

Network Layer - Data plane -

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

The Internet network layer

host, router network layer functions:

IP datagram format

IP fragmentation, reassembly

- Network links have MTU (max.transfer size) - largest possible link-level frame
 - different link types, different MTUs
- Large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

IP addressing: introduction

- IP address: 32-bit identifier for host, router interface
- interface: connection
 between host/router and
 physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

IP addressing: introduction

Subnets

\Box IP address:

- subnet part high order bits
- host part low order bits

□ what's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

subnet mask: /24

Subnets

how many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

Q: How does a *host* get IP address?

□ hard-coded by system admin in a file

- Windows: control-panel→network→configuration
 →tcp/ip→properties
- UNIX: /etc/rc.config

DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server

"plug-and-play"

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

- Connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- Encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- Client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

IP addresses: how to get one?

Q: how does *network* get subnet part of IP addr?
 A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	<u>11001000</u> <u>11001000</u> <u>11001000</u>	00010111 00010111 00010111	0001000 0001001 0001010	00000000 00000000 00000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
		•••••		••••	••••
Organization 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

IP addressing: the last word...

Q: how does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

 outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)

. . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr

- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- □ 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- \Box NAT is controversial:
 - routers should only process up to layer 3
 - address shortage should be solved by IPv6
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - NAT traversal: what if client wants to connect to server behind NAT?

IPv6

□ *Initial motivation:* 32-bit address space soon to be fully allocated.

□ Additional motivation:

- header format helps speed processing/forwarding
- header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

priority:

identify priority among datagrams in flow flow label:

identify datagrams in same "flow" (concept of "flow" not well defined) *next header*:

identify upper layer protocol for data

Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

According to Google: 30% of clients access services via IPv6

IPv6

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption

Generalized Forwarding and SDN

Each router contains a *flow table* that is computed and distributed by a *logically centralized* routing controller

OpenFlow data plane abstraction

- □ *Flow*: defined by header fields
- □ Generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - Priority: disambiguate overlapping patterns
 - Counters: #bytes and #packets

OpenFlow: Flow Table Entries

Programmable Switch

Tofino ASIC + P4 language

- Program the match action table
- Tofino 2 achieves up to 12.8 Tbps
 - Barefoot acquired by Intel (2019)
- Action is being extended...
 - Encrypt, compress, compute...

34

SEOUL NATIONAL UNIVERSITY

