

Abstract Priority Queues

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

Outline

\Box This topic will:

- Review queues
- Discuss the concept of priority and priority queues
- Look at two simple implementations:
 - Arrays of queues
 - AVL trees
- Introduce heaps, an alternative tree structure which has better run-time characteristics

Background

We have discussed Abstract Lists

- Arrays, linked lists
- □ We saw three cases which restricted the operations:
 - Stacks, queues, deques
- □ Then, we studied search trees: Abstract Sorted Lists
 - Run times were generally Θ(ln(n))
- □ We will now look :
 - Priority queues
 - Restriction on Abstracted Sorted Lists

Definition

With queues

- The order may be summarized by first in, first out
- If each object is associated with a priority, we may wish to pop that object which has highest priority
- With each pushed object, we will associate a nonnegative integer (0, 1, 2, ...) where:
 - The value 0 has the *highest* priority, and
 - The higher the number, the lower the priority

Operations

The top of a priority queue is the object with highest priority

 Popping from a priority queue removes the current highest priority object:

 \Box Push places a new object into the appropriate place

Process Priority in Linux

This is the scheme used by Linux, e.g.,
 nice -15 ./a.out sets the priority of the execution of a.out as -15
 (priority range [-20 20], -20: the highest, 20: the lowest)

The kernel will schedule processes according to the priority

\$ man nice

Process Priority in Windows

i☆ Task Manager File Options View							_		×
Processes Performance	App histor	y Start-up	Users	Details Se	ervices				
Name	PID	Status		Username	CPU	Memory (pr	Description		
svchost.exe	4412	Running		Karl	00	4,492 K	Host Proces	s for Windo	w
svchost.exe	8268	Running		SYSTEM	00	5,908 K	Host Proces	s for Windo	
svchost.exe	5656	Running		SYSTEM	00	692 K	Host Proces	ss for Windo	w
svchost.exe	8092	Running		SYSTEM	00	1,068 K	Host Proces	s for Windo	w
svchost.exe	10152	Running		LOCAL SER.	00	956 K	Host Proces	s for Windo	w
svchost.exe	8684	Running		SYSTEM	00	704 K	Host Proces	s for Windo	w
svchost.exe	7468	Running		LOCAL SER.	00	1,124 K	Host Proces	ss for Windo	w
svchost.exe	9492	Running		SYSTEM	00	3,792 K	Host Proces	s for Windo	w
svchost.exe	6380	Running		SYSTEM	00	844 K	Host Proces	ss for Windo	w
svchost.exe	7840	Running		NETWORK	00	2,892 K	Host Proces	ss for Windo	w
svchost.exe	9644	Running	End task			1,116 K	Host Process for Window		
System	4	Running	End	process tre	e	20 K	NT Kernel 8	k System	
System Idle Process	0	Running	Set	priority	>	Realtin	e	me the	pr
System interrupts	-	Running	Set	affinity		High		dure ca	ls
taskhostw.exe	4440	Running	Analyse wait chain			Above	normal	r Windo)w
Taskmgr.exe	2500	Running	UA	C virtualisat	ion	Norma	l i		
valWBFPolicyService.	3520	Running	Create dump file		Below normal		olicy Se	rv	
🗾 wininit.exe	572	Running	0			Low		Up App	lic
winlogon.exe	948	Running	Search online		1,372 K	Windows Log-on Applica		ca	
WmiPrvSE.exe	9016	Running			1,896 K	WMI Provider Host			
WUDFHost.exe	68	Running	Properties			1,916 K	Windows Driver Foundati.		
Ӯ XVIIx64.exe	3924	Running	Go to service(s)		11,688 K	SPICE Simulator w/ Sche		e	

Implementations

- Our goal is to make the run time of each operation as close to $\Theta(1)$ as possible
- We will look at two naïve implementations using data structures we already know:
 - Multiple queues—one for each priority
 - An AVL tree

Multiple Queues

 \Box Assume there is a fixed number of priorities, say M

- Create an array of *M* queues
- Push a new object onto the queue corresponding to the priority
- Top and pop find the first empty queue with highest priority

Multiple Queues

- \square The run times are reasonable:
 - Push is Θ(1)
 - Top and pop are both O(M)
- □ Unfortunately:
 - It restricts the range of priorities
 - The memory requirement is $\Theta(M + n)$

AVL Trees

- We could simply insert the objects into an AVL tree where the order is given by the stated priority:
 - Insertion is Θ(ln(n))
 - Top is Θ(ln(n))
 - Remove is Θ(ln(n))
- There is significant overhead for maintaining both the tree and the corresponding balance

Better Idea: Heaps

- Can we do better?
 - That is, can we reduce some (or all) of the operations down to $\Theta(1)$?
- □ The next topic defines a *heap*
 - A tree with the top object at the root
 - We will look at binary heaps
 - Numerous other heaps exists:
 - *d*-ary heaps
 - Leftist heaps
 - Skew heaps
 - Binomial heaps
 - Fibonacci heaps
 - Bi-parental heaps

Summary

□ This topic:

- Introduced priority queues
- Considered two obvious implementations:
 - Arrays of queues
 - AVL trees
- Discussed the run times and claimed that a variation of a tree, a heap, can do better

References

[1] Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, The MIT Press, 2001, §6.5.
 [2] Mark A. Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, 2006.
 [3] Joh Kleinberg and Eva Tardos, Algorithm Design, Pearson, 2006, §2.5.
 [4] Elliot B. Koffman and Paul A.T. Wolfgang, Objects, Abstractions, Data Structures and Design using C++, Wiley, 2006, §8.5.

Binary Heaps

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

Outline

\Box In this topic, we will:

- Define a binary min-heap
- Look at some examples
- Operations on heaps:
 - Top
 - Pop
 - Push
- An array representation of heaps
- Define a binary max-heap
- Using binary heaps as priority queues

Definition

- \Box A non-empty binary tree is a min-heap if
 - The key of the root is less than or equal to all the keys in both sub-trees
 - Both of the sub-trees (if any) are also binary min-heaps

- \Box From this definition:
 - A single node is a min-heap
 - All keys in either sub-tree are greater than the root key

□ This is a binary min-heap:

Operations

□ We will consider three operations:

- Тор
- Pop
- Push

\square We can find the top object in $\Theta(1)$ time: 3

Рор

□ To remove the minimum object:

- Promote the node of the sub-tree which has the least value
- Recurs down the sub-tree from which we promoted the least value

□ Using our example, we remove 3:

□ We promote 7 (the minimum of 7 and 12) to the root:

\Box In the left sub-tree, we promote 9:

\square Recursively, we promote 19:

 Finally, 55 is a leaf node, so we promote it and delete the leaf

□ Repeating this operation again, we can remove 7:

Introduction to Data Structures, ECE430.217, 2021 FALL SEOUL NATIONAL UNIVERSITY

 If we remove 9, we must now promote from the right sub-tree:

Push

□ Inserting into a heap may be done either:

- Bottom-up: At a leaf (move it up if it is smaller than the parent)
- Top-down: At the root (insert the larger object into one of the subtrees)

□ We will use **the bottom-up approach** with binary heaps

□ Inserting 17 into the last heap

Select an arbitrary node to insert a new leaf node:

□ The node 17 is less than the node 32, so we swap them

□ The node 17 is less than the node 31; swap them

□ The node 17 is less than the node 19; swap them

□ The node 17 is greater than 12 so we are finished

Push Observation: One-way Percolation up/down

- Observation: both the left and right subtrees of 19 were greater than 19, thus we are guaranteed that we don't have to send the new node down (to the other subtree)
- This process is called *percolation up*, that is, the lighter (smaller) objects move up from the bottom of the minheap

Keeping Balance

- With binary search trees, we introduced the concept of balance
 - AVL Trees
 - B-Trees
 - Red-black Trees

□ How do we maintain the balance of binary heap?

Easy Solution: Complete Tree

- To keep the balance, we maintain the shape of complete tree structure
- □ We have already seen
 - It is easy to store a complete tree as an array
- □ If we can store a heap of size n as an array of size $\Theta(n)$, this would be great!
- We now need to think about how to support push and pop.

Complete Trees

 For example, the previous heap may be represented as the following complete tree:

Complete Trees: Push

 If we insert into a complete tree, we only need to place the new node as a leaf node in the appropriate location and percolate up

Complete Trees: Push

□ For example, push 25:

Complete Trees: Push

□ We have to percolate 25 up into its appropriate location

The resulting heap is still a complete tree

□ Suppose we want to pop the top entry: 12

 Percolating up creates a hole leading to a non-complete tree

□ Alternatively, copy the last entry in the heap to the root

- Now, percolate 36 down swapping it with the smallest of its children
 - We halt when both children are larger

□ The resulting tree is now still a complete tree:

□ Again, popping 15, copy up the last entry: 88

 This time, it gets percolated down to the point where it has no children

□ In popping 17, 53 is moved to the top

□ And percolated down, again to the deepest level

□ Popping 19 copies up 39

 Which is then percolated down to the second deepest level

 \Box Accessing the top object is $\Theta(1)$

Popping the top object is $O(\ln(n))$

 We copy something that is already in the lowest depth—it will likely be moved back to the lowest depth

□ How about push?

□ Recall our insertion works bottom-up (percolation up)

Worst case: If we are inserting an object less than the root (at the front), then the run time will be O(ln(n))

 Best case: If we insert an object greater than any object (at the back), then the run time will be O(1)

Average Case? This is tricky to answer

Will it be O(ln(n))?

- □ Assumption
 - Previously inserted n values were drawn from a distribution U
 - To be inserted value x is also drawn from the same distribution U

□ Analysis

- n/2 nodes are at height h (the leaves)
 - At the $\frac{1}{2}$ probability, x is less than n/2 nodes
 - At the $\frac{1}{2}$ probability, we need at least one percolation up
- n/4 nodes are at height h-1
 - At the $\frac{1}{4}$ probability, x is less than $\frac{n}{4}$ nodes
 - At the ¼ probability, we need at least two percolation up
- ...
- 1 node is at height 0 (the root)

So the expected number of percolation up is

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \dots = \sum_{k=1}^{\infty} \frac{k}{2^k} = 2$$

Therefore, we have an average run time of O(1)

- An arbitrary removal requires that all entries in the heap be checked: O(n)
- A removal of the largest object in the heap still requires all leaf nodes to be checked – there are approximately n/2 leaf nodes: O(n)

□ To summarize, our grid of run times is given by:

	Average	Worst
Top (Find min)	O (1)	O (1)
Pop (Delete min)	O(ln(n))	O (ln(n))
Insert	O (1)	O(ln(n))

Binary Max Heaps

- A binary max-heap is identical to a binary min-heap except that the parent is always larger than either of the children
- For example, the same data as before stored as a maxheap yields

Other Heaps

- Other heaps have its own unique run-time characteristics
 - Leftist, skew, binomial and Fibonacci heaps all use a nodebased implementation requiring $\Theta(n)$ additional memory
 - For Fibonacci heaps, the run-time of all operations (including merging two Fibonacci heaps) except pop are $\Theta(1)$

Summary

In this talk, we have:

- Discussed binary heaps
- Looked at an implementation using arrays
- Analyzed the run time:
 - Head Θ(1)
 Duck Q(1) = Q(1)
 - Push Θ(1) average
 - Pop O(ln(*n*))
- Discussed implementing priority queues using binary heaps

References

- [1] Donald E. Knuth, *The Art of Computer Programming, Volume 3: Sorting and Searching*, 2nd Ed., Addison Wesley, 1998, §7.2.3, p.144.
- [2] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §7.1-3, p.140-7.
- [3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §6.3, p.215-25.

