Abstract Priority Queues

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

Outline

0 This topic will:
= Review queues
= Discuss the concept of priority and priority queues

= Look at two simple implementations:

* Arrays of queues
* AVL trees

* Introduce heaps, an alternative tree structure which has better
run-time characteristics

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB

Background

0 We have discussed Abstract Lists
= Arrays, linked lists

0 We saw three cases which restricted the operations:

= Stacks, queues, deques

0o Then, we studied search trees: Abstract Sorted Lists

= Run times were generally ©(In(n))

o We will now look :
= Priority queues
= Restriction on Abstracted Sorted Lists

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

4

Definition

o With queues
» The order may be summarized by first in, first out

0 If each object is associated with a priority, we may wish
to pop that object which has highest priority

0 With each pushed object, we will associate a
nonnegative integer (0, 1, 2, ...) where:
= The value O has the highest priority, and
= The higher the number, the lower the priority

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB

5

Operations
0 The top of a priority aueue is the obiect with highest
priority
.....---..
Top

0 Popping from a priority queue removes the current highest

priority object: -

: ?Illllllll

Top
0 Push places a new object into the appropriate place

Push J
?lll L

Top

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Process Priority in Linux

0 This is the scheme used by Linux, e.g.,
% nice -15 ./a.out
sets the priority of the execution of a.outas -15
(priority range [-20 20], -20: the highest, 20: the lowest)

0 The kernel will schedule processes according to the
priority

$ man nice

User Co
NICE(1)

ram with modified scheduling priority

nice [OPTION] [COMMAND [ARG]...]

DESCRIPTION

Run COMMAND with an adjusted niceness, which affects process scheduling. With no COMMAND, print the curren t niceness.
s values range from -20 (most favorable to the process) to 19 (least favorable to the process).

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Process Priority in Windows

1% Task Manager

File Options View

Processes Performance App history Start-up Users Details Services

~

Name
[®5 svchost.exe
[®5 svchost.exe
[®5 svchost.exe
[®5 svchost.exe
[® svchost.exe
[®5 svchost.exe
[®5 svchost.exe
[®5 svchost.exe
[® svchost.exe
[®5 svchost.exe
[® svchost.exe
[® System
[B7System Idle Process
[B7System interrupts
[taskhostw.exe
124 Taskmgr.exe
[® valWBFPolicyService.
[®5 wininit.exe
'winlogon.exe
4 WmiPrvSE.exe
[®5 WUDFHost.exe
[xViix64.exe

Fewer details

PID
4412
8268
5656
8092
10152
8684
7468
9492
6380
7840
9644
4

0
4440
2500
3520
572
948
9016
68
3924

Status

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

Username
Karl

SYSTEM
SYSTEM
SYSTEM
LOCAL SER...
SYSTEM
LOCAL SER...
SYSTEM
SYSTEM

ACTWAWNDV

End task

End process tree
Set priority

Set affinity
Analyse wait chain
UAC virtualisation
Create dump file

Open file location
Search online
Properties

Go to service(s)

00
00
00
00
00
00
00
00
00

nn

CPU Memory (pr.. Description
4,492 K Host Process for Window...
5,908 K Host Process for Window...
692 K Host Process for Window...
1,068 K Host Process for Window...
956 K Host Process for Window...
704 K Host Process for Window...
1,124 K Host Process for Window...
3,792 K Host Process for Window...
844 K Host Process for Window...
2,892 K Host Process for Window...
1,116 K Host Process for Window...

20 K NT Kernel & System

Realtime ime the pr...
High ure calls ...
Above normal Window...
Normal

Below normal licy Serv...
Low p Applic...

1,372 K Windows Log-on Applica...

1,896 K WMI Provider Host

1,916 K Windows Driver Foundati...

11,688 K SPICE Simulator w/ Sche...

End task

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

8

Implementations

0 Our goal is to make the run time of each operation as
close to ©(1) as possible

0 We will look at two naive implementations using data
structures we already know:

= Multiple queues—one for each priority
= An AVL tree

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Multiple Queues

0 Assume there is a fixed number of priorities, say M

= Create an array of M queues

= Push a new object onto the queue corresponding to the priority

= Top and pop find the first empty queue with highest priority

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

9

LAB

10

Multiple Queues

0 The run times are reasonable:
= Push is ®(1)
= Top and pop are both O(M)

0 Unfortunately:
= |t restricts the range of priorities
= The memory requirement is @M + n)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

AVL Trees

0 We could simply insert the objects into an AVL tree
where the order is given by the stated priority:
» |nsertion is ®(In(n))
= Top is O(In(n))
= Remove is O(In(n))

0 There is significant overhead for maintaining both the
tree and the corresponding balance

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Better Idea: Heaps

0 Can we do better?

= Thatis, can we reduce some (or all) of the operations down to

O(1)?

0 The next topic defines a heap

= A tree with the top object at the root
= We will look at binary heaps O/®\©

= Numerous other heaps exists:

d-ary heaps
Leftist heaps
Skew heaps
Binomial heaps
Fibonacci heaps
Bi-parental heaps

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

13

Summary

0 This topic:
* Introduced priority queues

= Considered two obvious implementations:
* Arrays of queues

o AVL trees

» Discussed the run times and claimed that a variation of a tree, a
heap, can do better

References

[1] Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, The MIT Press, 2001, §6.5.

[2] Mark A. Weiss, Data Structures and Algorithm Analysis in C++, 3" Ed., Addison Wesley, 2006.

[3] Joh Kleinberg and Eva Tardos, Algorithm Design, Pearson, 2006, §2.5.

[4] Elliot B. Koffman and Paul A.T. Wolfgang, Objects, Abstractions, Data Structures and Design using
C++, Wiley, 2006, §8.5.

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Binary Heaps

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

15

Outline

0 In this topic, we will:
= Define a binary min-heap
= Look at some examples
= Operations on heaps:
* Top
* Pop
e Push
= An array representation of heaps
= Define a binary max-heap
= Using binary heaps as priority queues

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Definition

0 A non-empty binary tree is a min-heap if
= The key of the root is less than or equal to all the keys in both
sub-trees

= Both of the sub-trees (if any) are also binary min-heaps
N g

o ©Cpa®

0 From this definition:

= Asingle node is a min-heap
= All keys in either sub-tree are greater than the root key

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

17
Example
0 This is a binary min-heap:
Introductionstgcg)jtaNS;[rulgtlﬂzst EE:E\?SSS?_;J, 2021 FALL N x c I.AB

18
Operations
0 We will consider three operations:
= Top
= Pop
= Push
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I_AB

19

Top

0 We can find the top object in ©(1) time: 3

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Pop

0 To remove the minimum object:

= Promote the node of the sub-tree which has the least value
= Recurs down the sub-tree from which we promoted the least

value

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

20

LAB

21
Pop: 3
0 Using our example, we remove 3:
Introductionstgcg)jtaNS;[rulgtlﬂzst EE:E\?SSS?_;J, 2021 FALL N x c I_AB

Pop: 3

0 We promote 7 (the minimum of 7 and 12) to the root:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

23
Pop: 3
0 In the left sub-tree, we promote 9:
Introductionstgcg)jtaNS;[rulgtlﬂzst EE:E\?SSS?_;J, 2021 FALL N x c I_AB

24
Pop: 3
0 Recursively, we promote 19:
Introductionstgcg)jtaNS;[rulgtlﬂzst EE:E\?SSS?_;J, 2021 FALL N x c I.AB

25
Pop: 3
o Finally, 55 is a leaf node, so we promote it and delete
the leaf
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I_AB

26
Pop: 7
0 Repeating this operation again, we can remove 7:
Introductionstgcg)jtaNS::HgL'J\lrzst Eﬁ:i\ffsgsf_x, 2021 FALL N x c I_AB

Pop: 9

0 If we remove 9, we must now promote from the right
sub-tree:

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

L
Push

0 Inserting into a heap may be done either:
= Bottom-up: At a leaf (move it up if it is smaller than the parent)

= Top-down: At the root (insert the larger object into one of the
subtrees)

0 We will use the bottom-up approach with binary heaps

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

29
Push: 17
0 Inserting 17 into the last heap
= Select an arbitrary node to insert a new leaf node:
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I.AB

L
Push: 17

0 The node 17 is less than the node 32, so we swap them

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

31
Push: 17
0 The node 17 is less than the node 31; swap them
Introductionstgcg)jtaNS;[rulgtlﬂzst EE:E\?SSS?_;J, 2021 FALL N x c I_AB

32
Push: 17
0 The node 17 is less than the node 19; swap them
Introductionstgcg)jtaNS;[rulgtlﬂzst EE:E\?SSS?_;J, 2021 FALL N x c I_AB

L
Push: 17

0 The node 17 is greater than 12 so we are finished

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

34

Push Observation: One-way Percolation up/down

0 Observation: both the left and right subtrees of 19 were
greater than 19, thus we are guaranteed that we don't
have to send the new node down (to the other subtree)

0 This process is called percolation up, that is, the lighter
(smaller) objects move up from the bottom of the min-

heap

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Keeping Balance

o With binary search trees, we introduced the concept of

balance

= AVL Trees
= B-Trees
» Red-black Trees

0 How do we maintain the balance of binary heap?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

35

LAB

36

Easy Solution: Complete Tree

0 To keep the balance, we maintain the shape of
complete tree structure

0 We have already seen
= |tis easy to store a complete tree as an array

0 If we can store a heap of size n as an array of size ®(n),
this would be great!

0 We now need to think about how to support push and
POP-

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

37

Complete Trees

0 For example, the previous heap may be represented as
the following complete tree:

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Complete Trees: Push

0 If we insert into a complete tree, we only need to place
the new node as a leaf node in the appropriate location
and percolate up

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

38

LAB

39
Complete Trees: Push
0 For example, push 25:
Introduction Stg gSEaNs:TulgT\eri EEF\?S%? \Z 2021 FALL NXCILAB

40

Complete Trees: Push

0 We have to percolate 25 up into its appropriate location
= The resulting heap is still a complete tree

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

41
Complete Trees: Pop
0 Suppose we want to pop the top entry: 12
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I_AB

42
Complete Trees: Pop
0 Percolating up creates a hole leading to a non-complete
tree
12
Introductionstgcg)jtaNS;[rulgllilr:st EE:EVASSS?—;\Z, 2021 FALL N x c I_AB

Complete Trees: Pop

0 Alternatively, copy the last entry in the heap to the root

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

Complete Trees: Pop

o0 Now, percolate 36 down swapping it with the smallest
of its children
= We halt when both children are Iar%er

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

45
Complete Trees: Pop
0 The resulting tree is now still a complete tree:
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I_AB

Complete Trees: Pop
o Again, popping 15, copy up the last entry: 88

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

Complete Trees: Pop

0 This time, it gets percolated down to the point where it

has no children

15

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

Complete Trees: Pop
0 In popping 17, 53 is moved to the top

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

Complete Trees: Pop

0 And percolated down, again to the deepest level

17

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

50
Complete Trees: Pop
o0 Popping 19 copies up 39
19
Introduction Stg gSEaNs:TulgT\eri EEF\?S%? \Z 2021 FALL NXCILAB

Complete Trees: Pop

o0 Which is then percolated down to the second deepest
level

19

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

52

Run-time Analysis

0 Accessing the top object is ©(1)

o Popping the top object is O(In(n))

= We copy something that is already in the lowest depth—it will
likely be moved back to the lowest depth

0 How about push?

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Run-time Analysis

[

[

[

[

Recall our insertion works bottom-up (percolation up)

Worst case: If we are inserting an object less than the
root (at the front), then the run time will be O(In(n))

Best case: If we insert an object greater than any object

(at the back), then the run time will be O(1)

Average Case? This is tricky to answer

= Will it be O(In(n))?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

53

LAB

Run-time Analysis

o Assumption
» Previously inserted n values were drawn from a distribution U
» To be inserted value x is also drawn from the same distribution U

0 Analysis

» n/2 nodes are at height h (the leaves)
* At the Y2 probability, x is less than n/2 nodes
e At the Y2 probability, we need at least one percolation up

o - N w £

= n/4 nodes are at height h-1
* At the Y probability, x is less than n/4 nodes
e At the % probability, we need at least two percolation up

= 1 node is at height O (the root)
So the expected number of percolation up is

1 -1+ 1 -2 + -3+ z

2 4 °7%8 2k~
Therefore, we have an average run time of O(1)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

55

Run-time Analysis

0 An arbitrary removal requires that all entries in the heap

be checked: O(n)

o0 A removal of the largest object in the heap still requires
all leaf nodes to be checked — there are approximately

n/2 leaf nodes: O(n)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

56
Run-time Analysis
0 To summarize, our grid of run times is given by:
Average Worst
Top (Find min) Oo(1) Oo(1)
Pop (Delete O(In(n)) O(In(n))
min)
Insert O(1) O(In(n))
Introductionstg(g)jtaNS;;ulgllJ\lr:st 5&:5\/4;3;_;5, 2021 FALL N x c I_AB

57

Binary Max Heaps

0 A binary max-heap is identical to a binary min-heap

except that the parent is always larger than either of the
children

0 For example, the same data as before stored as a max-
heap yields

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
29)23|26|14(25| 9 |15]12] 6]19]10] 3| 8

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Other Heaps

0 Other heaps have its own unique run-time

characteristics

= |eftist, skew, binomial and Fibonacci heaps all use a node-
based implementation requiring ®(n) additional memory

= For Fibonacci heaps, the run-time of all operations (including
merging two Fibonacci heaps) except pop are O(1)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

58

LAB

59

Summary

o In this talk, we have:
= Discussed binary heaps
= Looked at an implementation using arrays
= Analyzed the run time:

e Head (1)
e Push ©(1) average
e Pop O(In(n))

Discussed implementing priority queues using binary heaps

References

[1] Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2n4
Ed., Addison Wesley, 1998, §7.2.3, p.144.

[2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §7.1-3, p.140-7.

[3] Weiss, Data Structures and Algorithm Analysis in C++, 3 Ed., Addison Wesley, §6.3, p.215-
25.

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

