
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Minimum Spanning Tree (MST)

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ In this topic, we will
§ Define a spanning tree
§ Define the weight of a spanning tree in a weighted graph
§ Define a minimum spanning tree
§ Consider applications
§ List possible algorithms

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Spanning trees

□ Given a connected graph with |V | = n vertices,
a spanning tree is defined a collection of n – 1 edges
which connect all n vertices
§ The n vertices and n – 1 edges define a connected sub-graph

□ A spanning tree is not necessarily unique

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Spanning trees

□ This graph has 16 vertices and 35 edges

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Spanning trees

□ These 15 edges form a minimum spanning tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Spanning trees

□ Such a collection of edges is called a tree because if any
vertex is taken to be the root, we form a tree by treating
the adjacent vertices as children, and so on...

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Spanning trees on weighted graphs

□ The weight of a spanning tree is the sum of the weights
on all the edges which comprise the spanning tree
§ The weight of this spanning tree is 20

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Minimum Spanning Trees

□ Which spanning tree minimizes the weight?
§ Such a tree is termed a minimum spanning tree

□ The weight of this spanning tree is 14

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Minimum Spanning Trees

□ If we use a different vertex as the root, we get a
different tree, however, this is simply the result of one or
more rotations

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Unweighted graphs

□ Observation in unweighted graphs
§ In an unweighted graph, we give each edge a weight of 1
§ Consequently, all minimum spanning trees have weight |V | – 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Application

□ Supplying power to all circuit elements on a board
□ Supplying power to all rooms in a building
□ Flight costs with connection flights

□ A minimum spanning tree will give the lowest-cost
solution

www.commedore.ca

www.kpmb.com

http://apleroy.com/posts/using-google-maps-to-visually-display-a-minimum-spanning-tree-post-1-of-4

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Algorithms

□ Two common algorithms for finding minimum spanning
trees are:
§ Prim’s algorithm
§ Kruskal’s algorithm

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Minimum_spanning_tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Prim’s Algorithm

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Outline

□ This topic covers Prim’s algorithm:
§ Finding a minimum spanning tree (MST)
§ The idea and the algorithm
§ An example

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Strategy
□ Suppose we take a vertex

§ Given a single vertex v1, it forms a minimum spanning tree (MST)
on one vertex

v1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Strategy

□ Add the adjacent vertex v2 that has a connecting edge
e1 of minimum weight
§ This forms an MST on these two vertices

v1

v2

e1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Strategy

□ Strategy:
§ Suppose we have a known MST on k < n vertices
§ How could we extend this MST?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Strategy

□ Suppose you add ek which has the minimum weight out
of all edges connected to this MST
§ Adding 𝑒𝑘 does create an MST with k + 1 nodes to connect 𝑣!"#

• There is no other edge we could add that would connect this vertex

§ However, can any edge other than ek be used to connect 𝑣!"# in
an MST with 𝑛 nodes later?

vk + 1ek

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Proof by Contradiction

□ Proof by contradiction:
Suppose the previous claim is false.
§ Thus, vertex vk + 1 is connected to the MST via another sequence

of edges
§ Out of such sequence of edges, let’s call 𝑒̃ as the edge out

connecting to the existing MST

vk + 1

e!

ek

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Proof by Contradiction

□ Let w be the weight of this MST (with 𝑒̃)

§ Recall that we wanted to pick 𝑒! because 𝑒̃ > 𝑒!
• |e| denotes the weight of the edge e

□ Suppose we add ek and exclude 𝑒̃ to the MST

§ The result is still a spanning tree, but the weight is now
• 𝑤 + 𝑒" − 𝑒̃ ≤ 𝑤

vk + 1

ek

e!

§ This contradicts our assumption that
the MST with 𝑒̃ is minimal

§ Therefore, our MST must contain ek

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Proof by Contradiction: Strategy

□ Recall that we did not prescribe the value of k, and thus,
k could be any value, including k = 1

vk + 1

ek

e!

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Prim’s Algorithm

□ Prim’s algorithm for finding the MST states:
§ Start with an arbitrary vertex to form an MST on one vertex
§ At each step, add the vertex v not yet in the MST

• Vertex v is connected with an edge with least weight to the existing
minimum spanning sub-tree

§ Continue until we have n – 1 edges and n vertices

□ Note: Prim’s algorithm is a greedy algorithm
è A greedy algorithm does not always yield the optimal solution
è In the case of Prim’s algorithm, however, it does yield the

optimal solution

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Prim’s Algorithm: Data Structures

□ Associate each vertex with:
§ A Boolean flag indicating if the vertex has been visited,
§ The minimum distance to the partially constructed MST, and
§ A pointer to that vertex which will form the parent node in the

resulting tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Prim’s Algorithm: Initialization

□ Initialization:
§ Select a root node and set its distance as 0
§ Set the distance to all other vertices as ∞
§ Set all vertices to being unvisited
§ Set the parent pointer of all vertices to 0

□ Iterate while there exists an unvisited vertex with
distance < ∞
§ Select that unvisited vertex with minimum distance
§ Mark that vertex as having been visited
§ For each adjacent vertex, if the weight of the connecting edge is

less than the current distance to that vertex:
• Update the distance to be the weight of the connecting edge
• Set the current vertex as the parent of the adjacent vertex

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Prim’s Algorithm

□ Halting Conditions:
§ There are no unvisited vertices which have a distance < ∞

□ If all vertices have been visited, we have a spanning tree
of the entire graph

□ If at any point, all remaining vertices had a distance of
∞, this indicates that the graph is not connected è No
MST

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Prim’s Algorithm

□ Let us find the minimum spanning tree for the following
undirected weighted graph

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Prim’s Algorithm
□ First, we set up the appropriate table and initialize it

- Suppose the root is the vertex 1

Distance Parent
1 F 0 0

2 F ∞ 0
3 F ∞ 0
4 F ∞ 0
5 F ∞ 0
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Prim’s Algorithm

□ Visit vertex 1
- We update vertices 2, 4, and 5
- MST: {1}

Distance Parent
1 FèT 0 0

2 F ∞è4 0è1
3 F ∞ 0
4 F ∞è1 0è1
5 F ∞è8 0è1
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Prim’s Algorithm
□ Visit vertex 4, because vertex 4 has the minimum

distance (among unvisited vertices)
§ Update vertices 2, 7, 8
§ Don’t update vertex 5
§ MST: {1,4}

Distance Parent
1 T 0 0

2 F 4è2 1è4
3 F ∞ 0
4 FèT 1 1
5 F 8 1
6 F ∞ 0
7 F ∞è9 0è4
8 F ∞è8 0è4
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Prim’s Algorithm

□ Visit vertex 2
§ Update 3, 5, and 6
§ MST: {1, 4, 2}

Distance Parent
1 T 0 0

2 FèT 2 4
3 F ∞è2 0è2
4 T 1 1
5 F 8è6 1è2
6 F ∞è1 0è2
7 F 9 4
8 F 8 4
9 F ∞ 0

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Prim’s Algorithm

□ Next, we visit vertex 6:
§ update vertices 5, 8, and 9
§ MST: {1, 4, 2, 6}

Distance Parent
1 T 0 0

2 T 2 4
3 F 2 2
4 T 1 1
5 F 6è3 2è6
6 FèT 1 2
7 F 9 4
8 F 8è7 4è6
9 F ∞è8 0è6

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Prim’s Algorithm

□ Visit vertex 3, and update vertex 5
- MST: {1, 4, 2, 6, 3}

Distance Parent
1 T 0 0

2 T 2 4
3 FèT 2 2
4 T 1 1
5 F 3è2 6è3
6 T 1 2
7 F 9 4
8 F 7 6
9 F 8 6

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Prim’s Algorithm

□ Visit vertex 5
- No need to update other vertices
- MST: {1, 4, 2, 6, 3, 5}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 FèT 2 3
6 T 1 2
7 F 9 4
8 F 7 6
9 F 8 6

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Prim’s Algorithm

□ Visiting vertex 8, we only update vertex 9
- MST: {1, 4, 2, 6, 3, 5, 8}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 FèT 1 5
9 F 5è3 5è8

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Prim’s Algorithm

□ Visit vertex 9. No need to update other vertices.
- MST: {1, 4, 2, 6, 3, 5, 8, 9}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 T 1 5
9 FèT 3 8

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Prim’s Algorithm

□ Visit vertex 7, then done.
- MST: {1, 4, 2, 6, 3, 5, 8, 9, 7}

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 FèT 4 5
8 T 1 5
9 T 3 8

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Prim’s Algorithm

□ Using the parent pointers, we can now construct the
minimum spanning tree

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 T 4 5
8 T 1 5
9 T 3 8

1 2 3

4 5 6

7 8 9

4 2

8
1

9

6 3

5
1

7 8

5
2

311

48

2

6
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Prim’s Algorithm

□ To summarize:
§ we begin with a vertex which represents the root
§ starting with this trivial tree and iteration, we find the shortest

edge which we can add to this already existing tree to expand it

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Implementation and analysis
§ The initialization requires Q(|V |) memory and run time

§ Iteration: We iterate |V | – 1 times, each time finding the min. distance vertex
§ Iterating through the table (to find the min. distance vertex) requires is Q(|V|) time
§ Each time we find a min. distance vertex, we must check all of its neighbors (to update

distance)

for _ in range(|V|): // until visiting all vertices
// visit the min distance vertex
v = find_min_dist_vertex(table)

// update the distance if needed
for j in get_adj_vertices(v):

if (graph.get_dist(v, j) < table.get_dist(j))
table.set_dist(j) = graph.get_dist(v, j)

§ With an adjacency matrix, the run time is O(|V |(|V | + |V |)) = O(|V |2)
• Each call of find_min_dist_vertex() takes O(|V |)
• Enumerating adj vertices for each vertex take O(|V |)

§ With an adjacency list, the run time is O(|V |2 + |E|) = O(|V |2) as |E| = O(|V |2)
• Each call of find_min_dist_vertex() takes O(|V |)
• Enumerating all adj vertices in the end would take O(|E|)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Implementation and analysis
□ Can we do better?

§ Recall, we only need the next shortest edge
§ How about a priority queue?

• Assume we are using a binary heap
• We will have to update the heap structure

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Implementation and analysis: Binary Heap

§ The table is maintained with a min heap, where the key is a min.
distance associated with vertex
• find_min_dist_vertex() takes ln(|V |), which is executed |V | times
• table.set_dist() takes ln(|V |), which is executed |E| times

§ Thus, the total run time with binary heap is
• O(|V | ln(|V |) + |E| ln(|V |)) = O(|E| ln(|V |))

for _ in range(|V|): // until visiting all vertices
// visit the min distance vertex
v = find_min_dist_vertex(table)

// update the distance if needed
for j in get_adj_vertices(v):

if (graph.get_dist(v, j) < table.get_dist(j))
table.set_dist(j) = graph.get_dist(v, j)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Summary

□ We have seen an algorithm for finding minimum
spanning trees
§ Start with a trivial minimum spanning tree and grow it
§ An alternate algorithm, Kruskal’s algorithm, uses a different

approach

□ Prim’s algorithm finds an edge with least weight which
grows an already existing tree
§ It solves the problem in O(|E| ln(|V |)) time

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Minimum_spanning_tree
[2] Wikipedia, http://en.wikipedia.org/wiki/Prim’s_algorithm

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Kruskal’s Algorithm

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Outline

□ This topic covers Kruskal’s algorithm:
§ Finding a minimum spanning tree
§ The idea and the algorithm
§ An example
§ Using a disjoint set data structure

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Kruskal’s Algorithm

□ Kruskal’s algorithm sorts the edges by weight and goes
through the edges from least weight to greatest weight
adding the edges to an empty graph so long as the
addition does not create a cycle

□ The halting point is:
§ When |V | – 1 edges have been added

• In this case we have a minimum spanning tree

§ We have gone through all edges, in which case, we have a
forest of minimum spanning trees on all connected sub-graphs

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Example

□ Here is our abstract representation with 12 nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Example

□ Let us give a weight to each of the edges

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Example

□ First, we sort the edges based on weight

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Example

□ We start by adding edge {C, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Example

□ We add edge {H, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Example

□ We add edge {G, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Example

□ We add edge {F, G}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Example

□ We add edge {B, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Example

□ We add edge {E, H}
§ This coalesces the two spanning sub-trees into one

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Example

□ We try adding {B, C}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Example

□ We add edge {H, K}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Example

□ We add edge {H, L}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Example

□ We add edge {D, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Example

□ We try adding {G, H}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

60

Example

□ We try adding {I, K}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

61

Example

□ We try adding {B, D}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

62

Example

□ We try adding {D, F}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

63

Example

□ We try adding {E, G}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

64

Example

□ By observation, we can still add edges
{J, K} and {A, B}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

65

Example

□ Having added {A, B}, we now have 11 edges
§ We terminate the loop
§ We have our minimum spanning tree

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

66

Kruskal’s Algorithm (baseline)
1 (Sort the edges in an increasing order)
2 A:={}
3 while E is not empty do {
3 take an edge (u, v) that is shortest in E

and delete it from E
4 if u and v are in different components then

add (u, v) to A
}

Note: each time a shortest edge in E is considered.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

67

Analysis

□ Implementation
§ We would store the edges and their weights in an array
§ We would sort the edges using either quicksort or some

distribution sort
§ To determine if a cycle is created, we could perform a traversal

• A run-time of O(|V |)

§ Consequently, the run-time would be O(|E| ln(|E|) + |E|·|V |)
§ However, |E| = O(|V |2), so ln(E) = O(ln(|V |2)) = O(2 ln(|V |)) =

O(ln(|V |))
§ Consequently, the run-time would be O(|E| ln(|V |) + |E||V |) =

O(|E|·|V |)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

68

Kruskal’s Algorithm (efficient)
1 A:={}
2 for each vertex v in V
3 do MAKE_SET(v)
4 sort the edges of E by nondecreasing weight w
5 for each edge (u,v) in E, in order by nondecreasing

weight
6 do if FIND_SET(u) != FIND_SET(v)
7 then A:= A ∪ {(u,v)}
8 UNION(u,v)
9 return A

□ Consequently, the run-time would be
O(|V | + |E| ln(|E |) + |E| ln|V |) = O(|E|·ln|V |)

O(|V |)

O(|E| ln|E|)

O(|E|)

O(ln|V |)

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

69

Disjoint Sets Data Structure (Chapter 8)

□ A disjoint-set is a collection of distinct dynamic sets:
{S1, S2,…, Sk}

□ Each set is identified by a member of the set, called
representative (e.g., root of the set formed as a tree)

□ Disjoint set operations:
§ MAKE-SET(x): create a new set with an only member x. (assume

x is not already in some other set.)
§ UNION(x,y): combine the two sets containing x and y into one

new set. A new representative is selected.
§ FIND-SET(x): return the representative of the set containing x.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

70

Summary

□ This topic has covered Kruskal’s algorithm
§ Sort the edges by weight
§ Create a disjoint set of the vertices
§ Begin adding the edges one-by-one checking to ensure no

cycles are introduced
§ The result is a minimum spanning tree
§ The run time is O(|E| ln(|V |)

References
[1] Wikipedia, http://en.wikipedia.org/wiki/Minimum_spanning_tree
[2] Wikipedia, http://en.wikipedia.org/wiki/Kruskal’s_algorithm

