
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

C and C++

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

A Brief Introduction to C++

□ In this topic we will see:
§ Functions
§ The preprocessor, compilation, namespaces
§ Printing
§ Classes, templates
§ Pointers
§ Memory allocation and deallocation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Control Statements

if (statement) {
// ...

} else if (statement) {
// ... while (statement) {

} else { // ...
// ... }

}

for (int i = 0; i < N; ++i) {
// ...

do { }
// ...

} while (statement);

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Operators
□ Operators have similar functionality for built-in datatypes:

§ Assignment =
§ Arithmetic + - * / %

+= -= *= /= %=
§ Autoincrement ++
§ Autodecrement --
§ Logical && || !
§ Relational == != < <= >= >
§ Bitwise & | ^ ~

&= |= ^=
§ Bit shifting << >>

<<= >>=

https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Arrays

□ Accessing arrays:

const int ARRAY_CAPACITY = 10; // prevents reassignment
int array[ARRAY_CAPACITY];

array[0] = 1;
for (int i = 1; i < ARRAY_CAPACITY; ++i) {

array[i] = 2*array[i – 1] + 1;
}

□ Recall that arrays go from 0 to ARRAY_CAPACITY – 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Functions

□ Function calls:

#include <iostream>
using namespace std;

// A function with a global name
int sqr(int n) {

return n*n;
}

int main() {
cout << "The square of 3 is " << sqr(3) << endl;
return 0;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

The C++ Preprocessor

□ C++ is based on C, which was written in the early 1970s

□ Any command starting with a # in the first column is not
a C/C++ statement, but rather a preprocessor
statement
§ The preprocessor performs very basic text-based (or lexical)

substitutions
§ The output is sent to the compiler

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

The C++ Preprocessor

□ The sequence is:
file (filename.cpp) → preprocessor → compiler (g++)

□ Note, this is done automatically by the compiler:
No additional steps are necessary

□ At the top of any C++ program, you will see one or
more directives starting with a #, e.g.,

#include <iostream>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

The C++ Preprocessor

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Libraries

□ You will write your code in a file such as Single_list.h
where you will implement a data structure

□ You will note the difference:
#include <iostream>
#include "Single_list.h"

□ The first looks for a file iostream.h which is shipped
with the compiler (the standard library)

□ The second looks up in the current directory

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

The C++ Preprocessor
□ With all these includes, it is always necessary to avoid the

same file being included twice, otherwise you have duplicate
definitions

□ This is done with guard statements (preprocessor conditions):
#ifndef SINGLE_LIST_H
#define SINGLE_LIST_H

template <typename Type>
class Single_list {
///...

};

#endif

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

The C++ Preprocessor

□ This class definition contains only the signatures (or
prototypes) of the operations

□ The actual member function definitions may be defined
elsewhere, either in:
§ The same file, or
§ Another file which is compiled into an object file

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

The File as the Unit of Compilation

□ In C/C++, the file is the base unit of compilation:
§ Any .cpp file may be compiled into object code
§ Only files containing an int main() function can be compiled

into an executable

□ The signature of main is:
int main () {

// does some stuff
return 0;

}

□ The operating system is expecting a return value
§ Usually 0 (this signal is given back to OS)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

The File as the Unit of Compilation

□ This file (example.cpp) contains two functions

#include<iostream>
using namespace std;

int sqr(int n) { // Function declaration and
definition

return n*n;
}

int main() {
cout << "The square of 3 is " << sqr(3) << endl;
return 0;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

The File as the Unit of Compilation

□ To compile this file, we execute on the command line:

$ g++ example.cpp
$ ls
a.out example.cpp
$./a.out
The square of 3 is 9

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

The File as the Unit of Compilation

□ This is an alternate form:

#include<iostream>
using namespace std;

int sqr(int); // Function declaration

int main() {
cout << "The square of 3 is " << sqr(3) << endl;
return 0;

}

int sqr(int n) { // Function definition
return n*n; // The definition can be in another file

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Namespaces

□ Variables defined:
§ In functions are local variables
§ In classes are member variables
§ Elsewhere are global variables

□ Functions defined:
§ In classes are member functions
§ Elsewhere are global functions

□ In all these cases, the keyword static can modify the
scope
§ Static local variables retain their contents between function calls

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Namespaces

□ Global variables/variables cause problems, especially in
large projects
§ Hundreds of employees
§ Dozens of projects
§ Everyone wanting a function init()

□ In C++, this is solved using namespaces.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Namespaces
□ A namespace adds an extra disambiguation between similar names

namespace snu_ece {
int n = 4;
double mean = 2.34567;

void init() {
// Does something...

}
}

□ There are two means of accessing these global variables and
functions outside of this namespace:
§ The namespace as a prefix:

snu_ece::init()
(note that :: is scope resolution operator)

§ The using statement:
using namespace snu_ece;

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Namespaces

□ You will only need this for the standard name space
§ All variables and functions in the standard library are in the std

namespace

#include <iostream>
std::cout << "Hello world!" << std::endl;

#include <iostream>
using namespace std;

cout << "Hello world!" << endl;

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Printing
□ Printing in C++ is done through overloading the << operator:

cout << 3;

□ If the left-hand argument of << is an object of type ostream
(output stream) and the right-hand argument is a double, int,
string, etc., an appropriate function which prints the object is
called.

è called operator overloading

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Printing

□ The format is suggestive of what is happening:
§ The objects are being sent to the cout (console output) object

to be printed
cout << "The square of 3 is " << sqr(3) << endl;

□ The objects being printed are:
§ a string
§ an int
§ a platform-independent end-of-line identifier

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Printing

□ How does
cout << "The square of 3 is " << sqr(3) << endl;

work?

□ This is equivalent to
((cout << "The square of 3 is ") << sqr(3)) << endl;

where << is an operator (like +) which prints the object
and returns the cout object

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Printing

□ Visually:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Printing
□ Another way to look at this is that

cout << "The square of 3 is " << sqr(3) << endl;

is the same as:

operator<<(operator<<(operator<<(cout, "The square of 3 is "), sqr(3)), endl);

□ This is how C++ treats these anyway...

http://www.cplusplus.com/reference/ostream/ostream/operator%3C%3C/

http://www.cplusplus.com/reference/ostream/ostream/operator%3C%3C/

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

C and C++

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Introduction to C++

□ The next five topics in C++ will be:
§ Classes
§ Templates
§ Pointers
§ Memory allocation
§ Operator overloading

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Classes

□ To begin, we will create a complex number class

□ To describe this class, we could use the following words:
§ Store the real and imaginary components
§ Allow the user to:

• Create a complex number
• Retrieve the real and imaginary parts
• Find the absolute value and the exponential value
• Normalize a non-zero complex number

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Classes

□ An example of a C++ class declaration is:

class Complex {
private:

double re, im;

public:
Complex(double = 0.0, double = 0.0);

double real() const;
double imag() const;
double abs() const;
Complex exp() const;

void normalize();
};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Classes

□ This only declares the class structure
§ It does not provide an implementation

□ We could include the implementation in the class
declaration, however, this is not, for numerous reasons,
standard practice

□ The next slide gives both the declaration of the
Complex class as well as the associated definitions
§ The assumption is that this is within a single file

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

The Complex Class
#ifndef _COMPLEX_H
#define _COMPLEX_H
#include <cmath>
class Complex {

private:
double re, im;

public:
Complex(double = 0.0, double = 0.0);

// Accessors
double real() const;
double imag() const;
double abs() const;
Complex exp() const;

// Mutators
void normalize();

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

The Complex Class
// Constructor
Complex::Complex(double r, double i):
re(r), im(i)
{

// empty constructor
}

Associates functions back to the class

Each member variable should be assigned

The order must be the same as the order in which
the member variables are defined in the class

For built-in datatypes, this is a simple assignment.
For member variables that are objects, this is a call
to a constructor.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

The Complex Class

// return the real component
double Complex::real() const {

return re;
}

// return the imaginary component
double Complex::imag() const {

return im;
}

// return the absolute value
double Complex::abs() const {

return std::sqrt(re*re + im*im);
}

Refers to the member variables
re and im of this class

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

The Complex Class
// Return the exponential of the complex value
Complex Complex::exp() const {

double exp_re = std::exp(re);

return Complex(exp_re*std::cos(im), exp_re*std::sin(im));
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

The Complex Class

// Normalize the complex number (giving it unit absolute value, |z| = 1)
void Complex::normalize() {

if (re == 0 && im == 0) {
return;

}

double absval = abs();
re /= absval;
im /= absval;

}

#endif

This calls the member function double abs() const
from the Complex class on the object on which
void normalize() was called

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Visibility

□ In C++, visibility is described by a block prefixed by one of
private:
protected:
public:

class Complex {
private:

double re, im;

public:
Complex(double, double);

double real() const;
double imag() const;
double abs() const;
Complex exp() const;

void normalize();
};

private: only accessible from the
member functions of the class

protected: additionally accessible
from the member functions of
derived classes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Visibility

□ It is possible for a class to indicate that another class is
allowed to access its private members

□ If class ClassX declares class ClassY to be a friend,
then class ClassY can access (and modify) the private
members of ClassX

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Visibility
class ClassY; // declare that ClassY is a class

class ClassX {
private:

int privy; // the variable privy is private

friend class ClassY; // ClassY is a "friend" of ClassX
};

class ClassY { // define ClassY
private:

ClassX value; // Y stores one instance of X
public:

void set_x() {
value.privy = 42; // a member function of ClassY can

} // access and modify the private
}; // member privy of "value"

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Visibility (Inheritance)
□ Base and Member access specification:

class Child : public Parent
{

protected:
int a;

public:
Child();

};

member access specifier

base access specifier

Base class members

x inaccessible
private: y
private: z

How base class members appear in derived class

private base class

x inaccessible
protected: y
protected: z

protected base class

private: x
protected: y
public: z

x inaccessible
protected: y
public: z

public base class

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Accessors and Mutators

□ We can classify member functions into two categories:
§ Those leaving the object unchanged
§ Those modifying the member variables of the object

□ Respectively, these are referred to as:
§ Accessors: we are accessing and using the class members
§ Mutators: we are changing—mutating—the class members

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Accessors and Mutators
□ Good programming practice is to enforce that a routine

specified to be an accessor cannot be accidentally changed
to a mutator

□ This is done with the const keyword after the parameter list
double abs() const;

□ const member function:
§ Is prevented from modifying its calling object

□ When const is in the parameter list
int setNum(const int num)

§ the function is prevented from modifying the parameter.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Accessors and Mutators

□ If a junior programmer were to try changing
double Complex::abs() const {
return std::sqrt(re*re + im*im);

}

to

double Complex::abs() const {
re = 1.0; // modifying (mutating) 're'
return std::sqrt(re*re + im*im);

}

□ the compiler would signal an error
(the compiler issues a warning that a member variable was being modified
in a read-only member function)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Templates
□ A function has parameters which are of a specific type
□ A template is like a function, however, the parameters

themselves are types

□ This mechanism is called a template:

template <typename Type>
Type sqr(Type x) {

return x*x;
}

□ This creates a function which returns something of the same
type as the argument

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Templates
□ To tell the compiler what that type to use is, we must suffix

the function:

int n = sqr<int>(3);
double x = sqr<double>(3.141592653589793);

□ Usually, the compiler can determine the appropriate template
without it being explicitly stated

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Templates

□ Example:
#include<iostream>
using namespace std;

template <typename Type>
Type sqr(Type x) {

return x*x;
}

int main() {
cout << "3 squared is " << sqr<int>(3) << endl;
cout << "Pi squared is " << sqr<double>(3.141592653589793) << endl;

return 0;
}

§ Output:
3 squared is 9
Pi squared is 9.8696

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Templates

□ Thus, calling sqr<int>(3) is equivalent to calling a
function defined as:

int sqr(int x) {
return x*x;

}

□ The compiler replaces the symbol Type with int

template <typename Type>
Type sqr(Type x) {

return x*x;
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Templates

□ Our complex number class uses double-precision
floating-point numbers

□ What if we don’t require the precision and want to save
memory with floating-point numbers
§ Do we write the entire class twice?
§ How about using templates?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Templates
#ifndef _COMPLEX_H
#define _COMPLEX_H
#include <cmath>
template <typename Type>
class Complex {

private:
Type re, im;

public:
Complex(Type const & = Type(), Type const & = Type());

// Accessors
Type real() const;
Type imag() const;
Type abs() const;
Complex exp() const;

// Mutators
void normalize();

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Templates

□ The modifier template <typename Type> applies only
to its following statement, so each time we define a
function, we must restate that Type is a templated
symbol (by using template <typename Type>):

// Constructor
template <typename Type>
Complex<Type>::Complex(Type const &r, Type const &i):re(r), im(i) {

// empty constructor
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Templates
// return the real component
template <typename Type>
Type Complex<Type>::real() const {

return re;
}

// return the imaginary component
template <typename Type>
Type Complex<Type>::imag() const {

return im;
}

// return the absolute value
template <typename Type>
Type Complex<Type>::abs() const {

return std::sqrt(re*re + im*im);
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Templates
// Return the exponential of the complex value
template <typename Type>
Complex<Type> Complex<Type>::exp() const {

Type exp_re = std::exp(re);

return Complex<Type>(exp_re*std::cos(im), exp_re*std::sin(im));
}

// Normalize the complex number (giving it unit norm, |z| = 1)
template <typename Type>
void Complex<Type>:noramlize() {

if (re == 0 && im == 0) {
return;

}

Type absval = abs();
re /= absval;
im /= absval;

}

#endif

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Templates

□ Example:
#include <iostream>
#include "Complex.h"
using namespace std;

int main() {
Complex<double> z(3.7, 4.2);
Complex<float> w(3.7, 4.2);
cout.precision(20); // Print up to 20 digits

cout << "|z| = " << z.abs() << endl;
cout << "|w| = " << w.abs() << endl;

z.normalize();
w.normalize();

cout << "After normalization, |z| = " << z.abs() << endl;
cout << "After normalization, |w| = " << w.abs() << endl;

return 0;
}

§ Ouput:
|z| = 5.5973207876626123181
|w| = 5.597320556640625
After normalization, |z| =
1.0000000412736744781
After normalization, |w| = 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Pointers

□ One of the simplest ideas in C, but one which most
students have a problem with is a pointer
§ Every variable is stored somewhere in memory
§ That address is an integer, so why can’t we store an address in a

variable?

http://xkcd.com/138/

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Pointers

□ We could simply have an ‘address’ type:
address ptr; // store an address

// THIS IS WRONG

however, the compiler does not know what it is an
address of (is it the address of an int, a double, etc.)

□ Instead, we have to indicate what it is pointing to:
int *ptr; // a pointer to an integer

// the address of the integer variable 'ptr'

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Pointers

□ First we must get the address of a variable
This is done with the & operator
(ampersand/address of)

□ For example,
int m = 5; // m is an int storing 5
int *ptr; // a pointer to an int (What does this mean?)
ptr = &m; // assign to ptr the

// address of m

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Pointers

□ We can even print the addresses:
int m = 5; // m is an int storing 5
int *ptr; // a pointer to an int
ptr = &m; // assign to ptr the

// address of m
cout << ptr << endl;

prints 0xffffd352, a 32-bit number
§ In case of a computer using 32-bit addresses
§ This can point byte-addresses of up to 2^32 ~ 4 x 10^9 = 4GB

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Pointers

□ We have pointers: we would now like to manipulate
what is stored at that address

□ We can access/modify what is stored at that memory
location by using the * operator (dereference)

int m = 5;
int *ptr;
ptr = &m;
cout << *ptr << endl; // prints 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Pointers

□ Similarly, we can modify values stored at an address:
int m = 5;
int *ptr;
ptr = &m;
*ptr = 3; // store 3 at that memory location
cout << m << endl; // prints 3

http://xkcd.com/371/int* arr = new int[10];
…
delete[] arr;
cout << arr[10] << endl; Segmentation Fault

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Pointers

□ Pointers to objects must, similarly be dereferenced:

Complex z(3, 4);
Complex *pz;
pz = &z;
cout << z.abs() << endl;
cout << (*pz).abs() << endl;

□ One short hand for this is to replace
(*pz).abs();

with
pz->abs();

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Memory Allocation

□ Memory allocation in C++ is done through the new
operator

□ This is an explicit request to the operating system for
memory
§ This is a very expensive operation
§ The OS must:

• Find the appropriate amount of memory,
• Indicate that it has been allocated, and
• Return the address of the first memory location

□ Memory deallocation differs, however:
§ C++ requires the user to explicitly deallocate memory

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Memory Allocation

□ Inside a function, memory allocation of declared
variables is dealt with by the compiler

int my_func() {
Complex<double> z(3, 4); // calls constructor with 3, 4

// creates 3 + 4j
// 16 bytes are allocated by the compiler

double r = z.abs(); // 8 bytes are allocated by the compiler

return 0; // The compiler reclaims the 24 bytes
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Memory Allocation

□ Memory for a single instance of a class (one object) is
allocated using the new operator, e.g.,

Complex<double> *pz = new Complex<double>(3, 4);

□ The new operator returns the address of the first byte of
the memory allocated

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Memory Allocation

□ We can even print the address to the screen
If we were to execute

cout << "The address pz is " << pz << endl;

we would see output like this:
The address pz is 0x00ef3b40

□ Next, to deallocate the memory (once we’re finished
with it) we must explicitly tell the operating system using
the delete operator:

delete pz;

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Memory Allocation

□ Consider a linked list where each node is allocated:
new Node<Type>(obj)

□ Such a call will be made each time a new element is
added to the linked list

□ For each new, there must be a corresponding delete:
§ Each removal of an object requires a call to delete
§ If a non-empty list is itself being deleted, the destructor must

call delete on all remaining nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

A Quick Introduction to C++

□ To summarize:
§ These are very basic C++ things and may not be enough to

complete the assignments!
§ You will need to self-study if you are not familiar/comfortable

with theses!
§ Online tutorials

• http://www.cplusplus.com/doc/tutorial/
• https://www.w3schools.com/cpp/
• https://www.learncpp.com/

http://www.cplusplus.com/doc/tutorial/
https://www.w3schools.com/cpp/
https://www.learncpp.com/

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Reading Assignment #2 – Chapter 2
viii Contents

1.7.3 Big-Five 46
Summary 46
Exercises 46
References 48

Chapter 2 Algorithm Analysis 51
2.1 Mathematical Background 51
2.2 Model 54
2.3 What to Analyze 54
2.4 Running-Time Calculations 57

2.4.1 A Simple Example 58
2.4.2 General Rules 58
2.4.3 Solutions for the Maximum Subsequence

Sum Problem 60
2.4.4 Logarithms in the Running Time 66
2.4.5 Limitations of Worst-Case Analysis 70
Summary 70
Exercises 71
References 76

Chapter 3 Lists, Stacks, and Queues 77
3.1 Abstract Data Types (ADTs) 77
3.2 The List ADT 78

3.2.1 Simple Array Implementation of Lists 78
3.2.2 Simple Linked Lists 79

3.3 vector and list in the STL 80
3.3.1 Iterators 82
3.3.2 Example: Using erase on a List 83
3.3.3 const_iterators 84

3.4 Implementation of vector 86
3.5 Implementation of list 91
3.6 The Stack ADT 103

3.6.1 Stack Model 103
3.6.2 Implementation of Stacks 104
3.6.3 Applications 104

3.7 The Queue ADT 112
3.7.1 Queue Model 113
3.7.2 Array Implementation of Queues 113
3.7.3 Applications of Queues 115
Summary 116
Exercises 116

Quiz #1: 9/30 (covering chapters 1 and 2, 4-5 questions, 40 mins, Lecture will follow)

	W2-1.C_C++.pdf
	W2-2.C_C++.pdf

