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18.1 Black Body Radiation

• Black body

Black body is an idealized physical body that absorbs all incident 

electromagnetic radiation, regardless of frequency or angle of 

incidence.

• Black body radiation

A black body in thermal equilibrium emit black body radiation 

(electromagnetic waves) whose spectrum is only regarded with 

temperature.
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18.1 Black Body Radiation

• Black body and Photon gas

Consider a volume, V enclosed by insulated wall with small hole. 

Photons injected from the hole nearly re-emitted so that the inner 

surface of the volume can be regarded as a black body while inner 

space is treated to be filled with photon gas.

V, T, 
U

∑ 𝑁 ≠ 𝑁 , because photons continue to be absorbed and emitted.  

∑ 𝑁 𝜖 = 𝑈, because the wall is isolated.
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18.1 Black Body Radiation

• Photon gas with Bose Einstein statistics

Photon gas enclosed with black body surface follows Boson statistics 

while having no constraint about particle numbers.  

Photons are bosons of spin 1 and obey Bose-Einstein statistics.

T, U, V
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• The photons emitted by one energy level may be absorbed at another, so 

the number of photons is not constant

18.1 Black Body Radiation

• Bose-Einstein distributions

From Stirling’s approximation,  

for energy level is undetermined yet

→ Method of Lagrange multiplier is used to obtain the most 
probable macro state under two constraints, 

, 

the Lagrange multiplier , and 
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18.1 Black Body Radiation

• Distribution function

Applying method of Lagrange multipliers to Bose-Einstein distributions,

Then, the Bose-Einstein distribution function becomes as 

)

 

/
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18.1 Black Body Radiation

• The number of photons per quantum state

• The number of quantum states with frequencies in the range 

• The energy in the range 

𝑓 =
𝑁

𝑔
=

1

𝑒 ⁄ − 1

𝑓(𝜀) =
𝑁(𝜀)

𝑔(𝜀)
=

1

𝑒 ⁄ − 1

𝑓(𝜈) =
𝑁(𝜈)

𝑔(𝜈)
=

1

𝑒 ⁄ − 1

𝑔 𝜈 𝑑𝜈 = 2 ×
4𝜋𝑉

𝑐
𝜈 𝑑𝜈          𝑐 ∶ 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡

𝑢 𝜈 𝑑𝜈 = 𝑁 𝜈 𝑑𝜈 × ℎ𝜈

= 𝑔 𝜈 𝑓 𝜈 𝑑𝜈 × ℎ𝜈

=
𝟖𝝅𝑽𝝂𝟐𝒅𝝂

𝒄𝟑

𝒉𝝂

𝒆𝒉𝝂 𝒌𝑻⁄ 𝟏
Plank radiation formula 

Polarization
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18.1 Black Body Radiation

• The blackbody spectrum is often expressed in terms of the wavelength. 

Then, 𝑢(𝜈)d 𝜈 ∝ 𝑢 𝜆 𝑑𝜆

𝜈 =
𝑐

𝜆
       𝑑𝜈 = −

𝑐

𝜆
𝑑𝜆        𝑑𝜈 =

𝑐

𝜆
𝑑𝜆

𝑢 𝜆 𝑑𝜆 =
8𝜋𝑉

𝑐
𝜆

𝑐
𝜆

𝑑𝜆

𝑐

ℎ𝑐
𝜆

𝑒 ⁄ − 1
= 8𝜋ℎ𝑐𝑉

𝑑𝜆

𝜆 (𝑒 ⁄ −1)

The energy per unit wavelength in the range 𝜆 𝑡𝑜 𝜆 + 𝑑𝜆 (wavelength spectrum)

Black body radiation spectrum
(http://alfalfasurvey.wordpress.com)

Rayleigh-Jeans law 
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18.1 Black Body Radiation

• The total energy density

• The energy flux

𝑈 = 𝑢 𝜆 𝑑𝜆

𝑈

𝑉
= 8𝜋ℎ𝑐

𝑑𝜆

𝜆 𝑒 ⁄ − 1

𝑥 =
ℎ𝑐

𝜆𝑘𝑇

𝑈

𝑉
=

8𝜋

ℎ 𝑐
𝑘𝑇

𝑥 𝑑𝑥

𝑒 − 1

=
𝜋

15

𝑇ℎ𝑢𝑠,
𝑼

𝑽
= 𝒂𝑻𝟒                𝑎 =

8𝜋 𝑘

15ℎ 𝑐
= 7.55 × 10 J (m K )⁄

𝒆 =
𝒄

𝟒

𝑼

𝑽
= 𝝈𝑻𝟒                    𝝈 =

𝒄𝒂

𝟒
= 𝟓. 𝟔𝟕 × 𝟏𝟎 𝟖 W m K⁄          𝐒𝐭𝐞𝐟𝐚𝐧 − 𝐁𝐨𝐥𝐭𝐳𝐦𝐚𝐧𝐧 𝐥𝐚𝐰
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18.1 Black Body Radiation

• The wavelength at which is a maximum satisfies a relation 

known as Wien’s displacement law.

𝑢 𝜆 = 8𝜋ℎ𝑐𝑉
1

𝜆 𝑒 ⁄ − 1

𝑑

𝑑𝜆
𝜆 𝑒 ⁄ − 1 = 0

       𝑥 =
ℎ𝑐

𝜆𝑘𝑇
             

𝑥

5
= 1 − 𝑒

1

𝑥

𝑑

𝑑𝑥
𝑥 𝑒 − 1 =

1

𝑥
𝑥 𝑒 − 5𝑥 𝑒 − 1 = 0

∴ 𝑥 = 4.96

ℎ𝑐

𝜆 𝑘𝑇
= 4.96

𝝀𝒎𝒂𝒙𝑻 =
𝒉𝒄

𝟒. 𝟗𝟔𝒌
= 𝟐. 𝟗𝟎 × 𝟏𝟎 𝟑mK                   𝐖𝐢𝐞𝐧 𝐬 𝐝𝐢𝐬𝐩𝐥𝐚𝐜𝐞𝐦𝐞𝐧𝐭 𝐥𝐚𝐰
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18.1 Black Body Radiation

• For long wavelengths, 

• For short wavelengths,

𝑒 ⁄ ≈ 1 +
ℎ𝑐

𝜆𝑘𝑇

𝑢 𝜆 𝑑𝜆 = 8𝜋ℎ𝑐𝑉
1

𝜆
ℎ𝑐

𝜆𝑘𝑇

               = 𝑽
𝟖𝝅𝒌𝑻

𝝀𝟒
𝒅𝝀  

𝒖 𝝀 𝒅𝝀 = 𝟖𝝅𝒉𝒄𝑽
𝒆 𝒉𝒄 𝝀𝒌𝑻⁄

𝝀𝟓
𝒅𝝀

Fig. Sketch of Planck’s law, Wien’s law 
and the Rayleigh-Jeans law

𝐑𝐚𝐲𝐥𝐞𝐢𝐠𝐡 − 𝐉𝐞𝐚𝐧𝐬 𝐅𝐨𝐫𝐦𝐮𝐥𝐚

𝐖𝐢𝐞𝐧 𝐬 𝐥𝐚𝐰

Taylor series
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18.2 Properties of a Photon Gas

• The heat capacity

• The absolute entropy

• The Helmholtz function 

𝑈

𝑉
= 𝑎𝑇 =

8𝜋 𝑘

15ℎ 𝑐
𝑇          (𝑎 =

8𝜋 𝑘

15ℎ 𝑐
)

𝐶 =
𝜕𝑈

𝜕𝑇
=

32𝜋 𝑘

15ℎ 𝑐
𝑇 𝑉

𝑆 =
𝐶

𝑇
𝑑𝑇 =

32𝜋 𝑘 𝑉

15ℎ 𝑐

1

3
𝑇

𝑐𝑓.  𝐼𝑑𝑒𝑎𝑙 𝑔𝑎𝑠   𝑃 =
2

3

𝑈

𝑉

𝐹 = 𝑈 − 𝑇𝑆 = 𝑎𝑇 𝑉 −
4

3
𝑎𝑇 V = −

1

3
𝑎𝑇 V

𝑃 = −
𝜕𝐹

𝜕𝑉
,

=
1

3
𝑎𝑇 =

1

3

𝑈

𝑉
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18.3 Bose Einstein Condensation

• The gas of noninteracting particles of large mass such that quantum effects 

only become important at very low temperatures. → Ideal Bose-Einstein gas

• 4He undergoes a remarkable phase transition known as Bose-Einstein 

condensation.

• The Bose Einstein continuum distribution

⁄

Chemical potential
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18.3 Bose Einstein Condensation

• For Maxwell-Boltzmann distribution (Dilute gas)

• As an example, for 4He at standard temperature and pressure,

= −12.43, = 1.5, = 13.9 and 𝑓 𝜀 = 9 × 10

𝑓 𝜀 =
1

𝑒 ⁄

𝜇 = −𝑘𝑇 ln
𝑍

𝑁

𝑍 =
2𝜋𝑚𝑘𝑇

ℎ
𝑉

∴
𝝁

𝒌𝑻
= − 𝐥𝐧

𝟐𝝅𝒎𝒌𝑻

𝒉𝟐

𝟑
𝟐 𝑽

𝑵

𝑔 𝜀 𝑑𝜀 =
4 2𝜋𝑉

ℎ
𝑚 𝜀 𝑑𝜀         𝑓𝑟𝑜𝑚 𝐶ℎ𝑎𝑝. 12

𝑁 = 𝑁 + 𝑁

𝑵𝒆𝒙𝒄𝒊𝒕𝒆𝒅 = 𝑵 𝜺 𝒅𝜺 =
𝟒 𝟐𝝅𝑽𝒎

𝟑
𝟐

𝒉𝟑

𝜺
𝟏
𝟐𝒅𝜺

𝒆 𝜺 𝝁 𝒌𝑻⁄ − 𝟏

BE: ⁄
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18.3 Bose Einstein Condensation

• For the ground state (at very low temperature, this ground state becomes 

significant as bosons condense into this lowest state), 𝑇 → 0, 𝜀 = 0 and N 𝜀 → 𝑁

• For low temperature, 𝑒𝑥𝑝 − ~1

𝑁 = 𝑁 𝜀 𝑑𝜀 =
4 2𝜋𝑉𝑚

ℎ

𝜀 𝑑𝜀

𝑒 ⁄ − 1

1

𝑒 ⁄ − 1
≅ 𝑁

−
𝜇

𝑘𝑇
= ln 1 +

1

𝑁
≅

1

𝑁
~0

𝑥 =
𝜀

𝑘𝑇

𝑵𝒆𝒙 = 𝑽
𝟐

𝝅

𝟐𝝅𝒎𝒌𝑻

𝒉𝟐

𝟑
𝟐 𝒙

𝟏
𝟐𝒅𝒙

𝒆𝒙 − 𝟏𝟎

= 𝟐. 𝟔𝟏𝟐𝑽
𝟐𝝅𝒎𝒌𝑻

𝒉𝟐

𝟑
𝟐

= 2.612
𝜋

2



16/20  

18.3 Bose Einstein Condensation

• Bose temperature is the temperature above which all the bosons should be in 

excited states. Thus 𝑁 = 𝑁  𝑎𝑛𝑑 𝑇 = 𝑇

• For all the bosons are in excited states.

For increasing number of bosons occupy the ground state until at .

𝟒 atoms confined to a volume of 𝑩

𝑁 = 2.612𝑉
2𝜋𝑚𝑘𝑇

ℎ

𝑇 =
ℎ

2𝜋𝑚𝑘

𝑁

2.612𝑉

𝑁 = 𝑁 + 𝑁

𝑁

𝑁
=

𝑇

𝑇
        

𝑁

𝑁
= 1 −

𝑇

𝑇
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18.3 Bose Einstein Condensation

Fig. Variation with temperature of 𝑁 /𝑁
and 𝑁 /𝑁 for a boson gas

Fig. Variation with temperature of μ/𝑘𝑇
versus 𝑇/𝑇 .
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18.4 Properties of a Boson Gas

• The internal energy

𝑈 = 𝑁 𝜀 = 𝑁 𝜀 + 𝑁 𝜀

For 𝑇 > 𝑇 ,          𝑁 = 0                    𝑈 =
3

2
𝑁𝑘𝑇

𝑇 =
ℎ

2𝜋𝑚𝑘

𝑁

2.612𝑉

For 𝑇 < 𝑇 ,          𝑁 ≫ 1, 𝜀 = 0     
𝑁

𝑁
=

𝑇

𝑇
     𝑈 =?



19/20  

18.4 Properties of a Boson Gas

𝑈 = 𝜀𝑁 𝜀 𝑑𝜀

     = 𝜀
1

𝑒 ⁄ − 1

4 2𝜋𝑉

ℎ
𝑚 𝜀 𝑑𝜀

     = 2𝜋𝑉
2𝑚

ℎ

𝜀 𝑑𝜀

𝑒 ⁄ − 1

     = −2𝜋𝑉
2𝑚

ℎ

𝑥 𝑑𝑥

𝑒 − 1
𝑘𝑇

    

       = × 1.33𝑘𝑇 𝑉

           = 𝟎. 𝟕𝟕𝟎𝑵𝒌𝑻
𝑻

𝑻𝑩

𝟑

𝟐
                      𝑇 =

.

= 𝑔 𝜀 𝑑𝜀

=
3 𝜋

4
× 1.34

𝝁 = 𝟎 𝑻 < 𝑻𝑩 , 𝒙 = 𝜺 𝒌𝑻⁄

• For ,
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18.4 Properties of a Boson Gas

• The heat capacity

• The absolute entropy

• The Helmholtz function 

𝐶 =
𝑑𝑈

𝑑𝑇
= 1.92𝑁𝑘

𝑇

𝑇

𝐹 = 𝑈 − 𝑇𝑆 = −0.51𝑁𝑘𝑇
𝑇

𝑇
        𝑇 < 𝑇

                        = −1.33𝑘𝑇
2𝜋𝑚𝑘𝑇

ℎ
𝑉

𝑃 = 1.33𝑘𝑇
2𝜋𝑚𝑘𝑇

ℎ
                          𝑇 < 𝑇

𝑆 =
𝐶 𝑑𝑇

𝑇
= 1.28𝑁𝑘

𝑇

𝑇
           𝑇 → 0, 𝑆 → 0

Fig. Variation with temperature of 
the heat capacity of a boson gas.


