept of priority and priority queues
§ Look at two simple implementations:

• Arrays of queues
• AVL trees

§ Introduce heaps, an alternative tree structure which has better
run-time characteristics

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Background
□ We have discussed Abstract Lists

§ Arrays, linked lists

□ We saw three cases which restricted the operations:
§ Stacks, queues, deques

□ Then, we studied search trees: Abstract Sorted Lists
§ Run times were generally Q(ln(n))

□ We will now look :
§ Priority queues
§ Restriction on Abstracted Sorted Lists

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Definition
□ With queues

§ The order may be summarized by first in, first out

□ If each object is associated with a priority, we may wish
to pop that object which has highest priority

□ With each pushed object, we will associate a
nonnegative integer (0, 1, 2, ...) where:
§ The value 0 has the highest priority, and
§ The higher the number, the lower the priority

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

□ The top of a priority queue is the object with highest
priority

□ Popping from a priority queue removes the current highest
priority object:

□ Push places a new object into the appropriate place

Operations

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Process Priority in Linux
□ This is the scheme used by Linux, e.g.,

% nice -15 ./a.out
sets the priority of the execution of a.out as -15
(priority range [-20 20], -20: the highest, 20: the lowest)

□ The kernel will schedule processes according to the
priority

$ man nice

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Process Priority in Windows

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Implementations
□ Our goal is to make the run time of each operation as

close to Q(1) as possible

□ We will look at two naïve implementations using data
structures we already know:
§ Multiple queues—one for each priority
§ An AVL tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Multiple Queues
□ Assume there is a fixed number of priorities, say M

§ Create an array of M queues
§ Push a new object onto the queue corresponding to the priority
§ Top and pop find the first empty queue with highest priority

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Multiple Queues
□ The run times are reasonable:

§ Push is Q(1)
§ Top and pop are both O(M)

□ Unfortunately:
§ It restricts the range of priorities
§ The memory requirement is Q(M + n)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

AVL Trees
□ We could simply insert the objects into an AVL tree

where the order is given by the stated priority:
§ Insertion is Q(ln(n))
§ Top is Q(ln(n))
§ Remove is Q(ln(n))

□ There is significant overhead for maintaining both the
tree and the corresponding balance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Better Idea: Heaps
□ Can we do better?

§ That is, can we reduce some (or all) of the operations down to
Q(1)?

□ The next topic defines a heap
§ A tree with the top object at the root
§ We will look at binary heaps
§ Numerous other heaps exists:

• d-ary heaps
• Leftist heaps
• Skew heaps
• Binomial heaps
• Fibonacci heaps
• Bi-parental heaps

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Summary
□ This topic:

§ Introduced priority queues
§ Considered two obvious implementations:

• Arrays of queues
• AVL trees

§ Discussed the run times and claimed that a variation of a tree, a
heap, can do better

References
[1] Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, The MIT Press, 2001, §6.5.
[2] Mark A. Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, 2006.
[3] Joh Kleinberg and Eva Tardos, Algorithm Design, Pearson, 2006, §2.5.
[4] Elliot B. Koffman and Paul A.T. Wolfgang, Objects, Abstractions, Data Structures and Design using

C++, Wiley, 2006, §8.5.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Binary Heaps

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Outline

□ In this topic, we will:
§ Define a binary min-heap
§ Look at some examples
§ Operations on heaps:

• Top
• Pop
• Push

§ An array representation of heaps
§ Define a binary max-heap
§ Using binary heaps as priority queues

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Definition

□ A non-empty binary tree is a min-heap if
§ The key of the root is less than or equal to all the keys in both

sub-trees
§ Both of the sub-trees (if any) are also binary min-heaps

□ From this definition:
§ A single node is a min-heap
§ All keys in either sub-tree are greater than the root key

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Example

□ This is a binary min-heap:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Operations

□ We will consider three operations:
§ Top
§ Pop
§ Push

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Top

□ We can find the top object in Q(1) time: 3

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Pop

□ To remove the minimum object:
§ Promote the node of the sub-tree which has the least value
§ Recurs down the sub-tree from which we promoted the least

value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Pop: 3

□ Using our example, we remove 3:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Pop: 3

□ We promote 7 (the minimum of 7 and 12) to the root:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Pop: 3

□ In the left sub-tree, we promote 9:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Pop: 3

□ Recursively, we promote 19:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Pop: 3

□ Finally, 55 is a leaf node, so we promote it and delete
the leaf

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Pop: 7

□ Repeating this operation again, we can remove 7:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Pop: 9

□ If we remove 9, we must now promote from the right
sub-tree:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Push

□ Inserting into a heap may be done either:
§ Bottom-up: At a leaf (move it up if it is smaller than the parent)
§ Top-down: At the root (insert the larger object into one of the

subtrees)

□ We will use the bottom-up approach with binary heaps

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Push: 17

□ Inserting 17 into the last heap
§ Select an arbitrary node to insert a new leaf node:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Push: 17

□ The node 17 is less than the node 32, so we swap them

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Push: 17

□ The node 17 is less than the node 31; swap them

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Push: 17

□ The node 17 is less than the node 19; swap them

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Push: 17

□ The node 17 is greater than 12 so we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Push Observation: One-way Percolation up/down

□ Observation: both the left and right subtrees of 19 were
greater than 19, thus we are guaranteed that we don’t
have to send the new node down (to the other subtree)

□ This process is called percolation up, that is, the lighter
(smaller) objects move up from the bottom of the min-
heap

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Keeping Balance

□ With binary search trees, we introduced the concept of
balance
§ AVL Trees
§ B-Trees
§ Red-black Trees

□ How do we maintain the balance of binary heap?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Easy Solution: Complete Tree

□ To keep the balance, we maintain the shape of
complete tree structure

□ We have already seen
§ It is easy to store a complete tree as an array

□ If we can store a heap of size n as an array of size Q(n),
this would be great!

□ We now need to think about how to support push and
pop.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Complete Trees

□ For example, the previous heap may be represented as
the following complete tree:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Complete Trees: Push

□ If we insert into a complete tree, we only need to place
the new node as a leaf node in the appropriate location
and percolate up

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Complete Trees: Push

□ For example, push 25:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Complete Trees: Push

□ We have to percolate 25 up into its appropriate location
§ The resulting heap is still a complete tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Complete Trees: Pop

□ Suppose we want to pop the top entry: 12

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Complete Trees: Pop

□ Percolating up creates a hole leading to a non-complete
tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

43

Complete Trees: Pop

□ Alternatively, copy the last entry in the heap to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Complete Trees: Pop

□ Now, percolate 36 down swapping it with the smallest
of its children
§ We halt when both children are larger

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Complete Trees: Pop

□ The resulting tree is now still a complete tree:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Complete Trees: Pop

□ Again, popping 15, copy up the last entry: 88

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Complete Trees: Pop

□ This time, it gets percolated down to the point where it
has no children

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Complete Trees: Pop

□ In popping 17, 53 is moved to the top

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Complete Trees: Pop

□ And percolated down, again to the deepest level

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Complete Trees: Pop

□ Popping 19 copies up 39

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Complete Trees: Pop

□ Which is then percolated down to the second deepest
level

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Run-time Analysis

□ Accessing the top object is Q(1)

□ Popping the top object is O(ln(n))
§ We copy something that is already in the lowest depth—it will

likely be moved back to the lowest depth

□ How about push?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Run-time Analysis

□ Recall our insertion works bottom-up (percolation up)

□ Worst case: If we are inserting an object less than the
root (at the front), then the run time will be O(ln(n))

□ Best case: If we insert an object greater than any object
(at the back), then the run time will be O(1)

□ Average Case? This is tricky to answer
§ Will it be O(ln(n))?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Run-time Analysis
□ Assumption

§ Previously inserted n values were drawn from a distribution 𝐔
§ To be inserted value 𝑥 is also drawn from the same distribution 𝐔

□ Analysis
§ 𝑛/2 nodes are at height h (the leaves)

• At the ½ probability, 𝑥 is less than 𝑛/2 nodes
• At the ½ probability, we need at least one percolation up

§ 𝑛/4 nodes are at height h-1
• At the ¼ probability, 𝑥 is less than 𝑛/4 nodes
• At the ¼ probability, we need at least two percolation up

§ …
§ 1 node is at height 0 (the root)

So the expected number of percolation up is
1
2
(1 +

1
4
(2 +

1
8
(3 + ⋯ = .

!"#

$
𝑘
2𝑘
= 2

Therefore, we have an average run time of O(1)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Run-time Analysis

□ An arbitrary removal requires that all entries in the heap
be checked: O(n)

□ A removal of the largest object in the heap still requires
all leaf nodes to be checked – there are approximately
n/2 leaf nodes: O(n)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Run-time Analysis

□ To summarize, our grid of run times is given by:

Average Worst

Top (Find min) O(1) O(1)

Pop (Delete
min)

O(ln(n)) O(ln(n))

Insert O(1) O(ln(n))

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Binary Max Heaps

□ A binary max-heap is identical to a binary min-heap
except that the parent is always larger than either of the
children

□ For example, the same data as before stored as a max-
heap yields

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Other Heaps

□ Other heaps have its own unique run-time
characteristics
§ Leftist, skew, binomial and Fibonacci heaps all use a node-

based implementation requiring Q(n) additional memory
§ For Fibonacci heaps, the run-time of all operations (including

merging two Fibonacci heaps) except pop are Q(1)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Summary

□ In this talk, we have:
§ Discussed binary heaps
§ Looked at an implementation using arrays
§ Analyzed the run time:

• Head Q(1)
• Push Q(1) average
• Pop O(ln(n))

§ Discussed implementing priority queues using binary heaps

References
[1] Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd

Ed., Addison Wesley, 1998, §7.2.3, p.144.
[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §7.1-3, p.140-7.
[3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §6.3, p.215-

25.

