XRD – 6 Diffraction

XRD-6 READ

Sherwood & Cooper, Chap 4.13, 5.6, 6.1~6.7, 6.14 Sherwood & Cooper, Chap 6.8~6.14 Ott, Chapter 13.4 Sherwood & Cooper, Chap 4.1~4.3, 4.11, 5.1~5.3 Sherwood & Cooper, Chap 4.4~4.10, 5.4, 5.7~5.10

Chan Park, MSE-SNU Intro to Crystallography, 2021

www.ruppweb.org/Xray/101index.html

Waves

- > Plane wave
 - \checkmark direction of propagation is left to right
 - \checkmark wave fronts are a series of parallel lines
- Circular wave
 - ✓ direction of propagation is radial
 - ✓ wave fronts are a set of concentric circles

- Transverse wave
 - ✓ local motion is ⊥ to the direction of propagation
 - ✓ water waves, waves on a string, X-ray
- > Longitudinal wave
 - ✓ local motion is // to the direction of propagation
 - ✓ sound wave

 $f(x) = A \cos (kx + \phi)$ Amplitude Frequency Phase

2021

2

1

NATIONAL JN

_ ≻ 1-D	Wave equations	$\frac{\partial^2 \psi(\mathbf{x}, \mathbf{t})}{\partial \mathbf{x}^2} = \frac{1}{v^2}$	$\frac{\partial^2 \psi(\mathbf{x}, \mathbf{t})}{\partial \mathbf{t}^2}$	Waves
ψ(x, t) =	$= \sum_{n} \psi_{n} \cos (k_{n} x - \alpha)$	$\phi_n t + \phi_n) + \sum_m \psi_n$	$k_{\rm m} \cos (k_{\rm m} {\rm x} - \omega_{\rm n})$	$(t + \phi_m)$
$\psi(\mathbf{x}, \mathbf{t})$	$= \psi_0 \cos(kx - \omega t)$			
> 3-D ψ(r,t) =	$= \sum_{n} \psi_{n} \cos \left(k_{n} \cdot \mathbf{r} - \right)$	$\omega_n t + \phi_n) + \sum_m$	$\Psi_{\rm m} \cos{(k_{\rm m} \cdot {\bf r} - $	$-\omega_{\rm m}t + \phi_{\rm m}$)
ψ(xy,z,t	$\mathbf{t}) = \mathbf{\psi}_0 \cos(k_{\mathrm{x}}\mathbf{x} + k_{\mathrm{y}})$	$y + k_z z - \omega t$)		
$\psi(\mathbf{r},t) =$	$= \Psi_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$			
Wave vect	tor $ \mathbf{k} = k = \frac{2\pi}{\lambda}$	Phase velc	pocity $v = \frac{\omega}{k}$	
Wave freq	$\omega = \frac{2\pi}{\tau} = 2$	πν Group velo	ocity $g = \frac{\mathrm{d}\omega}{\mathrm{d}k}$	
	Intensity I =	$ \psi(\mathbf{r},t) ^2$		
Chan Park, MSE-	SNU Intro to Crystallography, 2021		Sherwood 8	Cooper, Chapter 4 3

Fourier transform

> Joseph Fourier

- ✓ Joined Napoleon's army as a scientific adviser
- ✓ Developed the theory on heat propagation using expanded series of sinusoids
- ✓ A periodic function can be described as the sum of simple sine and cosine functions that have wavelengths as integrals of the function
- > Fourier transform; integral of a set of periodic (imaginary) primitive functions
- > Fourier transforms are used in:
 - ✓ crystallography; image analysis; (NMR) spectroscopy
 - ✓ electron microscopy; optics & light-microscopy
 - ✓ communication

Fourier transform

> Fourier transform of f(x) $F(\mathbf{k}) = \int_{\text{all } \mathbf{r}} f(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} d\mathbf{r} = T f(\mathbf{r})$

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{ikx}dx$$
$$F(k) = Tf(x)$$

Inverse Fourier transform of F(k)

$$f(\mathbf{r}) = \int_{\text{all } \mathbf{k}} F(\mathbf{k}) e^{-\ell \mathbf{k} \cdot \mathbf{r}} \, d\mathbf{k} = T^{-1} F(\mathbf{k})$$

$$f(x) = \int_{-\infty}^{\infty} F(k)e^{-ikx}dk$$
$$f(x) = T^{-1} F(k)$$

Fourier mates
$$f(x) \leftrightarrow F(k)$$

- > Space defined by $r \rightarrow$ real space
- > Space defined by $k \rightarrow k$ space, reciprocal space, Fourier space

Dirac delta function

- > Unit impulse function
- $\succ \delta(x-x_0) = \infty$, when $x = x_0$

= 0, elsewhere

$$\int_{0} \delta(x - x_0) dx = 1$$

an infinitely high, infinitely thin spike at the origin, with total area one under the spike, and physically represents an idealized point mass or point charge.

Chan Park, MSE-SNU

a JE NA FIANAL J

 $\delta(\mathbf{X})$

Fourier transform > 3 delta functions

How can we describe diffraction pattern of a xtal?

- The Fourier transform decomposes or separates a periodic function into sinusoids of different frequency which sum to the original function.
- > Decompose f(x) into a series of cosine waves. That when summed,

reconstruct f(x).	$F(\mathbf{k}) = \int f(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r} = Tf(\mathbf{r})$	
	allr	
Chan Park, MSE-SNU Intro to Crystallography, 2021		

16

Fourier transform & convolution

Interaction of waves with obstacles

- > Infinite plane wave with wave vector **k** and frequency **w**; $\psi = \psi_0 e^{i(\mathbf{k} \cdot \mathbf{r} wt)}$
- > What happens when a wave motion interacts with an obstacle placed in its path?
- How is the wave equation modified to take account of the interaction of the wave with the obstacle?
- Scattering; wave-obstacle interaction such that the dimensions of obstacles and wavelength are <u>comparable</u>
- Diffraction; wave-obstacle interaction such that the dimensions of obstacles are much larger than the wavelength

atom (~1 nm) scattering-microscopic X-ray (~1Å) diffraction-macroscopic crystal (~1 mm)

diffracting obstacle.

- > plane wave \rightarrow spatially different wave
- > Information of the wave is somehow contained in the way in which they are spread out in space. \rightarrow direction \rightarrow only **k** has spatial info among ψ_{0} , w, **k**.

 \succ significance of the wave vector k

Intro to Crystallography, 2021

Chan Park, MSE-SNU

$$|\mathbf{k}| = k = \frac{2\pi}{\lambda}$$

$$\psi(\mathbf{r}, t) = \psi_0 \exp i(\mathbf{k} \cdot \mathbf{r} - \omega t)$$

- k of diffracted wave has the same magnitude as the incident wave, but has different direction.
- Total set of diffracted waves = set of wave vectors all of which have same magnitude (equal to that of incident wave), but different directions.

Sherwood & Cooper Chap 6

21

Mathematics of Diffraction (continued) ➤ mathematical description ✓ Waves are propagated thru obstacle. ✓ Obstacle perturbs these waves. \succ Perturbing effect; f(**r**) > The effect of d \mathbf{r}_1 on the wave motion; $f(\mathbf{r}_1)d\mathbf{r}_1$ \succ Wave in d**r**₁ centered on **r**₁; $e^{i(\mathbf{k}\cdot\mathbf{r_1}-\omega t)}$ B Volume element Diffracted wave must be $d\mathbf{r}_1$ represented by some arbitrary mathematical combination origin of A & B. Sherwood & Cooper Chap 6 Chan Park, MSE-SNU Intro to Crystallography, 22

Mathematics of Diffraction (continued) > Diffraction pattern = $\int_{V} f(\mathbf{r})e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}d\mathbf{r} = e^{-i\omega t}\int_{V} f(\mathbf{r})e^{i(\mathbf{k}\cdot\mathbf{r})}d\mathbf{r}$

> Intensity, not amplitude, is recorded.

Chan Park, MSE-SNU

- ➤ XRD experiment measures time average of the I of the diffracted wave.
 → result obtained is independent of time.
- > We need info on space, not info on time. \rightarrow

Intro to Crystallography, 202

Diffraction pattern =
$$\int_{V} f(\mathbf{r})e^{i(\mathbf{k}\cdot\mathbf{r})}d\mathbf{r} = \int_{all \mathbf{r}} f(\mathbf{r})e^{i(\mathbf{k}\cdot\mathbf{r})}d\mathbf{r}$$

Fourier transform of $f(\mathbf{r})$

Mathematics of Diffraction (continued)

> Diffraction pattern =
$$\int_{V} f(\mathbf{r})e^{i(\mathbf{k}\cdot\mathbf{r})}d\mathbf{r} = \left(\int_{all \mathbf{r}} f(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}d\mathbf{r}\right)$$

Fourier transform of $f(\mathbf{r})$

- To compute the diffraction pattern of any obstacle for which f(r) is known, we can compute the Fourier transform of f(r).
- f(r); amplitude function
- Diffraction pattern of any obstacle = Fourier transform of amplitude function

Sherwood & Cooper Chap 6

25

EQUENATIONAL JND

Significance of Fourier Transform

Intro to Crystallography, 2021

> Diffraction pattern =

Chan Park, MSE-SNU

$$F(\mathbf{k}) = \int_{\text{all } \mathbf{r}} f(\mathbf{r}) e^{i \, \mathbf{k} \cdot \mathbf{r}} d\mathbf{r}$$

- > Info in the diffraction pattern is essentially spatial.
- The only way waves can contain spatial info is by means of their wave vector k.

Fourier Transform and phase

- > Path difference b/w A & B = $r_1 \cos\theta$
- > Phase difference b/w A & B = $(2p/l) r_1 \cos\theta = \mathbf{k} \cdot \mathbf{r_1}$
- > Phase difference b/w A & C = $(2p/l) r_2 \cos\theta = \mathbf{k} \cdot \mathbf{r_2}$
- > Wave scattered from point 0 = $f(r_0)dr_0$
- > Wave scattered from point 1 = $f(\mathbf{r_1})e^{i\mathbf{k}\cdot\mathbf{r_1}}d\mathbf{r_1}$
- > Wave scattered from point 2 = $f(r_2)e^{i\mathbf{k}\cdot\mathbf{r}_2}dr_2$
- Total scattered wave

$$= \int_{\text{obstacle}} f(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r}$$

$$= \int_{\text{all } \mathbf{r}} \mathbf{f}(\mathbf{r}) \mathbf{e}^{i \mathbf{k} \cdot \mathbf{r}} d\mathbf{r}$$

$$|\mathbf{k}| = k = \frac{2\pi}{\lambda}$$

Fourier Transform & diffraction

Diffraction pattern = Fourier transform of $f(\mathbf{r})$ $F(\mathbf{k}) = \int_{\text{all } \mathbf{r}} f(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} d\mathbf{r}$

Inverse transform $f(\mathbf{r}) = \int_{\text{all } \mathbf{k}} F(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{k}$

 $F(\mathbf{k})$; contains info on the spatial distribution of diffraction pattern.

 $f(\mathbf{r})$; contains info on the structure of obstacle.

If the structure is known,

- \rightarrow f(**r**) is known.
- \rightarrow diffraction pattern F(**k**) can be computed.

If the diffraction pattern is known,

- \rightarrow F(**k**) is known.
- \rightarrow f(**r**) can be computed.

The act of diffraction = taking Fourier transform of the obstacle

Diffraction pattern of an obstacle described by $f(\mathbf{r})$ is the Fourier transform of $f(\mathbf{r})$, which is F(k).

Chan Park, MSE-SNU Intro to Crystallography, 2021 Sherwood & Cooper Chap 6

31

Experimental Limitation

- Information is contained in all space.
 - \checkmark It is impossible to scan all space to collect all the information.
 - \rightarrow some info is lost.
 - \rightarrow reconstruction of the obstacle from the diffraction data

will be incomplete.

- ➢ PHASE PROBLEM
 - ✓ Only the intensity is measured.
 - ✓ The phase of diffraction pattern is not measured.

Intro to Crystallography, 202

Chan Park, MSE-SNU

What is measured is INTENSITY, not the COMPLEX AMPLITUDE of the diffraction pattern.

> $F(\mathbf{k})$ is complex $F(\mathbf{k}) = |F(\mathbf{k})|e^{i\delta}$

 δ ; phase factor

- > What is measured is $|F(\mathbf{k})|^2$.
- $> |F(\mathbf{k})|^2$ contains no info on δ .

Intro to Crystallography, 2021

- A lot of info is lost because we can record only intensity (not the amplitude).
- > The problem caused by the loss of info contained in δ . \rightarrow PHASE PROBLEM

Sherwood & Cooper Chap 6.14

33

The crystal structure can be deduced by performing a FT on the resultant diffraction pattern once the phase is known.

Phase problem can be solved by <u>direct method</u>, <u>isomorphous</u> replacement method, heavy atom method, etc.

todos

- ≻XRD-6 READ
 - Sherwood & Cooper, Chap 4.13, 5.6, 6.1~6.7, 6.14
 - Sherwood & Cooper, Chap 6.8~6.14
 - Ott, Chapter 13.4
 - Sherwood & Cooper, Chap 4.1~4.3, 4.11, 5.1~5.3
 - Sherwood & Cooper, Chap 4.4~4.10, 5.4, 5.7~5.10

No problem solving homeworks, only reading homeworks