

Network Layer - Control plane -

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

Network-layer Functions

Recall: two network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination

data plane

control plane

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

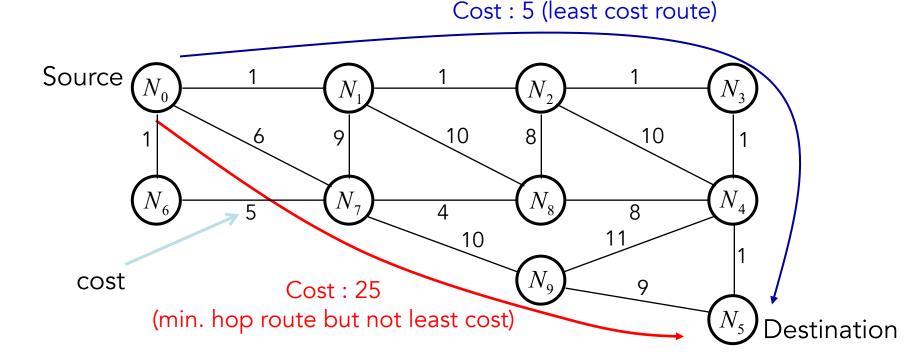
Routing protocols

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets will traverse in going from given initial source host to given final destination host
- good": least "cost", "fastest", "least congested"
- □ routing: a "top-10" networking challenge!

Shortest Path Routing Problem

- \Box The cost of a path = the sum of all the link costs on the path
- Find the path with the least cost between a pair of source and destination



What is the Cost?

- □ Some fixed quantity:
 - Link length or hop count
 - Speed or bandwidth
 - Propagation delay
 - Some combination of the above
- Possibly, variable quantity:
 - Average traffic expected at a given time
 - Buffer occupancy (queueing)
 - Processing delay (e.g., DPI)
 - Error conditions

User requirements

Different users prefer different routing paths

- File transfer -- high bandwidth path
- Interactive communication (e.g., VoIP) -- low delay path (avoid satellite links!)
- Important Information (e.g., money transfer) -- secure data path.

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- distance vector" algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

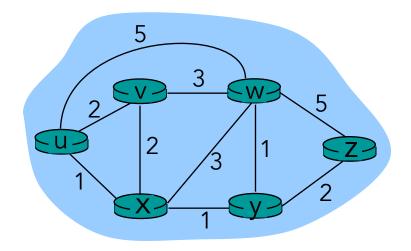
- routes change more quickly
 - periodic update
 - in response to link cost changes

Centralized vs. Decentralized

□ Centralized Routing:

- A central entity calculates all paths between source and destination nodes, and
- Then, distributes routing information to all the nodes
- **Problems:** single point of failure, complexity, etc.
- Decentralized Routing:
 - Each node exchanges cost and routing information
 - Keep exchanging with its neighbors until routing table converges
 - **Problems:** Convergence and sub-optimality (due to delayed information).

Graph abstraction of the network



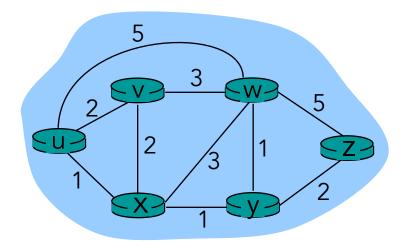
graph: G = (N, E) where N: nodes, E: edges

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs



c(x,y) = cost of link (x,y)(e.g., c(w,z) = 5)

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

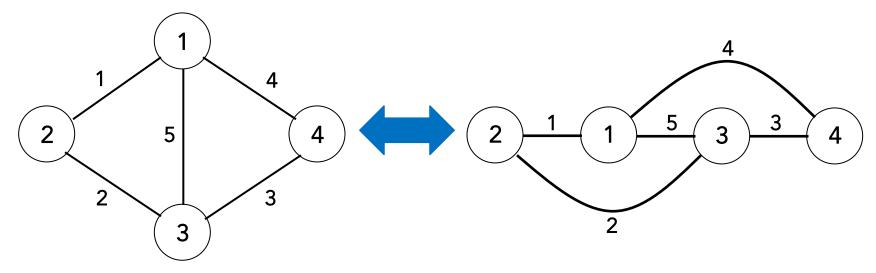
cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z ? *routing algorithm:* algorithm that finds that least cost path

Basic Graph Theoretic Notations

Definitions:

- A graph (or undirected graph) G = (N, A) is defined to be a finite non-empty set N of nodes and a collection A of pairs of distinct nodes from N
- Each pair of nodes in A is called an arc (or link, edge)
- Same graph with very different pictorial representation:



Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

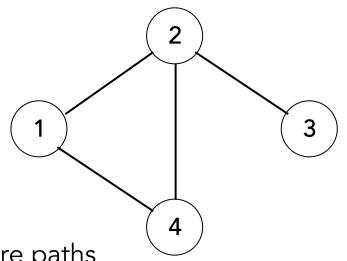
Basic Graph Theoretic Notations

 \Box Can the following be a graph G(N,A)?

- Walk
 - A walk in a graph G is a sequence of nodes (n₁, n₂, ..., n_L) such that the pairs (n₁, n₂), (n₂, n₃),, (n_{L-1}, n_L) are arcs of G
- Path
 - A walk with no repeated nodes is called a path
- Cycle
 - A walk $(n_1, n_2, ..., n_L)$ with $n_1 = n_L$, $L \ge 4$, and no repeated nodes other than $n_1 = n_L$ is called a cycle.

Examples

 Graph with a net of nodes N={1, 2, 3, 4}, and a set of arcs A={ (1,2), (2,3), (2,4), (4,1) }



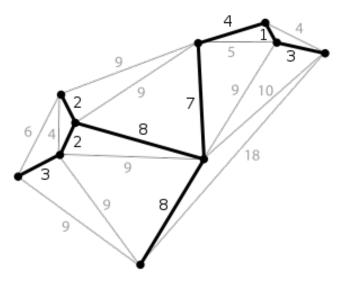
- The sequence (1, 4, 2, 3) and (2) are paths
- The sequence (1, 4, 2, 1) is a cycle
- Sequences (1, 4, 2, 3), (1, 4, 2, 1), (1, 4, 2, 1, 4, 1), (2, 3, 2) and (2) are all walks

(Note : (2, 3, 2) and (2) are not considered cycles)

Basic Graph Theoretic Notations

□ More definitions:

- A graph is *connected* if for each node i, there is a path (i = n₁, n₂, ..., n_L = j) to every other node j
- A tree is a connected graph that contains no cycles
- A spanning tree of a connected graph G is a subgraph of G that contains all the nodes in G and is also a tree

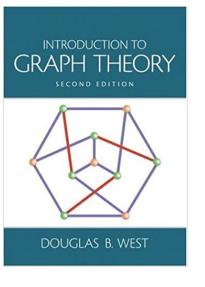


spanning tree (figure from http://en.wikipedia.org)

Basic Graph Theoretic Notations

□ Proposition:

- Let G be a connected graph (N, A), then,
- 1) G contains a spanning tree
- 2) $|A| \ge |N| 1$
- 3) G is a tree if and only if |A| = |N| 1
 - Proof can be done by induction.



A link-state routing algorithm

Dijkstra's algorithm

- net topology, link costs
 known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node (source) to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

Notation:

- □ C(x,y): link cost from node x to y; c(x,y) = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's algorithm

- Initialization:
- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u 5

```
then D(v) = c(u,v)
```

```
else D(v) = \infty
6
```

```
Loop
8
```

7

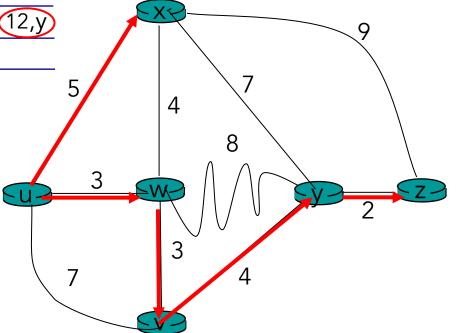
- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N' :
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- shortest path cost to w plus cost from w to v */ 14
- 15 until all nodes in N'

Dijkstra's algorithm: example

		D(v) [)(w)	D(x)	D(y)	D(z)		
Step	5 N'	p(v)	p(w)	p(x)	p(y)	p(z)		
0	u	7,u (3,u	5,u	∞	∞		
1	uw	6,w		(5,u)11,w	∞		
2	uwx	6,w			11,w	14,x		
3	UWXV				10,0	14,x		
4	uwxvy					(12,y)	X-2	
5	uwxvyz							

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)



Dijkstra's algorithm: another example

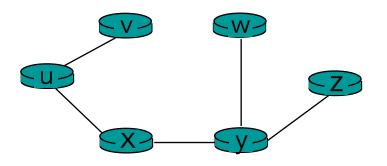
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	UX 🔶	2,u	4,x		2,x	∞
2	uxy₄	2,u	З,у			4,y
3	uxyv 🗸		З,у			4,y
4	uxyvw 🔶					4,y
5	uxyvwz ←					



Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:



resulting forwarding table in u:

destination	link		
V	(u,v)		
Х	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

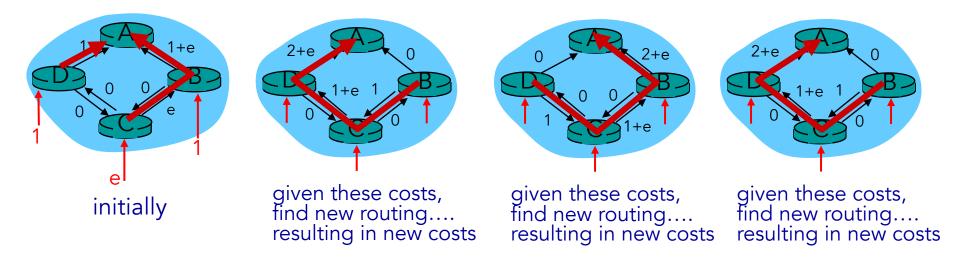
Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- $\hfill\square$ each iteration: need to check all nodes, w, not in N
- \Box n(n-1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)

oscillations possible:

□ e.g., support link cost equals amount of carried traffic:



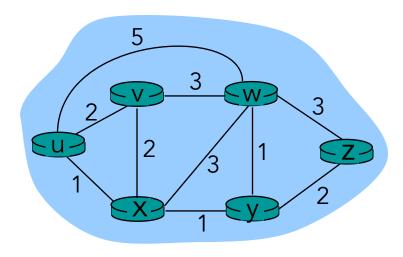
Bellman-Ford equation (dynamic programming)

Let

```
d_x(y) := \text{cost of least-cost path from x to y} then
```

```
d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}
cost from neighbor v to destination y
cost to neighbor v
min taken over all neighbors v of x
```


Bellman-Ford example



Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$\begin{aligned} d_u(z) &= \min \{ c(u,v) + d_v(z), \\ c(u,x) + d_x(z), \\ c(u,w) + d_w(z) \} \\ &= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4 \end{aligned}$$

node achieving minimum is next hop in shortest path, used in forwarding table

- \square D_x(y) = estimate of least cost from x to y
 - x maintains distance vector $D_x = [D_x(y): y \in N]$

□ Node x:

- knows cost to each neighbor v: c(x,v)
- maintains its neighbors' distance vectors.
 For each neighbor v, x maintains
 D_v = [D_v(y): y ∈ N]

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

 $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$

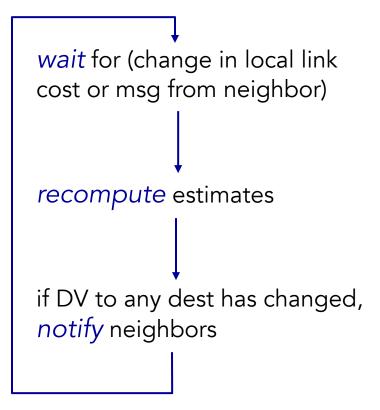
 under minor, natural conditions, the estimate D_x(y) converge to the actual least cost d_x(y)

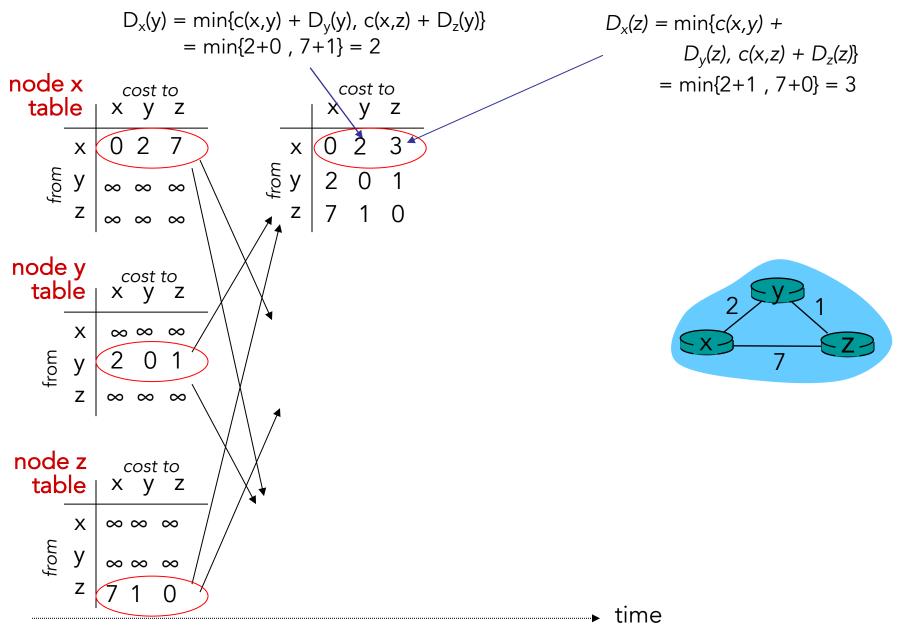
- *iterative, asynchronous:* each local iteration caused by:
- local link cost change
- DV update message from neighbor

distributed:

- each node notifies
 neighbors only when its DV
 changes
 - neighbors then notify their neighbors if necessary

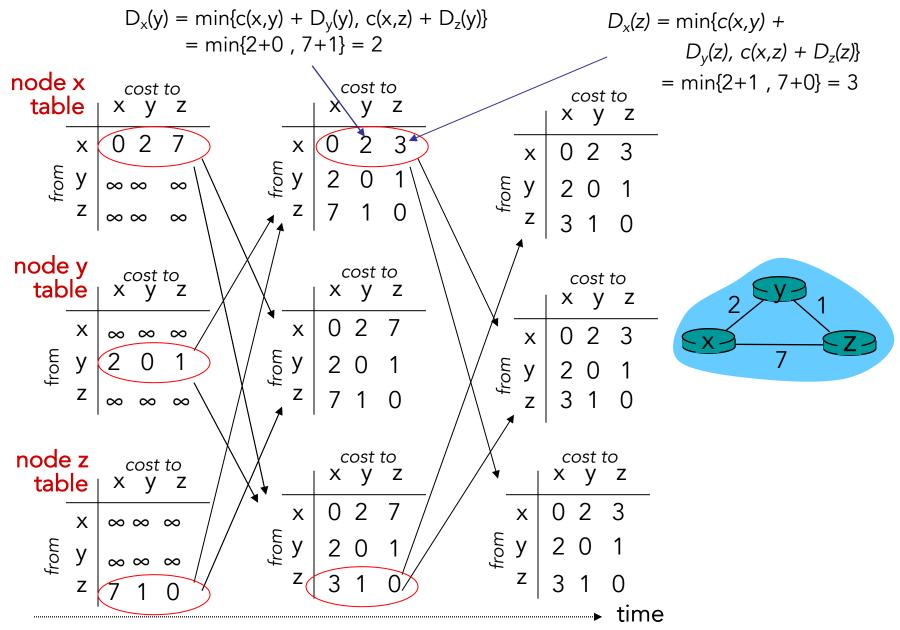
each node:





Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

27



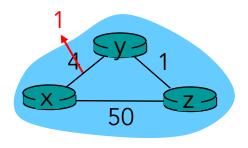
Introduction to Data Communication Networks, M2608.001200, 2021 FALL SEOUL NATIONAL UNIVERSITY

28

Distance vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors



 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

Good news travels fast

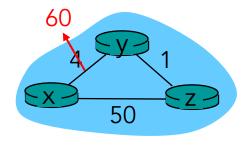
 t_1 : z receives update from y, updates its table, computes new least cost to x , sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do *not* change, so y does *not* send a message to z.

Distance vector: link cost changes

Link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

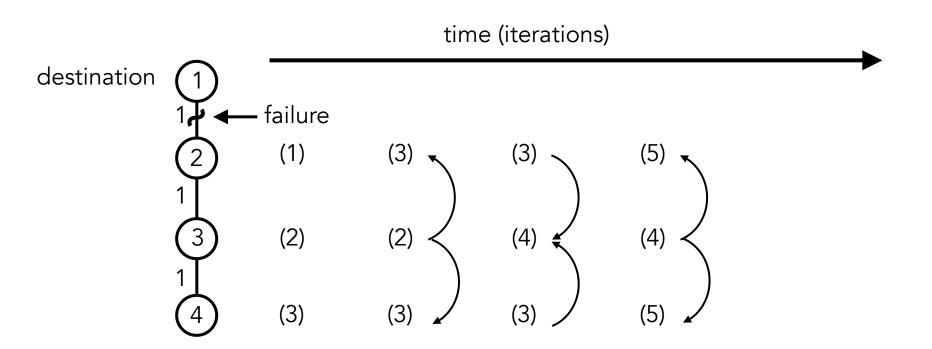


Poisoned reverse:

- If z routes through y to get to x :
 - z tells y its (z's) distance to x is infinite (so y won't route to x via z)
- will this completely solve count to infinity problem?

Count-to-Infinity Problem

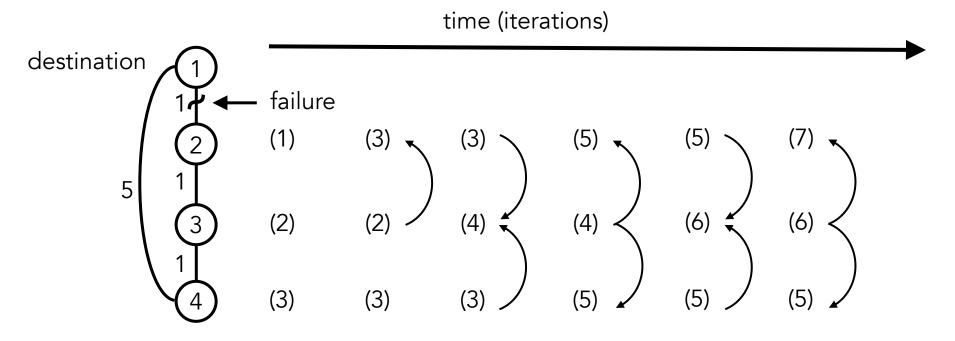
Slow convergence under topology change
 An example



→ Need to set a maximum cost

Count-to-Infinity Problem

 In general, the more unequal the link costs, the longer the convergence time is



- Bellman-Ford algorithm can be readily adapted for decentralized or distributed routing
 - Algorithm requires very little information to be stored at the network nodes
 - Nodes do not require information of network topology
 - At each node: it suffices to have

 the length (cost) of its outgoing links,
 the identity of every node, and
 the cost (shortest path) of its immediate neighbors to the destination.

- Each node maintains two tables
 - Distance table:
 - A vector of distances to all destinations, called a *distance vector*
 - Neighboring nodes exchange distance vectors
 - Routing table:
 - Based on the distance vector, compute (or load) the next-hop node to go to for all destinations and the associated costs

□ Initialization (at v to destination d)

- $D_v^{(0)} = \infty, v \neq d$
- $D_d^{(0)} = 0$

□ Iterative steps (at h-th step)

•
$$D_d^{(h+1)} = 0$$

• $D_v^{(h+1)} = \min_{w \in N(v)} [D_w^{(h)} + l(v, w)]$, for each $v \neq d$ (*)
where $N(v)$ is the set of neighbors of node v
 $l(v, w) = \infty$, if w is not a neighbor of v

 Algorithm is well suited for distributed computing, since (*) can be executed at each node v in parallel.

- □ Synchronous Case:
 - (*) is executed at each node v in parallel (in lock steps), and simultaneously
 - Exchange their results of computation with their neighbors
 - Execute again with index h incremented by 1
- Pros
 - The algorithm terminates in at most *N*-1 iterations (*N*: # of all nodes)
- □ Cons:
 - How to make all the nodes to agree to start/stop each iteration (i.e., synchronization)
 - How to abort the algorithm and start a new version
 - For the case when a link status or cost changes, while it is running

Asynchronous Distributed Algorithm

 Basic Idea: The algorithm operates by executing the iteration from time to time at each node v

$$D_{v} = \min_{w \in N(v)} [l(v, w) + D_{w}]$$
(+)

- Each node uses the latest " D_w " received from its neighbors
- No need of synchronization at all nodes
- Only requirement is that a node v will
 - Eventually execute the B-F equation (+)
 - Eventually transmit this information to its neighbors.

Asynchronous Distributed Algorithm

Advantages

- No need for synchronization
- Need not start with the normal B-F initial condition $(D_v^{(0)} = \infty)$
- Eliminates the need for an algorithm initialization or restart
- Question: Does this asynchronous algorithm converge to a shortest path solution?
 - Answer: Yes, provided that each node v executes (+) and D_v changes are eventually transmitted to its neighbors, etc.

* It can be shown that if a number of link length (cost) changes occur up to some time t_0 and then no other changes occur subsequently, then within a finite amount of time (from t_0), the asynchronous algorithm will find the shortest distance for every node v (Bertsekas & Gallager).

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

