XRD-3 Intensity

Peak position

XRD-3 READ Cullity, Chapter 4-1, 4-2, 4-3, 4-4, 4-5, 4-6 Hammond Chapter 9.1, 9.2 Sherwood & Cooper, Chapter 4.13 Sherwood & Cooper, Chapter 4.11~4.12 Krawitz Chapter 5, p132 ~ p143

Chan Park, MSE-SNU Intro to Crystallography, 2021

Reading recommendations

Read

- Sherwood & Cooper
 - ✓ Chap 5 Fourier Transform & convolutions
 - ✓ Chap 6 Diffraction
 - ✓ Chap 7 Diffraction by one-dimensional obstacles
 - ✓ Chap 8 Diffraction by 3-dimensional obstacles
 - ✓ Chap 9 The contents of unit cell
- > Hammond, Chap 7 The diffraction of light (except 7.5)

Factor affecting the Relative Intensity of Bragg Reflections

- Structure sensitive
 - ✓ Atomic scattering factor
 - ✓ Structure factor
 - ✓ Polarization
 - ✓ Multiplicity
 - ✓ Temperature
- Sample sensitive
 - Absorption
 - ✓ Degree of crystallinity
 - ✓ Particle orientation

- Instrument sensitive
 - Absolute intensities
 - Source intensity
 - Diffractometer efficiency
 - Take-off angle of tube
 - Receiving slit width
 - Axial divergence allowed
 - Relative intensities
 - Divergence slit aperture
 - Detector dead-time
- Measurement sensitive
 - ✓ Method of peak area measurement
 - ✓ Method of background subtraction
 - \checkmark α 2 stripping or not
 - ✓ Degree of data smoothing employed

	• .
Inte	nsity
inte	isity

Intensity diffracted by a single phase powder specimen in a diffractometer

$$I(hkl) = \left(\frac{I_o A\lambda^3}{32\pi r}\right) \left[\left(\frac{\mu_o}{4\pi}\right)^2 \frac{e^4}{m^2} \right] \left(\frac{1}{v^2}\right) \left[|F(hkl)|^2 p \left(\frac{1+\cos^2 2\theta}{\sin^2 \theta \cos \theta}\right) \right] \left(\frac{e^{-2M}}{2\mu}\right).$$

I(hkl) = integrated intensity per unit length of diffraction line

 I_0 = intensity of incident beam A = cross-sectional area of incident beam

r = radius of diffractometer circle V = volume of unit cell

$$e^{-2M} = temperature factor$$

 μ = linear absorption coefficient

- > J.J. Thomson equation
- Polarization factor
- Compton effect
- Compton modified radiation
- Anomalous dispersion

Chan Park, MSE-SNU Intro to Crystallography, 2021

Scattering & diffraction

- Coherent scattering (unmodified scattering)
 - ✓ Tightly bound electrons
- Incoherent scattering (modified scattering)
 - ✓ loosely bound electrons
 - → background

Diffraction = reinforced coherent scattering

Intensity of XRD

- > Scattering amplitude of a single electron
 - ✓ How much Intensity a single electron will coherently scatter?
- > Scattering amplitude of a single atom \rightarrow f (atomic scattering factor)
 - ✓ Interference effects due to electrons being distributed in space around atoms
- > Scattering amplitude of a unit cell \rightarrow F (structure factor)
 - ✓ Interference effects caused by scattering from atoms in different regions of unit cell

 $f = \frac{amplitude scattered by an atom}{amplitude scattered by a single electron}$

 $F = \frac{\text{amplitude scattered by all the atoms of a unit cell}}{\text{amplitude scattered by a single electron}}$

X-ray scattering by an atom \rightarrow f (atomic scattering factor)

Interference effect due to the e's distributed in space around atoms.

→ atomic scattering factor (form factor)

- \succ Interference \leftarrow scattering from different regions of the e' cloud
- Takes into account the influence of the atom specific e' shell on the scattering of X-rays
- > Normalized in units of the amount of scattering occurring from a single e'

 $f = \frac{\text{amplitude scattered by an atom}}{\text{amplitude scattered by a single electron}}$

 $f = F(\vartheta)$ $f(0^{\circ}) = Z$ $f'n(sin\theta/\lambda)$

Atomic scattering factor $\frac{\sin\theta}{\lambda}(\overset{\circ}{\lambda})$	-1) 0.0 1 2 3 2 3 2 4 2 4 2 5 6	0.1 0.81 1.88 1.96 2.2 2.0 2.9	0.2 0.48 1.46 1.8 1.8	0.3 0.25 1.05 1.5	0.4 0.13 0.75	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	IVERSIT
H He Li ⁺ Be ⁺² Be B ⁺³ B C N ⁺⁵ N ⁺⁵ N ⁺⁵ N ⁺³ N O O O ⁻² F F Re Ne Na ⁺ Mg Mg ⁺²	1 2 3 2 4 2 5 6	0.81 1.88 1.96 2.2 2.0 2.9	0.48 1.46 1.8 1.8	0.25 1.05	0.13 0.75	0.07	0.04	0.03	0.02	0.01	0.00	0.00		
He Li ⁺ Li Be B ⁺³ B C N ⁺³ N O O O ⁻² F F F F F Me Na ⁺ N ⁴ N Mg 4 ¹⁴ A ¹⁴	2 2 3 2 4 2 5 6	1.88 1.96 2.2 2.0 2.9	1.46 1.8 1.8	1.05	0.75	0.52	0.00			0.01	0.00	0.00		\sim
Li Be ⁴² Be B ⁴³ B C N ⁴³ N O O O ² F F F F Re Na ⁴ Na Mg ⁴² Mg	3 2 4 2 5 6	2.2 2.0 2.9	1.8		13	1.0	0.35	0.24	0.18	0.14	0.11	0.09		
Be ⁴² Be B ⁺³ B C N ⁺⁵ , N ⁺³ N O O O ⁻² F F F F Ne Na ⁺ Na ⁺ Mg ⁺² A ¹	2 4 2 5 6	2.0 2.9		1.5	1.3	1.0	0.8	0.6	0.5	0.4	0.3	0.3		
Be B ⁺³ B C N ⁺⁵ , N ⁺³ O O O ⁻² F F Ne Na ⁺ Na Mg ⁺² K ² A ¹	4 2 5 6	2.9	1.9	1.7	1.6	1.4	1.2	1.0	0.9	0.7	0.6	0.5		
B ⁺³ B C N ⁺⁵ , N ⁺³ O O ⁻² F F Ne Na ⁺ Na Mg ⁺² K ² S Mg	2 5 6		1.9	1.7	1.6	1.4	1.2	1.0	0.9	0.7	0.6	0.5		
C N ⁺⁵ , N ⁺³ N O O ⁻² F F Ne Na ⁴ Na ⁴ Na ⁴ Na ⁴ Na ⁴ Na ⁴ Na ⁴ A ¹³	6	1.99	1.9	1.8	1.7	1.6	1.4	1.3	1.2	1.0	0.9	0.7		
N* ⁵ , N* ³ N O O O ⁻² F F Ne Na Na Mg* ² Mg Mg* ² Mg A ¹ ³		4.6	3.0	2.2	1.7	1.5	1.4	1.2	1.2	1.0	0.9	0.7		
N ⁺³ N O ⁻² F F Ne Na Na Mg ⁺² Mg Al ⁺³	2	2.0	2.0	1.9	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.16		
N O ⁻² F Ne Na ⁴ Mg ⁴² Mg A ¹³	4	37	3.0	24	2.0	18	1.66	1.56	1 40	1 30	1.29	1 17		
0 0 ⁻² F F Ne Na ⁺ Na ⁺ Mg 4 ¹³	7	5.8	4.2	3.0	2.3	1.9	1.65	1.54	1.49	1.39	1.20	1.17		
0 ⁻² F Ne Na ⁺ Na Mg ⁺² Mg	8	7.1	5.3	3.9	2.9	2.2	1.8	1.6	1.5	1.4	1.35	1.26		
F Ne Na ⁴ Na Mg ⁺² Mg A ¹	10	8.0	5.5	3.8	2.7	2.1	1.8	1.5	1.5	1.4	1.35	1.26		
F ⁻ Ne Na ⁺ Na Mg ⁺² Mg Al ⁺³	9	7.0	0.2	4.45	3.35	2.65	2.15	1.9	1.7	1.6	1.5	1.35		
Na ⁺ Na Mg ⁺² Mg Al ⁺³	10	8.7	6.7	4.8	3.5	2.8	2.2	1.9	1.7	1.55	1.5	1.35		
Na Mg ⁺² Mg Al ¹¹³	10	9.5	82	5.8	4.4	3.4	2.65	2.2	1.9	1.65	1.55	1.5		
Mg ⁺² Mg Al ⁺³	11	9.65	8.2	6.7	5.25	4.05	3.2	2.65	2.25	1.95	1.75	1.6		
Mg A1 ¹³	10	9.75	8.6	7.25	5.95	4.8	3.85	3.15	2.55	2.2	2.0	1.8		
Al ⁺³	12	10.5	8.6	7.25	5.95	4.8	3.85	3.15	2.55	2.2	2.0	1.8		
Δ1	10	9.7	8.9	7.8	6.65	5.5	4.45	3.65	3.1	2.65	2.3	2.0		
Ai	13	11.0	8.95	7.75	6.6	5.5	4.5	3.7	3.1	2.65	2.3	2.0		
Si ¹⁺⁺ Si	10 14	9.75	9.15	8.25	7.15	6.05	5.05	4.2	3.4	2.95	2.6	2.3		
		11.55	2.4	0.2	7.15	0.1	5.1	4.2	5.4	2.95	2.0	2.3		
pro	10	9.8	9.25 10.0	8.45	7.5	6.55	5.65	4.8	4.05	3.4	3.0	2.6		
p-3	18	12.7	9.8	8.4	7.45	6.5	5.65	4.85	4.05	3.4	3.0	2.6		
S ⁺⁶	10	9.85	9.4	8.7	7.85	6.85	6.05	5.25	4.5	3.9	3.35	2.9		
S	16	13.6	10.7	8.95	7.85	6.85	6.0	5.25	4.5	3.9	3.35	2.9		
S ⁻²	18	14.3	10.7	8.9	7.85	6.85	6.0	5.25	4.5	3.9	3.35	2.9		
CI	17	14.6	11.3	9.25	8.05	7.25	6.5	5.75	5.05	4.4	3.85	3.35		
CI	18	15.2	11.5	9.3	8.05	7.25	6.5	5.75	5.05	4.4	3.85	3.35		
A ¥ ⁺	10	15.9	12.0	10.4	8.7	7.8	7.0	6.2	5.4	4.7	4.1	3.6		
K V	10	16.5	12.2	10.0	0.05	1.75	7.05	0.44	5.9	5.5	4.8	4.2		
K Ca ⁺²	19	16.5	13.5	10.8	9.2	7.9	6.7	5.9	5.2	4.6	4.2	3.7	3.3	
Ca	20	17.5	14.1	11.4	9.7	8.4	7.3	6.3	5.6	4.9	4.5	4.0	3.6	
Sc ⁺³	18	16.7	14.0	11.4	9.4	8.3	7.6	6.9	6.4	5.8	5.35	4.85		
Sc	21	18.4	14.9	12.1	10.3	8.9	7.7	6.7	5.9	5.3	4.7	4.3	3.9	
Cullity page 634 Appendix 10	18	17.0	14.4	11.9	9.9	8.5	7.85	7.3	6.7	6.15	5.65	5.05		
cullity page 054, Appendix 10	22	19.3	157		10.0				1.1.1	10233211		10	1.0	
V Cr	22	20.2	15.7	12.8	10.9	9.5	8.2	7.2	6.3	5.6	5.0	4.0	4.2	
Chan Park MSE-SNU Intro to Crystallography Mn	23 24	20.2 21.1	15.7 16.6 17.4	12.8 13.5 14.2	10.9 11.5 12.1	9.5 10.1 10.6	8.2 8.7 9.2	7.2 7.6 8.0	6.3 6.7 7.1	5.6 5.9 6.3	5.0 5.3 5.7	4.6 4.9 5.1	4.2 4.4 4.6	

Atomic scattering factor	or		_		5 F O U L	NATIONAL UNIVERS
	$\frac{\sin\theta}{\lambda}$ (Å ⁻¹)	0.0	0.1	0.2	0.3	0.4
	Н	1	0.81	0.48	0.25	0.13
	He	2	1.88	1.46	1.05	0.75
	Li ⁺	2	1.96	1.8	1.5	1.3
	Li	3	2.2	1.8	1.5	1.3
	Be ⁺²	2	2.0	1.9	1.7	1.6
	Be	4	2.9	1.9	1.7	1.6
	B ⁺³	2	1.99	1.9	1.8	1.7
	В	5	3.5	2.4	1.9	1.7
	С	6	4.6	3.0	2.2	1.9
	N ⁺⁵ ,	2	2.0	2.0	1.9	1.9
	N ⁺³	4	3.7	3.0	2.4	2.0
	N	7	5.8	4.2	3.0	2.3
	0	8	7.1	5.3	3.9	2.9
	O ⁻²	10	8.0	5.5	3.8	2.7
Cullity page 634, Appendix 10	F	9	7.8	6.2	4.45	3.35
Chan Park, MSE-SNU Intro to Crystall	ography, 2021					1

Factors affecting f

Factors affecting the intensity of the scattering from an atom

> Anomalous scattering (anomalous dispersion)

$$|f|^{2} = (f_{0} + \Delta f')^{2} + (\Delta f'')^{2}.$$

➤ Thermal motion

$$f = f_0 \exp\left[-\frac{B\sin^2\theta}{\lambda^2}\right]$$

Sherwood & Cooper 9.8 Cullity 4-11

Factors affecting the relative intensity of Bragg reflections

≻Structure factor

- ➢ Polarization factor
- ➤ Multiplicity factor
- Lorentz factor
- Absorption factor
- ➤ Temperature factor

Structure factor

Structure factor

Structure factor

Phase difference b/w waves scattered by B and that scattered by A at origin, for the hkl reflection

$$\phi = 2\pi(hu + kv + lw)$$

A transformed a

Add all the waves scattered by each atom in the unit cell. \rightarrow addition of complex numbers representing amplitude and phase of each wave

Any scattered wave from hkl reflection & atom in uvw $Ae^{i\phi} = fe^{2\pi i(hu + kv + lw)}.$

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)}$$

F (structure factor) = resultant wave scattered by all the atoms in the unit cell F contains info on both amplitude and phase of the resultant wave. Structure Factor

$$|\mathsf{F}| = \frac{\text{amplitude scattered by all the atoms of a unit cell}}{\text{amplitude scattered by a single electron}}$$

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i(hu_n + kv_n + lw_n) \qquad I_{hkl} \sim |F_{hkl}|^2$$

$$\text{intensity of any}_{hkl \text{ reflection}} \quad \text{atomic positions}$$

$$u_{n'} v_{n'} w_{n'} f_n \Rightarrow F_{hkl} \text{ can be obtained } \Rightarrow \text{ can get } I_{hkl}$$

$$\text{Positions of atoms in unit cell, atomic scattering factors}$$

$$\Rightarrow \mathsf{F} \Rightarrow \mathsf{I}$$

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i (hu_n + kv_n + lw_n)$$

▷ Positions of atoms in unit cell, atomic scattering factors \rightarrow F_{hkl} & I_{hkl}

 $I_{hkl} \sim \left| F_{hkl} \right|^2$

➤ I_{hkl} from several sets of planes → atom positions ; crystal structure determination

$$ightarrow F \rightarrow I$$
 vs. $I \rightarrow F$

✓ F → I (structure → Diff pattern); I → F (D pattern → structure)

> Phase info is lost in going from F_{hkl} to I_{hkl} . \rightarrow phase problem

 \checkmark We do not know in which direction the vector F_{hkl} points.

Phase problem

We would be better off if diffraction measured phase of scattering rather than amplitude! Unfortunately, nature did not oblige us.

Source unknown

Chan Park, MSE-SNU Intro to Crystallography, 2021

Picture by courtesy of D. Sivia 27

Fourier transform $F_{hkl} = \int_{V} \rho_{xyz} \exp[2\pi i(hx + ky + lz)]dV$ $\rho_{xyz} = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| \exp[-2\pi i(hx + ky + lz)]$ > e' density \leftarrow Fourier transform \rightarrow diffraction pattern \checkmark 1 is related to e' density through Fourier transform > Xtal structure \leftarrow Fourier transform \rightarrow diffraction pattern \checkmark EXAFS pattern \leftarrow Fourier transform \rightarrow radial distribution function > ρ space = real space diffraction space = reciprocal space = k space > <u>Reciprocal space always has centrosymmetry even though there is no</u> centrosymmetry in real space. \rightarrow 11 Laue groups (Hammond page 221)

> Diffraction pattern always gives Laue group pattern.

Structure factor

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)},$$

Unit cell with only one atom at 000

$$F = f e^{2\pi i(0)} = f$$
$$F^2 = f^2.$$

Base-centered cell

$$000 & \frac{1}{2}\frac{1}{2}0$$

$$F = fe^{2\pi i(0)} + fe^{2\pi i(h/2 + k/2)}$$

$$= f [1 + e^{\pi i(h+k)}].$$

$$F = 2f \quad \text{for } h \text{ and } k \text{ unmixed};$$

$$F^2 = 4f^2.$$

$$F = 0 \quad \text{for } h \text{ and } k \text{ mixed};$$

$$F^2 = 0.$$
29

Chan Park, MSE-SNU Intro to Crystallography, 2021

Structure factor of bcc

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)},$$

Body-centered cell 000 & 1/21/21/2

$$F = fe^{2\pi i(0)} + fe^{2\pi i(h/2 + k/2 + l/2)}$$

= $f [1 + e^{\pi i(h+k+l)}].$
$$F = 2f \qquad \text{when } (h+k+l) \text{ is even};$$

$$F = 4f^2.$$

$$F = 0 \qquad \text{when } (h+k+l) \text{ is odd};$$

$$F^2 = 0.$$

- The condition that structure factor becomes zero <u>due to a</u> <u>systematic symmetry condition</u>
- Presence of reflections with zero intensity caused by the <u>space</u> <u>group (symmetry) of unit cell</u>

Translational symmetry inside unit cell, screw axes, glide planes can introduce systematic extinctions.

Chan Park, MSE-SNU Intro to Crystallography, 2021

Hammond Appendix 6

Extinction conditions

CONTINUED

Cmm2

	Structure	factor	of fcc	
--	-----------	--------	--------	--

									\sim
$F_{hkl} = \sum_{1}^{N} f$	$c_n e^{2\pi i(hu_n+kv_n+lw_n)},$	fac 000	ce-0), 1/2	cen 2 ¹ /2 0 ¹ /	ter 0, ¹ / ₂	ed ce ⁄20¹⁄2	ell &		
$F = f e^{2\pi i(0)} + $ $= f [1 + e^{2\pi i(0)}]$	$fe^{2\pi i(h/2+k/2)} + fe^{2\pi i(k/2+k/2)} + e^{\pi i(h+k)} + e^{\pi i($	$(l/2) + fe^{2}$	πi(h	/2+	<i>l/</i> 2)				
F = 4f	for unmixed indices;		h	k	1	h+k	k+l	h+l	h+k+l
$F^2 = 16f^2$		unmixed	e	e	е	е	е	е	е
		mixed	e	е	0	е	0	0	0
		mixed	e	0	0	0	е	0	е
F = 0	for mixed indices;	unmixed	0	0	0	е	е	е	0
$F^{2} = 0$		Structure	fac	tor	is	inder	pend	lent	

of size & shape of the unit cell

NATIONAL UNIVERSITY

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)},$$

$$NaCl Na 000, \frac{1}{2}\frac{1}{2}0, \frac{1}{2}0\frac{1}{2}, \frac{1}{2}0\frac{1}{2}\frac{1}{2}, \frac{1}{2}0\frac{1}{2}\frac{1}$$

SEOUL NATIONAL UNIVERSITY

Structure factor of NaCl (continued)

$$F = [1 + e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)}][f_{Na} + f_{Cl}e^{\pi i (h+k+l)}].$$

$$F = 0 \quad \text{for mixed indices};$$

$$F^{2} = 0.$$
Na 000, ½½20, ½20½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½2½2 & 0½20, ½200 & 0½2½2 & 0.2522 & 0.2

Friedel's law > Diffraction pattern from a centrosymmetric crystal is centrosymmetric. Diffraction pattern from a non-centrosymmetric crystal is centrosymmetric. \rightarrow Friedel's law > Laue group (Laue class) $I_{hkl} = F_{hkl} \cdot F_{hkl}^* = f \exp 2\pi i(hu + kv + lw)f \exp -2\pi i(hu + kv + lw)$ $= f \exp 2\pi i (hu + kv + lw) f \exp 2\pi i (\bar{h}u + \bar{k}v + \bar{l}w)$ $I_{\bar{h}\bar{k}\bar{l}} = F_{\bar{h}\bar{k}\bar{l}} \cdot F_{\bar{h}\bar{k}\bar{l}}^* = f \exp 2\pi i (\bar{h}u + \bar{k}v + \bar{l}w) f \exp -2\pi i (\bar{h}u + \bar{k}v + \bar{l}w)$ $= f \exp 2\pi i (\bar{h}u + \bar{k}v + \bar{l}w) f \exp 2\pi i (hu + kv + lw).$ $F_{hkl} = F_{\bar{h}\bar{k}\bar{l}}^*$ and $F_{hkl}^* = F_{\bar{h}\bar{k}\bar{l}}$, hence $I_{hkl} = I_{\bar{h}\bar{k}\bar{l}}$ Friedel's law > Reciprocal space always has centrosymmetry even though there is no <u>centrosymmetry in real space. \rightarrow 11 Laue groups (Hammond page 221)</u> > Diffraction pattern always gives Laue group pattern. Hammond page 220 Sherwood Chap 9.11 Hammond Chap 9 39 Chan Park, MSE-SNU Intro to Crystallography, 2021

11 Laue group

 The presence of a center of symmetry in the diffraction pattern means that "non-centrosymmetric crystals cannot be distinguished from those with a center of symmetry".
 There are 11 centrosymmetric point groups and hence 11 symmetries which diffraction patterns can possess. These are called 11 Laue groups.

Crystal system	Laue point group and centrosymmetric point group	Non-centrosymmetric point groups belonging to the Laue point group
Cubic (two Laue point groups)	m3m m3	432 43 <i>m</i> 23
Tetragonal (two Laue point groups)	4/mmm 4/m	422 4mm 42m 4 4
Orthorhombic	mmm	222 mm2
Trigonal (two Laue point groups)	$\frac{\bar{3}m}{\bar{3}}$	32 3m 3
Hexagonal (two Laue point groups)	6/mmm 6/m	622 6mm
Monoclinic	2/m	2 m
Triclinic	ī	1

 Table 9.1
 The eleven Laue point groups or crystal classes

Meaning of Laue index, Laue class, Laue group

Qualitative phase analysis (Phase ID)

Cullity Chap 9 Krawitz Chap 8 Jenkins & Snyder Chap 12

41

ICDD & PDF

ICDD - International Centre for Diffraction Data

- > A non-profit organization
- > Collect, edit, publish, and distribute powder diffraction data
- > Joint Committee for Chemical Analysis by Powder Diffraction Methods (founded in 1941)
- > Joint Committee on Powder Diffraction Standards (JCPDS) (established in 1969)
- Renamed to ICDD in 1978

PDF (Powder Diffraction File)

- > A collection of single-phase X-ray powder diffraction patterns
- Interplanar spacings (d's), corresponding relative intensities (l's) and other pertinent physical and crystallographic properties

PDF - powder diffraction file

a collection of single-phase X-ray powder diffraction patterns in the form of tables of characteristic interplanar spacings and corresponding relative intensities along with other pertinent physical and crystallographic properties

NATIONAL UNIVERSITY

45

a collection of single-phase X-ray powder diffraction patterns in the form of tables of characteristic <u>d's & l's</u> along with other pertinent physical and crystallographic properties

PDF		🛞 PDF # 050628,				SEGUL NA	TIONAL	UNIVI	ERSIT
		05-0628 Quality: *						~	
		CAS Number: 7647-14-5				1.12	12		
🛞 PDF # 050628, 🛛	Vav	Molecular Weight: 58.44	+				- [×	:
05-0628 Quality: * CAS Number: 7647-14-5	Na C Sodi Bef:	Volume[CD]: 179.43 Dx: 2.163 Dm: 2.168	539	9 II	41 (1953	2)			
Molecular Weight: 58.44 – Volume[CD]: 179.43 Dx: 2.163 Dm: 2.168	۱۱۵۱. ۸	Sys: Cubic Liattice: Face-centered		<u>, </u>	, 41 (100.	.,		_	
Sys: Cubic Lattice: Face-centered	d Slit ensity	S.G.: Fm3m (225)							
Cell Parameters: a 5.640 b c	Fixed	a 5.640 b c				0.8141			
α <u>β</u> y SS/FOM: F17=93(.0108, 17)		<u>κ β γ</u> SS/FOM: F17=93(.0108.17)	10	C).9	d	(?		
Rad: CuKa1	d(A)	1/Icor: 4.40	k	I	d(A)	Int-f	h	k	I.
Lambda: 1.5405 Filter: Ni d-sp:	3.260 2.821 1.994	Rad: CuKa1 Lambda: 1.5405	3	1 0 2	.94010 .89170 86010	3 4 1	6 6 5	002033)
Mineral Name: Halite syn	1.701 1.628 1.410	Filter: Ni d-sp:	1 4 3	1 0 1	.85030 .81410	3 2	6 4	2 2 4 4	2 1
han Park MSE-SNU	Crysta	Mineral Name: Halite syn		1		PCPDI	-WIN	J	46

ICDD® 2022 Product Summary

Data Entry Source	PDF-4+ 2022 PDF-4+/Web 2022	PDF-4/ Axiom 2022	PDF-4/ Minerals 2022	PDF-4/ Organics 2022	PDF-2 2022
00- ICDD	122,611	36,257	12,805	43,162	122,611
01- FIZ	84,354	13,448	13,987	17,378	194,077
02- CCDC	0	0	0	444,125	0
03- NIST	2,862	412	229	283	10,067
04- MPDS	250,258	51,856	22,819	0	0
05- ICDD Crystal Data	869	0	75	55,247	869
Total No. of Entries	460,954	101,973	49,915	560,195	327,624
Subfile Distribution:					
Inorganic	438,726	92,727	49,861	324,259	305,502
Organic	51,414	11,978	732	548,959	49,726
New Entries	16,187	4,184	969	12,900	10,804
Rietveld-No. with atomic coordinates	353,330	71,560	41,376	156,107	0
Reference Intensity Ratio (RIR)-I/Ic	358,223	73,144	38,387	525,705	224,922
Experimental Digital Patterns	17,053	7,535	169	9,167	0

All ICDD databases combine the power of both powder diffraction and crystal structure reference data. We are the only crystallographic database in the world with quality marks and quality review processes that are ISO certified. Each PDF® database includes our integrated data mining software.

https://www.icdd.com/assets/files/2022-Product-Summary.pdf

Chan Park, MSE-SNU Intro to Crystallography, 2021

WHICH ICDD DATA	ABASE I	S RIGHT	FOR	/0U?		X
https://www.icdd.com/assets/files/2022-Which-Database-Flye	er.pdf PDF-4+ 2022	PDF-4+/ WEB 2022	PDF-4/ AXIOM 2022	PDF-4/ MINERALS 2022	PDF-4/ ORGANICS 2022	PDF-2 2022
I WORK PRIMARILY WITH INORGANIC COMPOUNDS	~		~			~
I WORK PRIMARILY WITH ORGANIC COMPOUNDS					~	
I WORK PRIMARILY WITH MINERALS				~		
I WORK WITH ELECTRON DIFFRACTION/SYNCHROTRON	~	~		~	~	
I NEED TO WORK AT THE OFFICE AND HOME						
I NEED TO DO QUANTITATIVE ANALYSIS						
RIETVELD	· *	v *	v *	v *	• *	
REFERENCE INTENSITY RATIO (RIR)	✓ †	v T	v *	✓ †	v †	✓ †
PATTERN FITTING	v *	v *	v *	*	v *	
I NEED A DATABASE WITH ATOMIC COORDINATES	-	~	~		4	
HOW MANY ENTRIES ARE IN THE DATABASE?	460,954	460,954	101,973	49,915	560,195	327,624
HOW MANY ENTRIES ARE NEW?	16,821	16,821	4,184	969	12,900	10,804
I am using vendor software for my analysis. Which databases will work with my vendor software? Global software vendors provide search/match software that interfaces with our databases. Please check with your software vendor for compatibility.	· •	•	~	~	>	~
WHAT IS THE LICENSE TERM FOR THE DATABASE?	1 YEAR	1 YEAR	3 YEAR	1 YEAR	1 YEAR	5 YEAR
MULTI-YEAR LICENSE AVAILABLE	~	~		~	~	
SITE LICENSE AVAILABLE	~				~	~

Chan Park, MSE-SNU

* Using diffraction equipment manufacturer or vendor software. † Using Sleve or Sleve+, diffraction equipment manufacturer or vendor softwar NEW- Extended multi-year license terms – let us know what you need!

PDF-4+ 2021 PDF-4+ Purchase Opt	ions DVD CODE	USB CODE	2020 -2021	2020 -2021
New - Single License	F4D21	F4S21	\$8,910	\$5,925
Renewal from 2020 to 2021	F4RD21	F4RS21	\$1,960	\$1,250
DF-4+ and JADE Pro Bundle*				
New - Single License	BUJPF4D21	BUJPF4S21	\$15,648	\$10,986
Purchase a new license for PDF-4+ and JADE Pio				
DF-4+ 2021 Multi-year License*				
Renewal - 3 year license	F4D22MR24	F4S22MR24	\$5,290	\$3,375
Renewal - 5 year license	F4D22MR26	F4S22MR26	\$8,330	\$5,315
DF-4+Scholar 2021 (10-Year License Package)*				
PDF-4+ New - Single License	F4D21	F4S21	NA	\$5,925
Sleve+ – New Single License	SWS421N	SWS421N	NA	\$500
Scholar Multi-year	F4SPD22MR26	F4SPS22MR26	NA	\$6,125
-	1	Parent and the second second second second	Start and the second start and the	\$12,550
DF-4+ 2021 Site License* Save Money! Take of New Master License	advantange of ICDD's Com F4D21M	bo Site License – Requ F4S21M	est a quote today! \$8,910	\$12,550 \$5,925
DF-4+ 2021 Site License* New Master License New - additional licenses, each	advantange o <mark>f ICDD's Com</mark> F4D21M F4D21C	bo Site License – Requ F4S21M F4S21C	est a quote today! \$8,910 \$1,960	\$12,550 \$5,925 \$1,250
DF-4+ 2021 Site License New Master License New - additional licenses, each Renewal - Yearly Master License	advantange of ICDD's Com F4D21M F4D21C F4RD21M	bo Site License – Requ F4S21M F4S21C F4RS21M	est a quote today! \$8,910 \$1,960 \$1,960	\$12,550 \$5,925 \$1,250 \$1,250
DF-4+ 2021 Site License* New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C	\$8,910 \$1,960 \$1,960 \$750	\$12,550 \$5,925 \$1,250 \$1,250 \$495
Save Money! Take of New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License*	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C	est a quote today! \$8,910 \$1,960 \$1,960 \$750	\$12,550 \$5,925 \$1,250 \$1,250 \$495
Save Money! Take of New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License* Renewal - 3 year Master Site License	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C F4RD21C	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4RS21C	est a quote today! \$8,910 \$1,960 \$750 \$5,290	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375
Save Money! Take of New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License* Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C F4RD21C F4RD21C F4D22MR24M F4D22MR24C	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4S22MR24M F4S22MR24C	est a quote today! \$8,910 \$1,960 \$750 \$5,290 \$2,250	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485
Save Money! Take of DF-4+ 2021 Site License New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each Renewal - 5 year Master Site License	F4D21M F4D21C F4RD21M F4RD21M F4RD21M F4RD21C F4D22MR24M F4D22MR24M F4D22MR24C F4D22MR26M	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4S22MR24M F4S22MR24M F4S22MR24C F4S22MR26M	est a quote today! \$8,910 \$1,960 \$750 \$5,290 \$2,250 \$8,330	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485 \$5,315
Save Money! Take of New Master License New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each Renewal - 5 year Master Site License Renewal - 5 year additional licenses, each	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C F4RD21C F4D22MR24M F4D22MR24C F4D22MR26M F4D22MR26C	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4RS21C F4S22MR24M F4S22MR24C F4S22MR26M F4S22MR26C	est a quote today! \$8,910 \$1,960 \$750 \$5,290 \$2,250 \$8,330 \$3,750	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485 \$5,315 \$2,475
Save Money! Take of New Master License New Additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each Renewal - 5 year Master Site License Renewal - 5 year additional licenses, each DF-2 to PDF-4+ Conversion	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C F4RD21C F4D22MR24M F4D22MR24C F4D22MR26C	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4S22MR24M F4S22MR24C F4S22MR24C F4S22MR26C	est a quote today! \$8,910 \$1,960 \$750 \$5,290 \$2,250 \$8,330 \$3,750	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485 \$5,315 \$2,475
Save Money! Take of New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License* Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each Renewal - 5 year Master Site License Renewal - 5 year additional licenses, each DF-2 to PDF-4+ Conversion PDF-2 2020 to PDF-4+ 2021	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C F4RD21C F4D22MR24M F4D22MR24C F4D22MR24C F4D22MR26C F4D22MR26C F2420RDU21	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4S22MR24M F4S22MR24C F4S22MR24C F4S22MR26C F4S22MR26C F2420RSU21	est a quote today! \$8,910 \$1,960 \$750 \$5,290 \$2,250 \$8,330 \$3,750 \$1,960	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485 \$5,315 \$2,475 \$1,250
Save Money! Take of New Master License New Additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License* Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each Renewal - 5 year additional licenses, each DF-2 to PDF-4+ Conversion PDF-2 2020 to PDF-4+ 2021	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21C F4RD21C F4RD21C F4D22MR24M F4D22MR24C F4D22MR26C F4D22MR26C F2420RDU21 F2419RDU21	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4RS21C F4S22MR24M F4S22MR24M F4S22MR24C F4S22MR26C F4S22MR26C F2420RSU21 F2419RSU21	est a quote today! \$8,910 \$1,960 \$750 \$5,290 \$2,250 \$8,330 \$3,750 \$1,960 \$3,920	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485 \$5,315 \$2,475 \$1,250 \$1,250
Save Money! Take of New Master License New Master License New - additional licenses, each Renewal - Yearly Master License Renewal - additional licenses, each DF-4+ 2021 Site/Multi-year License* Renewal - 3 year Master Site License Renewal - 3 year additional licenses, each Renewal - 5 year Master Site License Renewal - 5 year Master Site License Renewal - 5 year additional licenses, each DF-2 to PDF-4+ Conversion PDF-2 2020 to PDF-4+ 2021 PDF-2 2019 to PDF-4+ 2021	advantange of ICDD's Com F4D21M F4D21C F4RD21M F4RD21M F4RD21M F4RD21C F4RD22MR24M F4D22MR24C F4D22MR26C F4D22MR26C F2420RDU21 F2419RDU21 F2418RDU21	bo Site License – Requ F4S21M F4S21C F4RS21M F4RS21C F4S22MR24M F4S22MR24C F4S22MR24C F4S22MR26C F4S22MR26C F4S22MR26C F2420RSU21 F2419RSU21 F2418RSU21	est a quote today! \$8,910 \$1,960 \$1,960 \$750 \$5,290 \$2,250 \$8,330 \$3,750 \$1,960 \$3,920 \$5,880	\$12,550 \$5,925 \$1,250 \$1,250 \$495 \$3,375 \$1,485 \$5,315 \$2,475 \$1,250 \$1,250 \$1,250 \$3,750

PDF - Quality Mark & Figure of Merit Quality Mark Figure of Merit > To quantify better the quality of a given set > * highest quality - average $\Delta 2\theta < 0.03$ degree, all of d-spacings lines were indexed, I measured quantitatively > To judge the credibility and worth of the > i reasonable quality - average $\Delta 2\theta$ < 0.06 degree, results > To evaluate the quality of d measurements indexed with no more than two lines being > The higher, the better unaccounted for, I measured quantitatively < 20 \rightarrow poor quality (Smith & Snyder FOM) > o low quality - low precision, poorly characterized, SS/FOM $F_{N} = \frac{1}{|\Delta 2\Theta|} \frac{N_{obs}}{N_{poss}}$ no unit cell data blank quality lower than o ➤ c calculated data Figure of merit FN ∆20 The average error in 20 > r d's from Rietveld refinement Nobs The number of lines observed ► h (hypothetical) Number of lines possible $N_{poss} =$ www.icdd.com/resources/webpdf/explain.htm "Evaluating Data Quality" from ICDD Jenkins & Snyder page 315 52 Chan Park, MSE-SNU Intro to Crystallography, 2021

- > A reliability index used in Powder Diffraction File (PDF)
- > Plays an important role in interpreting search match results.
- Data validation and the assignment of the quality mark are the most important steps in the editorial process of PDF.
- The criteria for the assignment of the quality marks differ between patterns obtained experimentally and those determined from the crystal structure (calculated patterns).
- Editorial comments describing the quality of the pattern are extremely useful in evaluating and eventually accepting the search/match results.

Chan Park, MSE-SNU Intro to Crystallography, 2021

"Evaluating Data Quality" from ICDD

53

Standard Reference Materials (SRMs) Powder Line Position + Line Shape Std for Powder Dif ✓ Silicon (SRM 640f); \$745/7.5q Line position - Fluorophlogopite mica (SRM 675); \$809/7.5g Line profile - LaB₆ (SRM 660c); \$907/6g \succ Intensity ✓ ZnO, TiO₂ (rutile), Cr₂O₃, CeO₂ (SRM 674b); out of stock Quantitative phase analysis ✓ Al₂O₃ (SRM 676a); out of stock, Silicon Nitride (SRM 656); \$580/ 20g Instrument Response Std ✓ Alumina plate (SRM 1976c); \$721/1 disc Gold \$58.66 / gram (2021 - 06 - 17)Prices; 2021-06-17 goldprice.org www.nist.gov/srm/index.cfm

➤ 2theta

- ✓ size & shape Geometry (crystal system, lattice parameter)
- ➤ Intensity
 - ✓ Atom type
 - ✓ Arrangement
 - ✓ Orientation, etc
- Shape of diffraction lines
 - ✓ Instrument broadening
 - ✓ Particle dimension
 - ✓ Strain

D-spacing accuracy

- Diffractometer misalignment
- Specimen displacement error
- > Problems in establishing true peak position
- Background
- ≻ Κα2
- > ----

Chan Park, MSE-SNU Intro to Crystallography, 2021

Intensity

- Structure sensitive
 - \checkmark Atomic scattering factor
 - ✓ Structure factor
 - ✓ Polarization
 - ✓ Multiplicity
 - ✓ Temperature
- > Sample sensitive
 - ✓ Absorption
 - ✓ Crystallite size
 - ✓ Degree of crystallinity
 - ✓ Particle orientation

> Instrument sensitive

- ✓ Absolute intensities
 - Source intensity
 - Diffractometer efficiency
 - Take-off angle of tube
 - Receiving slit width
 - Axial divergence allowed
- ✓ Relative intensities
 - Divergence slit aperture
 - Detector dead-time
- Measurement sensitive
 - ✓ Method of peak area measurement
 - ✓ Method of background subtraction
 - \checkmark $\alpha 2$ stripping or not
 - ✓ Degree of data smoothing employed

Bish & Post Chap 3

Chan Park, MSE-SNU Intro to Crystallography, 2021

Cullity

➤ Two step process

(1) Determination of the size & shape of the unit cell \leftarrow peak positions

(2) Determination of lattice type & distribution of the atoms in the structure ← intensities of the diffraction peaks

Chan Park, MSE-SNU Intro to Crystallography, 2021

todos

≻XRD-3 READ

- ✓ Cullity, Chapter 4-1, 4-2, 4-3, 4-4, 4-5, 4-6
- ✓ Hammond Chapter 9.1, 9.2
- ✓ Sherwood & Cooper, Chapter 4.13
- ✓ Sherwood & Cooper, Chapter 4.11~4.12
- ✓ Krawitz Chapter 5, p132 ~ p143
- > XRD-3 Homework (due in 1 week)
 - ✓ Hammond 9.4; 9.5
 - ✓ Krawitz p5.2; p5.5; p5.6
 - ✓ Cullity 4-4; 4-5; 4-6