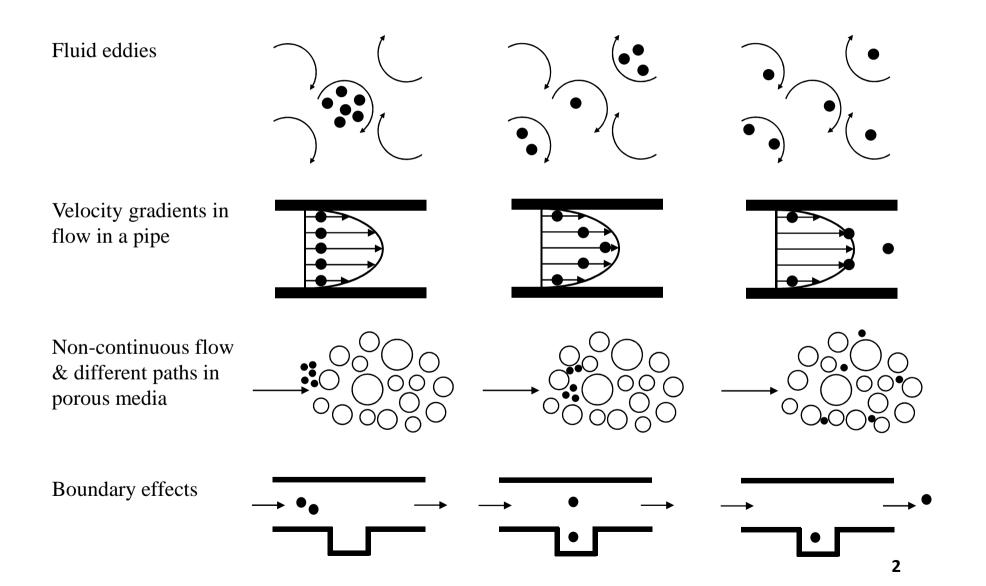
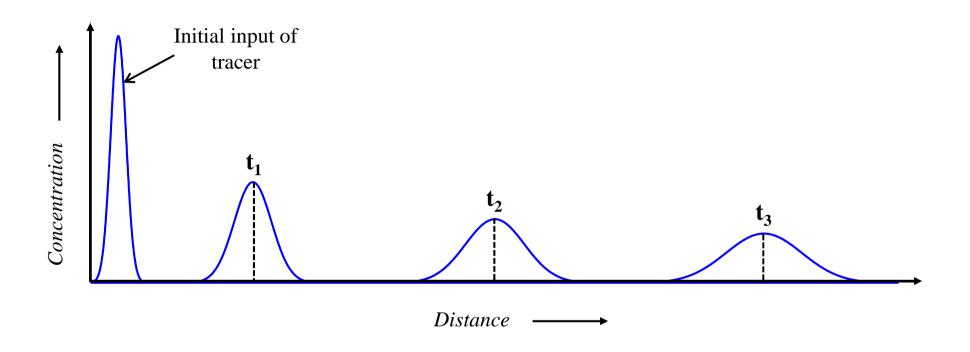
Dispersion

Sources of dispersion

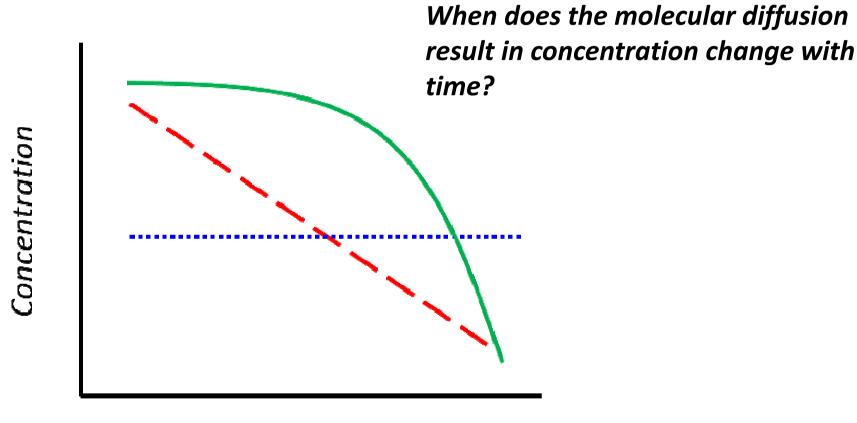


Dispersion from pulse input of a tracer



No change in area (conservative tracer – mass conserved), but gets more spatially dispersed over time

Recall molecular diffusion

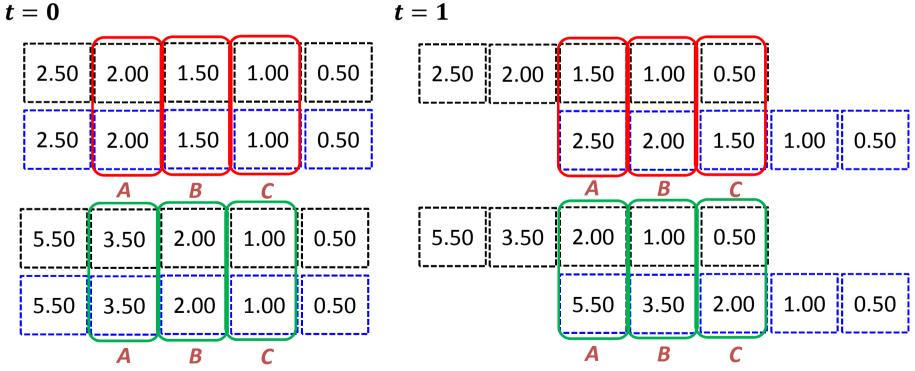


Distance

Dispersion by velocity gradient

Turbulence -- creates velocity gradient

Top layer moves 1 grid right & bottom layer moves 1 grid left per unit time by differential velocity



Modeling dispersion

- Dispersion by turbulence, etc. can be expressed by the same model as molecular diffusion
- Apply Fick's 1st law:

$$J_x = -D_x' \frac{dC}{dx}$$

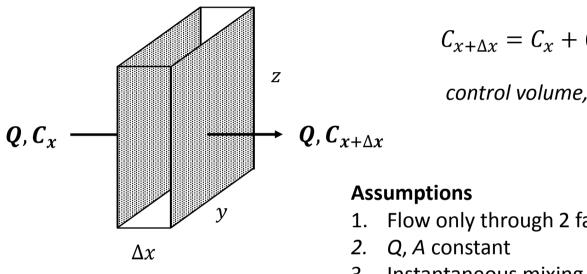
$$D_x' = mechanical dispersion coefficient in x-dir [L^2/T]$$

• The overall dispersion coefficient can be defined as the sum of molecular diffusion & mechanical dispersion coeff.

$$J_x = -E_x \frac{dC}{dx} , \quad E_x = D_m + D_x'$$

 E_x = overall dispersion coefficient in x-dir [L²/T] D_m = molecular diffusion coefficient [L²/T]

Mass balance, control volume



$$C_{x+\Delta x} = C_x + (\Delta C / \Delta x) \cdot \Delta x$$

control volume, $V = A \cdot \Delta x$

- 1. Flow only through 2 faces perpendicular to *x*-dir
- 3. Instantaneous mixing within control volume

Rate of:

Accumulation = Input – Output + Net dispersion

$$\frac{V\Delta C}{\Delta t} = QC_x - QC_{x+\Delta x} + \frac{\Delta M_{disp}}{\Delta t}$$

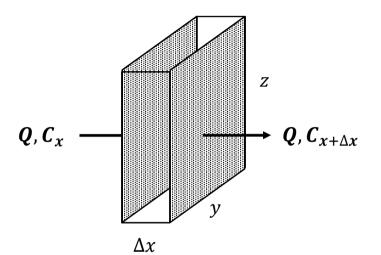
The dispersion term

$$\frac{\Delta M_{disp}}{\Delta t} = ??$$

$$\frac{M_{disp,x_i}}{\Delta t} = -E_x \cdot \left(\frac{\partial C}{\partial x}\right)_{x=x_i} \times A$$

$$\frac{M_{disp,x_i+\Delta x}}{\Delta t} = E_x \cdot \left(\frac{\partial C}{\partial x}\right)_{x=x_i+\Delta x} \times A$$

$$\frac{\Delta M_{disp}}{\Delta t} = E_x \cdot A \cdot \left[\left(\frac{\partial C}{\partial x} \right)_{x=x_i + \Delta x} - \left(\frac{\partial C}{\partial x} \right)_{x=x_i} \right]$$



$$\frac{V\Delta C}{\Delta t} = QC_{x_i} - QC_{x_i+\Delta x} + \frac{\Delta M_{disp}}{\Delta t}$$
$$= QC_{x_i} - QC_{x_i+\Delta x} + E_x \cdot A \cdot \left[\left(\frac{\partial C}{\partial x} \right)_{x=x_i+\Delta x} - \left(\frac{\partial C}{\partial x} \right)_{x=x_i} \right]$$
$$\frac{\Delta C}{\Delta t} = \frac{Q}{V} \left(C_{x_i} - C_{x_i+\Delta x} \right) + E_x \cdot \frac{A}{V} \cdot \left[\left(\frac{\partial C}{\partial x} \right)_{x=x_i+\Delta x} - \left(\frac{\partial C}{\partial x} \right)_{x=x_i} \right]$$

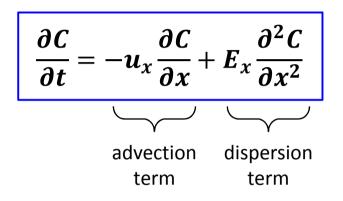
use
$$V = A \cdot \Delta x \& u_x = Q/A$$
:

 u_x = velocity of fluid in x-dir [L²/T]

$$\frac{\Delta C}{\Delta t} = u_x \cdot \frac{C_{x_i} - C_{x_i + \Delta x}}{\Delta x} + E_x \cdot \left[\left(\frac{\partial C}{\partial x} \right)_{x = x_i + \Delta x} - \left(\frac{\partial C}{\partial x} \right)_{x = x_i} \right] / \Delta x$$

let $\Delta t \to 0 \& \Delta x \to 0$: $\frac{\partial C}{\partial t} = -u_x \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$

1-D advection-dispersion equation



- Advection: movement of solutes in the direction of flow, not accounting for mixing
- Dispersion: tendency to mix

Dispersion occurs:

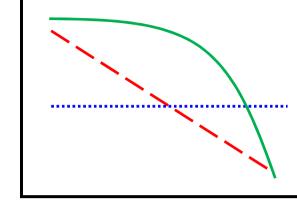
- When $\partial^2 C/dx^2 \neq 0$ •
- By multiple mechanisms ۲
 - Molecular diffusion
 - Variable velocity, turbulence (mechanical dispersion) _
 - In surface water, molecular diffusion often very small compared to mechanical • dispersion

Concentration

With or without a net advective velocity ۲

1-D advection dispersion equation

$$\frac{\partial C}{\partial t} = -u_x \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$$



Dispersion from a pulse input of tracer

Governing eq.:
$$\frac{\partial C}{\partial t} = -u_x \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$$

BC's & IC's: $C = 0$ at $x > 0$ & $t = 0$
 $M_0 = \text{ finite mass pulse at } x = 0$ & $t = 0$, $C(0,0) = \infty$
 $C = 0$ at $x \to \infty$ for all t

define new, dimensionless variable η and solve:

$$\eta = \frac{x - u_x t}{\sqrt{4E_x t}} \qquad C(x, t) = C_{max} e^{-\eta^2} = \frac{M_0}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x - u_x t)^2}{4E_x t}\right]}$$

$$A = cross-sectional area$$

- Solution is symmetric in space, centered at u_xt
- Solution is in the form of a normal distribution with mean = $u_x t \& \sigma = (2E_x t)^{0.5}$

Dispersion from a pulse input of tracer



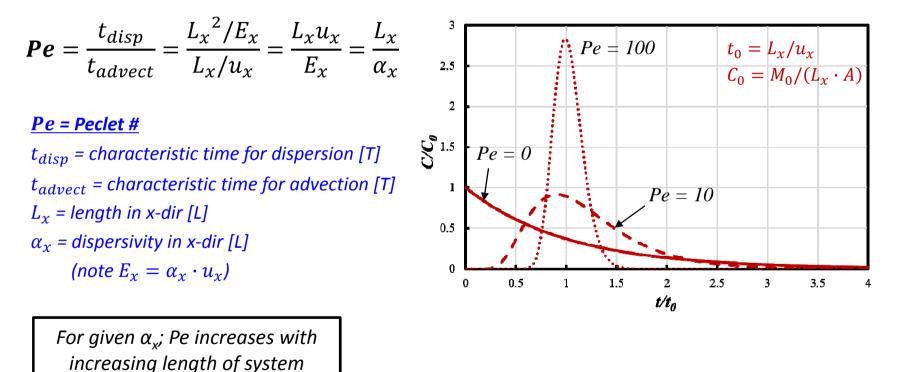
- Mass is conserved \rightarrow areas under all curves are the same
- 95% of the mass is located within $x \pm 1.96\sigma$; 99% between $x \pm 2.58\sigma$
- $C_x = 0.01C_m @ x \pm 3.03\sigma$

→ if we define plume as the range of $C_x \ge 0.01C_m$, $\Delta x_{plume} = 6\sigma$

What if the concentration is observed at a certain distance, $L_{x'}$ over time?

Observation @ $x=L_x$ over time

Let's introduce a dimensionless number, **Pe**, defined as:



(river, reactor, etc.)

Plug flow vs. Completely mixed

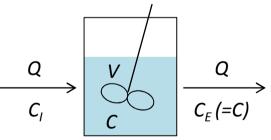
• Plug flow

- Assume no mixing in the direction of flow; complete mixing in the direction perpendicular to the flow
- Long reactors (e.g., disinfection), rivers, aqueducts, pipes, etc.

A very thin patch of water, completely mixed within its volume, moving at a velocity of u_x without any substance movement into/out of the patch

- Completely-mixed, flow-through
 - Complete mixing of the contents of the system
 - Common reactor setting for biological reactions, lakes, reservoirs, etc.

 $Pe \rightarrow \infty$ Plug flow; $Pe \rightarrow 0$ Completely mixed



+ Reaction (1st order)

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2} - kC$$

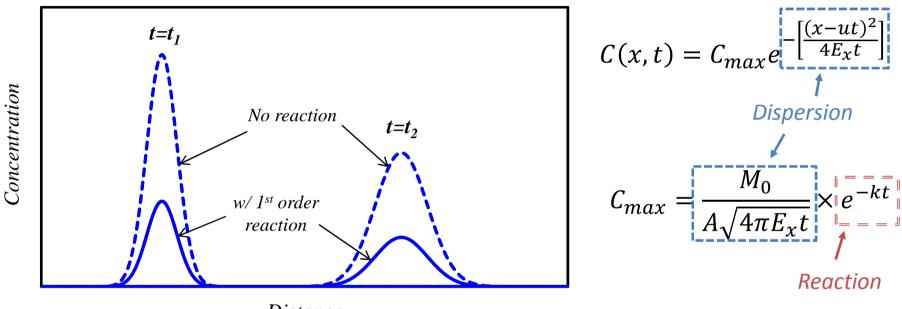
BC's & IC's: $C = 0$ at $x > 0$ & $t = 0$

 $M_0 = finite mass pulse at x = 0 \& t = 0, C(0,0) = \infty$ $C = 0 \quad at \quad x \to 0 \quad for all t$

<u>Because reaction is 1st order</u>, $M_{tot,t} = M_0 e^{-kt}$

$$C(x,t) = \frac{M_0 e^{-kt}}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x-ut)^2}{4E_x t}\right]} = \frac{M_0}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x-ut)^2 + kt}{4E_x t}\right]}$$

Dispersion + 1st order reaction



- Distance
- Total mass and peak concentration is reduced to be $\times e^{-kt}$ of the value @ t=0
- σ is still $(2E_x t)^{0.5}$

Step input, steady state @ at $x=L_x$

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2} - kC$$

BC's & IC's: $C = 0$ at $x \ge 0$ & $t = 0$
 $C = C_I$ at $x = 0$ & $t > 0$
 $C = C_I$ at $x = 0$ & $t > 0$
 $C = C_I$ at $x = 0$ & $t > 0$

Steady state solution:

$$\frac{C_E}{C_I} = \frac{4a \cdot e^{Pe/2}}{[(1+a)^2 \cdot e^{(a \cdot Pe/2)} - (1-a)^2 \cdot e^{-(a \cdot Pe/2)}]}$$

$$= \left[1 + \frac{4kt_0}{Pe}\right]^{0.5}$$
$$Pe = \frac{u_x L}{E_x}$$

а

Calculations show plug flow approximation is accurate to within 1% if $Pe \ge 100$ and $(kt_0/Pe) \le 0.01$

 t_0 = hydraulic retention time = $L_x/u_x = V/Q$

Plug flow reactor (PFR) solution: $C_E/C_I = e^{-kt_0}$ Steady-state completely mixed flow reactor (CMFR) solution: $C_E/C_I = (1 + kt_0)^{-1}$

Rivers as plug flow reactors

• Rivers are typically relatively long, narrow & shallow

- Even if transverse dispersion is substantially less than longitudinal dispersion, vertical and transverse mixing is likely to be complete
- Characteristic time of dispersion, $t_{disp,i} = L_i^2/E_i$

Consider the following river setting (Sacramento River, USA):

Flow velocity	$u_x = 0.5 \ m/s$		<i>Travel time = 80,000 s</i>
Length	$L_x = 40,000 \ m$	$E_x = 15 m^2/s$	$t_{disp,x} = 1.1 \times 10^8 s$
Width	$L_y = 40 m$	$E_y = 0.12 \ m^2/s$	$t_{disp,y} = 13,000 \ s$
Height	$L_z = 4 m$	$E_z = 0.12 \ m^2/s$	$t_{disp,z} = 130 s$

Dispersion coefficients in aqueous systems

Environment	<i>E,</i> m²/sec
Estuaries (longitudinal)	$10^2 - 10^3$
Rivers (longitudinal)	$10^{0} - 10^{2}$
Rivers (lateral)	10-2 - 10-1
Surface waters (vertical)	10 ⁻⁶ – 10 ⁻³
Pipes, ducts (normal to flow)	10 ⁻⁵ - 10 ⁻²
Solutes in water	$10^{-10} - 10^{-8}$
Solutes in bioturbed sediments	10 ⁻⁹ – 10 ⁻⁸
Solutes in compacted soils, sediments	10 ⁻¹⁰ - 10 ⁻¹²

Course review

