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Outline

□ In this topic, we will
§ Define a spanning tree
§ Define the weight of a spanning tree in a weighted graph
§ Define a minimum spanning tree
§ Consider applications
§ List possible algorithms
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Spanning trees

□ Given a connected graph with |V | = n vertices, 
a spanning tree is defined a collection of n – 1 edges 
which connect all n vertices
§ The n vertices and n – 1 edges define a connected sub-graph

□ A spanning tree is not necessarily unique
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Spanning trees

□ This graph has 16 vertices and 35 edges
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Spanning trees

□ These 15 edges form a minimum spanning tree
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Spanning trees

□ Such a collection of edges is called a tree because if any 
vertex is taken to be the root, we form a tree by treating 
the adjacent vertices as children, and so on...
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Spanning trees on weighted graphs

□ The weight of a spanning tree is the sum of the weights 
on all the edges which comprise the spanning tree
§ The weight of this spanning tree is 20
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Minimum Spanning Trees

□ Which spanning tree minimizes the weight?
§ Such a tree is termed a minimum spanning tree

□ The weight of this spanning tree is 14
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Minimum Spanning Trees

□ If we use a different vertex as the root, we get a 
different tree, however, this is simply the result of one or 
more rotations
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Unweighted graphs

□ Observation in unweighted graphs
§ In an unweighted graph, we give each edge a weight of 1
§ Consequently, all minimum spanning trees have weight |V | – 1
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Application

□ Supplying power to all circuit elements on a board
□ Supplying power to all rooms in a building
□ Flight costs with connection flights

□ A minimum spanning tree will give the lowest-cost 
solution

www.commedore.ca

www.kpmb.com

http://apleroy.com/posts/using-google-maps-to-visually-display-a-minimum-spanning-tree-post-1-of-4
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Algorithms

□ Two common algorithms for finding minimum spanning 
trees are:
§ Prim’s algorithm
§ Kruskal’s algorithm

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Minimum_spanning_tree
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Outline

□ This topic covers Prim’s algorithm:
§ Finding a minimum spanning tree (MST)
§ The idea and the algorithm
§ An example
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Strategy
□ Suppose we take a vertex 

§ Given a single vertex v1, it forms a minimum spanning tree (MST) 
on one vertex  

v1
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Strategy

□ Add the adjacent vertex v2 that has a connecting edge 
e1 of minimum weight
§ This forms an MST on these two vertices

v1

v2

e1
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Strategy

□ Strategy:
§ Suppose we have a known MST on k < n vertices
§ How could we extend this MST?
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Strategy

□ Suppose you add ek which has the minimum weight out 
of all edges connected to this MST
§ Adding 𝑒𝑘 does create an MST with k + 1 nodes to connect 𝑣!"#

• There is no other edge we could add that would connect this vertex

§ However, can any edge other than ek be used to connect 𝑣!"# in 
an MST with 𝑛 nodes later?

vk + 1ek
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Proof by Contradiction

□ Proof by contradiction: 
Suppose the previous claim is false.
§ Thus, vertex vk + 1 is connected to the MST via another sequence 

of edges
§ Out of such sequence of edges, let’s call 𝑒̃ as the edge out 

connecting to the existing MST 

vk + 1

e!

ek



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Proof by Contradiction

□ Let w be the weight of this MST (with 𝑒̃)

§ Recall that we wanted to pick 𝑒! because 𝑒̃ > 𝑒!
• |e| denotes the weight of the edge e

□ Suppose we add ek and exclude 𝑒̃ to the MST

§ The result is still a spanning tree, but the weight is now
• 𝑤 + 𝑒" − 𝑒̃ ≤ 𝑤

vk + 1

ek

e!

§ This contradicts our assumption that 
the MST with 𝑒̃ is minimal

§ Therefore, our MST must contain ek
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Proof by Contradiction: Strategy

□ Recall that we did not prescribe the value of k, and thus, 
k could be any value, including k = 1

vk + 1

ek

e!
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Prim’s Algorithm

□ Prim’s algorithm for finding the MST states:
§ Start with an arbitrary vertex to form an MST on one vertex
§ At each step, add the vertex v not yet in the MST

• Vertex v is connected with an edge with least weight to the existing 
minimum spanning sub-tree

§ Continue until we have n – 1 edges and n vertices

□ Note: Prim’s algorithm is a greedy algorithm
è A greedy algorithm does not always yield the optimal solution
è In the case of Prim’s algorithm, however, it does yield the 

optimal solution
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Prim’s Algorithm: Data Structures

□ Associate each vertex with:
§ A Boolean flag indicating if the vertex has been visited,
§ The minimum distance to the partially constructed MST, and
§ A pointer to that vertex which will form the parent node in the 

resulting tree
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Prim’s Algorithm: Initialization

□ Initialization:
§ Select a root node and set its distance as 0
§ Set the distance to all other vertices as ∞ 
§ Set all vertices to being unvisited
§ Set the parent pointer of all vertices to 0

□ Iterate while there exists an unvisited vertex with 
distance < ∞
§ Select that unvisited vertex with minimum distance
§ Mark that vertex as having been visited
§ For each adjacent vertex, if the weight of the connecting edge is 

less than the current distance to that vertex:
• Update the distance to be the weight of the connecting edge
• Set the current vertex as the parent of the adjacent vertex
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Prim’s Algorithm

□ Halting Conditions:
§ There are no unvisited vertices which have a distance < ∞

□ If all vertices have been visited, we have a spanning tree 
of the entire graph

□ If at any point, all remaining vertices had a distance of 
∞, this indicates that the graph is not connected è No 
MST
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Prim’s Algorithm

□ Let us find the minimum spanning tree for the following 
undirected weighted graph
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Prim’s Algorithm
□ First, we set up the appropriate table and initialize it

- Suppose the root is the vertex 1

Distance Parent
1 F 0 0

2 F ∞ 0
3 F ∞ 0
4 F ∞ 0
5 F ∞ 0
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2
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48

2

6
1
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Prim’s Algorithm

□ Visit vertex 1
- We update vertices 2, 4, and 5
- MST: {1}

Distance Parent
1 FèT 0 0

2 F ∞è4 0è1
3 F ∞ 0
4 F ∞è1 0è1
5 F ∞è8 0è1
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2
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2

6
1
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Prim’s Algorithm
□ Visit vertex 4, because vertex 4 has the minimum 

distance (among unvisited vertices)
§ Update vertices 2, 7, 8
§ Don’t update vertex 5
§ MST: {1,4}

Distance Parent
1 T 0 0

2 F 4è2 1è4
3 F ∞ 0
4 FèT 1 1
5 F 8 1
6 F ∞ 0
7 F ∞è9 0è4
8 F ∞è8 0è4
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2
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Prim’s Algorithm

□ Visit vertex 2
§ Update 3, 5, and 6
§ MST: {1, 4, 2}

Distance Parent
1 T 0 0

2 FèT 2 4
3 F ∞è2 0è2
4 T 1 1
5 F 8è6 1è2
6 F ∞è1 0è2
7 F 9 4
8 F 8 4
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2
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Prim’s Algorithm

□ Next, we visit vertex 6:
§ update vertices 5, 8, and 9
§ MST: {1, 4, 2, 6}

Distance Parent
1 T 0 0

2 T 2 4
3 F 2 2
4 T 1 1
5 F 6è3 2è6
6 FèT 1 2
7 F 9 4
8 F 8è7 4è6
9 F ∞è8 0è6

1 2 3

4 5 6

7 8 9

4 2

8
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5
1

7 8

5
2
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Prim’s Algorithm

□ Visit vertex 3, and update vertex 5
- MST: {1, 4, 2, 6, 3}

Distance Parent
1 T 0 0

2 T 2 4
3 FèT 2 2
4 T 1 1
5 F 3è2 6è3
6 T 1 2
7 F 9 4
8 F 7 6
9 F 8 6

1 2 3

4 5 6

7 8 9

4 2
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Prim’s Algorithm

□ Visit vertex 5
- No need to update other vertices
- MST: {1, 4, 2, 6, 3, 5}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 FèT 2 3
6 T 1 2
7 F 9 4
8 F 7 6
9 F 8 6

1 2 3

4 5 6

7 8 9
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Prim’s Algorithm

□ Visiting vertex 8, we only update vertex 9
- MST: {1, 4, 2, 6, 3, 5, 8}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 FèT 1 5
9 F 5è3 5è8

1 2 3

4 5 6

7 8 9

4 2
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Prim’s Algorithm

□ Visit vertex 9. No need to update other vertices.
- MST: {1, 4, 2, 6, 3, 5, 8, 9}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 T 1 5
9 FèT 3 8
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7 8 9
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Prim’s Algorithm

□ Visit vertex 7, then done.
- MST: {1, 4, 2, 6, 3, 5, 8, 9, 7}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 FèT 4 5
8 T 1 5
9 T 3 8

1 2 3

4 5 6

7 8 9
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Prim’s Algorithm

□ Using the parent pointers, we can now construct the 
minimum spanning tree

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 T 4 5
8 T 1 5
9 T 3 8

1 2 3

4 5 6

7 8 9

4 2
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Prim’s Algorithm

□ To summarize:
§ we begin with a vertex which represents the root
§ starting with this trivial tree and iteration, we find the shortest 

edge which we can add to this already existing tree to expand it
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Implementation and analysis
§ The initialization requires Q(|V |) memory and run time

§ Iteration: We iterate |V | – 1  times, each time finding the min. distance vertex
§ Iterating through the table (to find the min. distance vertex) requires is Q(|V|) time
§ Each time we find a min. distance vertex, we must check all of its neighbors (to update 

distance)

for _ in range(|V|): // until visiting all vertices
// visit the min distance vertex
v = find_min_dist_vertex(table) 

// update the distance if needed
for j in get_adj_vertices(v): 

if (graph.get_dist(v, j) < table.get_dist(j))
table.set_dist(j) = graph.get_dist(v, j)

§ With an adjacency matrix, the run time is O(|V |(|V | + |V |)) = O(|V |2)
• Each call of find_min_dist_vertex() takes O(|V |)
• Enumerating adj vertices for each vertex take O(|V |)

§ With an adjacency list, the run time is O(|V |2 + |E|) = O(|V |2) as |E| = O(|V |2)
• Each call of find_min_dist_vertex() takes O(|V |)
• Enumerating all adj vertices in the end would take O(|E|)
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Implementation and analysis
□ Can we do better?

§ Recall, we only need the next shortest edge
§ How about a priority queue?

• Assume we are using a binary heap
• We will have to update the heap structure
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Implementation and analysis: Binary Heap

§ The table is maintained with a min heap, where the key is a min. 
distance associated with vertex
• find_min_dist_vertex() takes ln(|V |), which is executed |V | times
• table.set_dist() takes ln(|V |), which is executed |E| times

§ Thus, the total run time with binary heap is 
• O(|V | ln(|V |) + |E| ln(|V |)) = O(|E| ln(|V |))

for _ in range(|V|): // until visiting all vertices
// visit the min distance vertex
v = find_min_dist_vertex(table) 

// update the distance if needed
for j in get_adj_vertices(v): 

if (graph.get_dist(v, j) < table.get_dist(j))
table.set_dist(j) = graph.get_dist(v, j)
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Summary

□ We have seen an algorithm for finding minimum 
spanning trees
§ Start with a trivial minimum spanning tree and grow it
§ An alternate algorithm, Kruskal’s algorithm, uses a different 

approach

□ Prim’s algorithm finds an edge with least weight which 
grows an already existing tree
§ It solves the problem in O(|E| ln(|V |)) time

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Minimum_spanning_tree
[2] Wikipedia, http://en.wikipedia.org/wiki/Prim’s_algorithm
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Outline

□ This topic covers Kruskal’s algorithm:
§ Finding a minimum spanning tree
§ The idea and the algorithm
§ An example
§ Using a disjoint set data structure
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Kruskal’s Algorithm

□ Kruskal’s algorithm sorts the edges by weight and goes 
through the edges from least weight to greatest weight 
adding the edges to an empty graph so long as the 
addition does not create a cycle

□ The halting point is:
§ When |V | – 1 edges have been added

• In this case we have a minimum spanning tree

§ We have gone through all edges, in which case, we have a 
forest of minimum spanning trees on all connected sub-graphs
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Example

□ Here is our abstract representation with 12 nodes
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Example

□ Let us give a weight to each of the edges
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Example

□ First, we sort the edges based on weight

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Example

□ We start by adding edge {C, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {H, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {G, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {F, G}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Example

□ We add edge {B, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {E, H}
§ This coalesces the two spanning sub-trees into one

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We try adding {B, C}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {H, K}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {H, L}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We add edge {D, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We try adding {G, H}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We try adding {I, K}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We try adding {B, D}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We try adding {D, F}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ We try adding {E, G}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ By observation, we can still add edges 
{J, K} and {A, B}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Example

□ Having added {A, B}, we now have 11 edges
§ We terminate the loop
§ We have our minimum spanning tree

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}
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Kruskal’s Algorithm (baseline)
1 (Sort the edges in an increasing order)
2 A:={}
3 while E is not empty do {
3 take an edge (u, v) that is shortest in E

and delete it from E
4 if  u and v are in different components then

add (u, v) to A 
}

Note: each time a shortest edge in E is considered.
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Analysis

□ Implementation
§ We would store the edges and their weights in an array
§ We would sort the edges using either quicksort or some 

distribution sort
§ To determine if a cycle is created, we could perform a traversal

• A run-time of O(|V |)

§ Consequently, the run-time would be O(|E| ln(|E|) + |E|·|V |)
§ However, |E| = O(|V |2), so ln(E) = O(ln(|V |2)) = O(2 ln(|V |)) = 

O(ln(|V |))
§ Consequently, the run-time would be O(|E| ln(|V |) + |E||V |) = 

O(|E|·|V |)
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Kruskal’s Algorithm (efficient)
1 A:={}
2 for each vertex v in V
3 do MAKE_SET(v)
4 sort the edges of E by nondecreasing weight w
5 for each edge (u,v) in E, in order by nondecreasing 

weight
6 do if FIND_SET(u) != FIND_SET(v)
7 then A:= A ∪ {(u,v)}
8 UNION(u,v)
9 return A

□ Consequently, the run-time would be 
O(|V | + |E| ln(|E |) + |E| ln|V |) = O(|E|·ln|V |)

O(|V |)

O(|E| ln|E|)

O(|E|)

O(ln|V |)

https://en.wikipedia.org/wiki/Disjoint-set_data_structure
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Disjoint Sets Data Structure (Chapter 8)

□ A disjoint-set is a collection of distinct dynamic sets: 
{S1, S2,…, Sk} 

□ Each set is identified by a member of the set, called 
representative (e.g., root of the set formed as a tree)

□ Disjoint set operations:
§ MAKE-SET(x): create a new set with an only member x. (assume 

x is not already in some other set.)
§ UNION(x,y): combine the two sets containing x and y into one 

new set. A new representative is selected.
§ FIND-SET(x): return the representative of the set containing x.
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Summary

□ This topic has covered Kruskal’s algorithm
§ Sort the edges by weight
§ Create a disjoint set of the vertices
§ Begin adding the edges one-by-one checking to ensure no 

cycles are introduced
§ The result is a minimum spanning tree
§ The run time is O(|E| ln(|V |)
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