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Outline
□ This topic will:

§ Review queues
§ Discuss the concept of priority and priority queues
§ Look at two simple implementations:

• Arrays of queues
• AVL trees

§ Introduce heaps, an alternative tree structure which has better 
run-time characteristics
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Background
□ We have discussed Abstract Lists

§ Arrays, linked lists

□ We saw three cases which restricted the operations:
§ Stacks, queues, deques

□ Then, we studied search trees: Abstract Sorted Lists
§ Run times were generally Q(ln(n))

□ We will now look :
§ Priority queues
§ Restriction on Abstracted Sorted Lists
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Definition
□ With queues

§ The order may be summarized by first in, first out

□ If each object is associated with a priority, we may wish 
to pop that object which has highest priority

□ With each pushed object, we will associate a 
nonnegative integer (0, 1, 2, ...) where:
§ The value 0 has the highest priority, and
§ The higher the number, the lower the priority
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□ The top of a priority queue is the object with highest 
priority

□ Popping from a priority queue removes the current highest 
priority object:

□ Push places a new object into the appropriate place

Operations
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Process Priority in Linux
□ This is the scheme used by Linux, e.g.,

% nice -15 ./a.out
sets the priority of the execution of a.out as -15
(priority range [-20 20], -20: the highest, 20: the lowest)

□ The kernel will schedule processes according to the 
priority

$ man nice
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Process Priority in Windows
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Implementations
□ Our goal is to make the run time of each operation as 

close to Q(1) as possible

□ We will look at two naïve implementations using data 
structures we already know:
§ Multiple queues—one for each priority
§ An AVL tree



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Multiple Queues
□ Assume there is a fixed number of priorities, say M

§ Create an array of M queues
§ Push a new object onto the queue corresponding to the priority
§ Top and pop find the first empty queue with highest priority
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Multiple Queues
□ The run times are reasonable:

§ Push is Q(1)
§ Top and pop are both O(M)

□ Unfortunately:
§ It restricts the range of priorities
§ The memory requirement is Q(M + n)
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AVL Trees
□ We could simply insert the objects into an AVL tree 

where the order is given by the stated priority:
§ Insertion is Q(ln(n))
§ Top is Q(ln(n)) 
§ Remove is Q(ln(n))

□ There is significant overhead for maintaining both the 
tree and the corresponding balance
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Better Idea: Heaps
□ Can we do better?

§ That is, can we reduce some (or all) of the operations down to 
Q(1)?

□ The next topic defines a heap
§ A tree with the top object at the root
§ We will look at binary heaps
§ Numerous other heaps exists:

• d-ary heaps
• Leftist heaps
• Skew heaps
• Binomial heaps
• Fibonacci heaps 
• Bi-parental heaps
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Summary
□ This topic:

§ Introduced priority queues
§ Considered two obvious implementations:

• Arrays of queues
• AVL trees

§ Discussed the run times and claimed that a variation of a tree, a 
heap, can do better
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Outline

□ In this topic, we will:
§ Define a binary min-heap
§ Look at some examples
§ Operations on heaps:

• Top
• Pop
• Push

§ An array representation of heaps
§ Define a binary max-heap
§ Using binary heaps as priority queues
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Definition

□ A non-empty binary tree is a min-heap if
§ The key of the root is less than or equal to all the keys in both 

sub-trees 
§ Both of the sub-trees (if any) are also binary min-heaps

□ From this definition:
§ A single node is a min-heap
§ All keys in either sub-tree are greater than the root key
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Example

□ This is a binary min-heap:
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Operations

□ We will consider three operations:
§ Top
§ Pop
§ Push
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Top

□ We can find the top object in Q(1) time:  3
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Pop

□ To remove the minimum object:
§ Promote the node of the sub-tree which has the least value
§ Recurs down the sub-tree from which we promoted the least 

value



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Pop: 3

□ Using our example, we remove 3:
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Pop: 3

□ We promote 7 (the minimum of 7 and 12) to the root:
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Pop: 3

□ In the left sub-tree, we promote 9:
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Pop: 3

□ Recursively, we promote 19:
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Pop: 3

□ Finally, 55 is a leaf node, so we promote it and delete 
the leaf
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Pop: 7

□ Repeating this operation again, we can remove 7:
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Pop: 9

□ If we remove 9, we must now promote from the right 
sub-tree:
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Push

□ Inserting into a heap may be done either:
§ Bottom-up: At a leaf (move it up if it is smaller than the parent)
§ Top-down: At the root (insert the larger object into one of the 

subtrees)

□ We will use the bottom-up approach with binary heaps
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Push: 17

□ Inserting 17 into the last heap
§ Select an arbitrary node to insert a new leaf node:
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Push: 17

□ The node 17 is less than the node 32, so we swap them
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Push: 17

□ The node 17 is less than the node 31; swap them
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Push: 17

□ The node 17 is less than the node 19; swap them
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Push: 17

□ The node 17 is greater than 12 so we are finished
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Push Observation: One-way Percolation up/down

□ Observation:  both the left and right subtrees of 19 were 
greater than 19, thus we are guaranteed that we don’t 
have to send the new node down (to the other subtree)

□ This process is called percolation up, that is, the lighter 
(smaller) objects move up from the bottom of the min-
heap
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Keeping Balance

□ With binary search trees, we introduced the concept of 
balance
§ AVL Trees
§ B-Trees
§ Red-black Trees

□ How do we maintain the balance of binary heap?
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Easy Solution: Complete Tree

□ To keep the balance, we maintain the shape of 
complete tree structure

□ We have already seen
§ It is easy to store a complete tree as an array

□ If we can store a heap of size n as an array of size Q(n), 
this would be great!

□ We now need to think about how to support push and 
pop.
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Complete Trees

□ For example, the previous heap may be represented as 
the following complete tree:
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Complete Trees:  Push

□ If we insert into a complete tree, we only need to place 
the new node as a leaf node in the appropriate location 
and percolate up
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Complete Trees:  Push

□ For example, push 25:
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Complete Trees:  Push

□ We have to percolate 25 up into its appropriate location
§ The resulting heap is still a complete tree
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Complete Trees:  Pop

□ Suppose we want to pop the top entry:  12



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Complete Trees:  Pop

□ Percolating up creates a hole leading to a non-complete 
tree
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Complete Trees:  Pop

□ Alternatively, copy the last entry in the heap to the root
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Complete Trees:  Pop

□ Now, percolate 36 down swapping it with the smallest 
of its children
§ We halt when both children are larger
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Complete Trees:  Pop

□ The resulting tree is now still a complete tree:
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Complete Trees:  Pop

□ Again, popping 15, copy up the last entry:  88
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Complete Trees:  Pop

□ This time, it gets percolated down to the point where it 
has no children
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Complete Trees:  Pop

□ In popping 17, 53 is moved to the top
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Complete Trees:  Pop

□ And percolated down, again to the deepest level
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Complete Trees:  Pop

□ Popping 19 copies up 39
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Complete Trees:  Pop

□ Which is then percolated down to the second deepest 
level
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Run-time Analysis

□ Accessing the top object is Q(1)

□ Popping the top object is O(ln(n))
§ We copy something that is already in the lowest depth—it will 

likely be moved back to the lowest depth

□ How about push?
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Run-time Analysis

□ Recall our insertion works bottom-up (percolation up)

□ Worst case: If we are inserting an object less than the 
root (at the front), then the run time will be O(ln(n)) 

□ Best case: If we insert an object greater than any object 
(at the back), then the run time will be O(1)

□ Average Case? This is tricky to answer
§ Will it be O(ln(n))? 
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Run-time Analysis
□ Assumption

§ Previously inserted n values were drawn from a distribution 𝐔
§ To be inserted value 𝑥 is also drawn from the same distribution 𝐔

□ Analysis
§ 𝑛/2 nodes are at height h (the leaves) 

• At the ½ probability, 𝑥 is less than 𝑛/2 nodes
• At the ½ probability, we need at least one percolation up

§ 𝑛/4 nodes are at height h-1
• At the ¼ probability, 𝑥 is less than 𝑛/4 nodes
• At the ¼ probability, we need at least two percolation up

§ …
§ 1 node is at height 0 (the root)

So the expected number of percolation up is 
1
2
( 1 +

1
4
( 2 +

1
8
( 3 + ⋯ = .

!"#

$
𝑘
2𝑘
= 2

Therefore, we have an average run time of O(1)
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Run-time Analysis

□ An arbitrary removal requires that all entries in the heap 
be checked:  O(n)

□ A removal of the largest object in the heap still requires 
all leaf nodes to be checked – there are approximately 
n/2 leaf nodes:  O(n)
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Run-time Analysis

□ To summarize, our grid of run times is given by:

Average Worst

Top (Find min) O(1) O(1)

Pop (Delete
min)

O(ln(n)) O(ln(n))

Insert O(1) O(ln(n))
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Binary Max Heaps

□ A binary max-heap is identical to a binary min-heap 
except that the parent is always larger than either of the 
children

□ For example, the same data as before stored as a max-
heap yields
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Other Heaps

□ Other heaps have its own unique run-time 
characteristics
§ Leftist, skew, binomial and Fibonacci heaps all use a node-

based implementation requiring Q(n) additional memory
§ For Fibonacci heaps, the run-time of all operations (including 

merging two Fibonacci heaps) except pop are Q(1)
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Summary

□ In this talk, we have:
§ Discussed binary heaps
§ Looked at an implementation using arrays
§ Analyzed the run time:

• Head Q(1)
• Push Q(1) average
• Pop O(ln(n))

§ Discussed implementing priority queues using binary heaps
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