C and C++

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QUEDD
I Introduction to Data Structures, ECE430.217, 2021 FALL

¥

“%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB



A Brief Introduction to C++

0 In this topic we will see:
= Functions
= The preprocessor, compilation, namespaces
= Printing
= Classes, templates
= Pointers
= Memory allocation and deallocation

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Control Statements

if ( statement ) {

/] ...
} else if ( statement ) {

/] ... while ( statement ) {
1} else { /] ...
/] ... }
}
for (int 1 =0; 1 < N; ++i ) {
/] ...
do { }

/] ...
} while ( statement );

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB



4
Operators
0 Operators have similar functionality for built-in datatypes:
= Assignment =
= Arithmetic + - * / %
+= -= *= /= %=
= Autoincrement  ++
= Autodecrement --
= Logical && | | !
= Relational == I= < <= >= >
= Bitwise & | ~
&= | = A=
= Bit shifting << >>
<<= >>=
https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B
e T S o NXC]LA8




Arrays

0 Accessing arrays:

const int ARRAY_CAPACITY = 10; // prevents reassignment
int array[ARRAY_CAPACITY];

array[0] = 1;

for ( int i = 1; i < ARRAY_CAPACITY; ++i ) {
array[i] = 2*array[i - 1] + 1;

0 Recall that arrays go from @ to ARRAY_CAPACITY - 1

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB



Functions

o0 Function calls:

##tinclude <iostream>
using namespace std;

// A function with a global name
int sgr( int n ) {
return n*n;

int main() {

cout << "The square of 3 is " << sqgr(3) << endl;
return 0;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




7

The C++ Preprocessor

0 C++ is based on C, which was written in the early 1970s

0 Any command starting with a # in the first column is not
a C/C++ statement, but rather a preprocessor
statement

= The preprocessor performs very basic text-based (or lexical)
substitutions

= The output is sent to the compiler

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




The C++ Preprocessor

0 The sequence is:

file (filename.cpp) — preprocessor — compiler (g++)

Programmer .

» Source * Modified
code source <*.0>
<*.cpp> code

» Executable
code

0 Note, this is done automatically by the compiler:

No additional steps are necessary

0 At the top of any C++ program, you will see one or
more directives starting with a #, e.g.,

#include <iostream>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB




The C++ Preprocessor

iostream.h intro.cpp

using namespace std;

int sqr( int n ) {
return n*n;
}

int main() {

cout << "The square of 3 is " << sqr(3) << endl;
return O;

preprocessor

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

[

to the compiler ]

NXC

LAB



10

Libraries

0 You will write your code in a file such as Single_list.h
where you will implement a data structure

o You will note the difference:

#include <iostream>
#include "Single list.h"

0 The first looks for a file iostream.h which is shipped
with the compiler (the standard library)

0 The second looks up in the current directory

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




11

The C++ Preprocessor

o With all these includes, it is always necessary to avoid the

same file being included twice, otherwise you have duplicate
definitions

0 This is done with guard statements (preprocessor conditions):
#ifndef SINGLE_LIST_H
#define SINGLE_LIST_H

template <typename Type>

class Single list {
//]...

¥

#endif

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




12

The C++ Preprocessor

0 This class definition contains only the signatures (or
prototypes) of the operations

0 The actual member function definitions may be defined
elsewhere, either in:

» The same file, or
= Another file which is compiled into an object file

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




13

The File as the Unit of Compilation

0 In C/C++, the file is the base unit of compilation:
= Any .cpp file may be compiled into object code

= Only files containing an int main() function can be compiled
into an executable

0 The signature of main is:
int main () {
// does some stuff
return 0;

0 The operating system is expecting a return value
= Usually O (this signal is given back to OS)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




14

The File as the Unit of Compilation

0 This file (example.cpp) contains two functions

#tinclude<iostream>
using namespace std;

int sgr( int n ) { // Function declaration and
definition
return n*n;

int main() {

cout << "The square of 3 is " << sgr(3) << endl;
return 0;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




15

The File as the Unit of Compilation

0 To compile this file, we execute on the command line:

$ g++ example.cpp
$ 1s
a.out example.cpp

$ ./a.out
The square of 3 is 9

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




16
The File as the Unit of Compilation
o0 This is an alternate form:
#include<iostream>
using namespace std;
int sqr( int ); // Function declaration
int main() {
cout << "The square of 3 is " << sqgr(3) << endl;
return 0;
}
int sgr( int n ) { // Function definition
return n*n; // The definition can be in another file
}
Introduction to Data Structures, ECE430.217, 2021 FALL
o SJEEOUEN;TI(;NALUNIVERSITY NXC|LAB




17

Namespaces

0 Variables defined:

» |n functions are local variables
= |n classes are member variables
» Elsewhere are global variables

0 Functions defined:
» |n classes are member functions
» Elsewhere are global functions

0 In all these cases, the keyword static can modify the
scope
» Static local variables retain their contents between function calls

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




18

Namespaces

0 Global variables/variables cause problems, especially in
large projects
= Hundreds of employees
= Dozens of projects
= Everyone wanting a function init()

0 In C++, this is solved using namespaces.

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




19

Namespaces

0 A namespace adds an extra disambiguation between similar names

namespace snu_ece {
int n = 4;
double mean = 2.34567;

void init() {
// Does something...

}

0 There are two means of accessing these global variables and
functions outside of this namespace:
= The namespace as a prefix:
snu_ece: :init()
(note that :: is scope resolution operator)
» The using statement:

using namespace snu_ece;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




20

Namespaces

0 You will only need this for the standard name space

= All variables and functions in the standard library are in the std
namespace

#include <iostream>
std::cout << "Hello world!" << std::endl;

#tinclude <iostream>

using namespace std;

cout << "Hello world!" << endl;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




-__________________________________________
Printing

0 Printing in C++ is done through overloading the << operator:
cout << 3;

0 If the left-hand argument of << is an object of type ostream
(output stream) and the right-hand argument is a double, int,
string, etc., an appropriate function which prints the object is

called.
=> called operator overloading

b T 4

istream @@(}—
|
<fstream>

| ifstream | I fstream l |ofstream l

<jostream>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Printing

0 The format is suggestive of what is happening:

= The objects are being sent to the cout (console output) object
to be printed
cout << "The square of 3 is " << sqr(3) << endl;

0 The objects being printed are:
= astring
" anint

= a platform-independent end-of-line identifier

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




-_________________________________________
23
Printing
0 How does

cout << "The square of 3 is " << sqr(3) << endl;

work?

0 This is equivalent to
((cout << "The square of 3 is ") << sqgr(3)) << endl;

where << is an operator (like +) which prints the object
and returns the cout object

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




24
Printing
o Visually:

((cout << "The square of 3 is ") << sqgr(3)) << endl;

S ——————————— el
—

print "The square of 3 is " andreturn cout

( cout << sqgr(3)) << endl;
print the result of sgr (3) and return cout

cout << endl;

S —— ——

print an end-of-line character (and return cout)
cout;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Printing

0 Another way to look at this is that

cout << "The square of 3 is " << sqr(3) << endl;

is the same as:

operator<<( operator<<( operator<<( cout, "The square of 3 is " ), sqr(3) ), endl );

0 This is how C++ treats these anyway...

<ostream> <iostream>

sta::0Stream::operator<<
C++98] [C++11] @

bool val);

short val);

unsigned short val);
int val);

unsigned int val);:
long val);

ostream& operator<< (
ostream& operator<< (
ostream& operator<< (
ostream& operator<< (
ostream& operator<< (
ostream& operator<< (
ostream& operator<< (unsigned long val);
ostream& operator<< (long long val);
ostream& operator<< (unsigned long long val);
ostream& operator<< (float val);
ostream& operator<< (double val);
ostream& operator<< (long double val);
ostream& operator<< (voidx val);

(

(

(

(

ostream& operator<< (streambufx sb );

ostream& (*pf)(ostreamd)):
jos& (*pf)(ios&)):
jos_base& (*pf)(ios_based)):

ostream& operator<<
ostream& operator<<
ostream& operator<<

http://www.cplusplus.com/reference/ostream/ostream/operator%3C%3C/

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
AR SEOUL NATIONAL UNIVERSITY



http://www.cplusplus.com/reference/ostream/ostream/operator%3C%3C/

C and C++

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QUEDD
I Introduction to Data Structures, ECE430.217, 2021 FALL

¥

“%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB



Introduction to C++

0 The next five topics in C++ will be:
= Classes

Templates

Pointers

Memory allocation

Operator overloading

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Classes

0 To begin, we will create a complex number class

0 To describe this class, we could use the following words:

= Store the real and imaginary components

= Allow the user to:
* Create a complex number
* Retrieve the real and imaginary parts

¢ Find the absolute value and the exponential value

e Normalize a non-zero complex number

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB



4
Classes
0 An example of a C++ class declaration is:
class Complex {
private:
double re, im;
public:
Complex( double = 0.9, double = 0.0 );
double real() const;
double imag() const;
double abs() const;
Complex exp() const;
void normalize();
}s
Introduction to Data Structures, ECE430.217, 2021 FALL
o stEouEN;TK;NAL UNIVERSITY NXC|LAB




Classes

0 This only declares the class structure

= |t does not provide an implementation

0 We could include the implementation in the class
declaration, however, this is not, for numerous reasons,
standard practice

0 The next slide gives both the declaration of the
Complex class as well as the associated definitions
= The assumption is that this is within a single file

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




..,
The Complex Class

#ifndef _COMPLEX_H
#define _COMPLEX_H
#include <cmath>
class Complex {
private:
double re, im;

public:
Complex( double = 0.0, double = 0.0 );

// Accessors

double real() const;
double imag() const;
double abs() const;
Complex exp() const;

// Mutators
void normalize();

}s

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




7
The Complex Class
Associates functions back to the class
// Constructor
Complex: :Complex( double r, double i ):
re(r ), In( 1) < Each member variable should be assigned
{
// empty constructor The order must be the same as the order in which
} the member variables are defined in the class
For built-in datatypes, this is a simple assignment.
For member variables that are objects, this is a call
to a constructor.
Introductionstgcg)jtaNS::Hgl,J\lrzst Sﬁ:i\ffsssf_x 2021 FALL N x c I.AB




The Complex Class

// return the real component
double Complex::real() const {

// return the imaginary component
double Complex::imag() const { Refers to the member variables

return - re and im of this class

// return the absolute value
double Complex::abs() const

return std::sqrt (.-) 5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB



The Complex Class

// Return the exponential of the complex value
Complex Complex::exp() const {
double exp_re = std::exp( re );

return Complex( exp_re*std::cos(im), exp_re*std::sin(im) );

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




10

The Complex Class

// Normalize the complex number (giving it unit absolute value, |z| = 1)
void Complex::normalize() {
if ((re ==0 & im == 0 ) {

return;
} This calls the member function double abs() const

/ from the Complex class on the object on which

double absval = void normalize() was called

re /= absval;
im /= absval;

#tendif

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Visibility
0 In C++, visibility is described by a block prefixed by one of

private: « private: only accessible from the
member functions of the class

protected: \
public: protected: additionally accessible

from the member functions of
class Complex { derived classes

private:
Idouble re, im; I

public:
Complex( double, double );

double real() const;
double imag() const;
double abs() const;
Complex exp() const;

void normalize();

}s

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Visibility
0 It is possible for a class to indicate that another class is
allowed to access its private members

0 If class ClassX declares class ClassY to be a friend,
then class ClassY can access (and modity) the private
members of ClassX

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

12

LAB



13
Visibility
class Classy; // declare that ClassY is a class
class ClassX {
private:
int privy; // the variable privy is private
friend class ClassY; // ClassY is a "friend" of ClassX
}s
class ClassY { // define ClassY
private:
ClassX value; // Y stores one instance of X
public:
void set_x() {
value.privy = 42; // a member function of ClassY can
} // access and modify the private
}s // member privy of "value"
Introduction to Data Structures, ECE430.217, 2021 FALL
SEQUL NATIONAL UNIVERSITY NXC|LAB




Visibility (Inheritance)

0 Base and Member access specification:

class Child : public Parent

{ protected: base access specifier
int a;
public: *~\\\\\\\\\\\\\\
Child(); member access specifier
}s
Base class members How base class members appear in derived class

private: x . X inaccessible
rivate base class
protected: y P private: y

public: z private: z

X inaccessible
protected: y
protected: z

protected base class

X inaccessible
protected: y
Introduction to Data Structures, ECE430.217, 2021 FALL pUbllc I 4

SEOUL NATIONAL UNIVERSITY N x c I.AB

public base class

\ 4




15

Accessors and Mutators

0 We can classify member functions into two categories:
» Those leaving the object unchanged
* Those modifying the member variables of the object

0 Respectively, these are referred to as:
= Accessors: we are accessing and using the class members
= Mutators: we are changing—mutating—the class members

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




16

Accessors and Mutators

0 Good programming practice is to enforce that a routine
specified to be an accessor cannot be accidentally changed
to a mutator

0 This is done with the const keyword after the parameter list
double abs() const;

0 const member function:
= |s prevented from modifying its calling object

0 When const is in the parameter list
int setNum(const int num)

= the function is prevented from modifying the parameter.

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




17

Accessors and Mutators

0 If a junior programmer were to try changing

double Complex::abs() const {
return std::sqrt( re*re + im*im );

}

to

double Complex::abs() const {

re = 1.0; // modifying (mutating) 're'’

return std::sqrt( re*re + im*im );

0 the compiler would signal an error

(the compiler issues a warning that a member variable was being modified
in a read-only member function)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




18

Templates

0 A function has parameters which are of a specific type

0 A template is like a function, however, the parameters
themselves are types

0 This mechanism is called a template:

template <typename Type>
Type sqr( Type x ) {
return x*x;

}

0 This creates a function which returns something of the same
type as the argument

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Templates

0 To tell the compiler what that type to use is, we must suffix
the function:

int n = sqr<int>( 3 );
double x = sgr<double>( 3.141592653589793 );

0 Usually, the compiler can determine the appropriate template
without it being explicitly stated

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

19

LAB



20

Templates

0 Example:

##tinclude<iostream>
using namespace std;

template <typename Type>

Type sqr( Type x ) {
return x*x;

int main() {
cout << "3 squared is " << sgr<int>( 3 ) << endl;
cout << "Pi squared is " << sqgr<double>( 3.141592653589793 ) << endl;

return 0;

)
= Qutput:

3 squared is 9
Pi squared is 9.8696

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Templates

0 Thus, calling sqr<int>( 3 ) is equivalent to calling a
function defined as:

template <typename Type>
int sgr( int x ) { Type sgr( Type x ) {
return x*x; return x*x;
} }

0 The compiler replaces the symbol Type with int

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

21

LAB



22

Templates

0 Our complex number class uses double-precision
floating-point numbers

0 What it we don’t require the precision and want to save
memory with floating-point numbers
» Do we write the entire class twice?
= How about using templates?

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




23

Templates

#ifndef _COMPLEX_H
#define _COMPLEX_H
#include <cmath>
template <typename Type>
class Complex {
private:
Type re, 1im;

public:
Complex( Type const & = Type(), Type const & = Type() );

// Accessors

Type real() const;
Type imag() const;
Type abs() const;
Complex exp() const;

// Mutators
void normalize();

}s

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




24

Templates

0 The moditfier template <typename Type> applies only
to its following statement, so each time we define a
function, we must restate that Type is a templated
symbol (by using template <typename Type>):

// Constructor

template <typename Type>

Complex<Type>::Complex( Type const &r, Type const &i ):re(r), im(i) {
// empty constructor

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




25

Templates

// return the real component

template <typename Type>

Type Complex<Type>::real() const {
return re;

// return the imaginary component

template <typename Type>

Type Complex<Type>::imag() const {
return im;

// return the absolute value

template <typename Type>

Type Complex<Type>::abs() const {
return std::sqrt( re*re + im*im );

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




26

// Return the exponential of the complex value
template <typename Type>
Complex<Type> Complex<Type>::exp() const {

Type exp_re = std::exp( re );

return Complex<Type>( exp_re*std::cos(im), exp_re*std::sin(im) );
}
// Normalize the complex number (giving it unit norm, |z| = 1)
template <typename Type>
void Complex<Type>:noramlize() {

if ((re ==0 & & im == 0 ) {

return;

}

Type absval = abs();

re /= absval;

im /= absval;
}
#endif

Introduction to Data Structures, ECE430.217, 2021 FALL
e IonSI(E)OSLaNA[I'uI((:)llJ\IrZSI‘_ UNIVERSITY NXC|LAB




27
0 Example: = OQuput:
#include <iostream> |z] = 5.5973207876626123181
#include "Complex.h" |w| = 5.597320556640625
using namespace std; After nor‘malization, |Z| =
1.0000000412736744781
int main() { After normalization, |w| = 1
Complex<double> z( 3.7, 4.2 );
Complex<float> w( 3.7, 4.2 );
cout.precision( 20 ); // Print up to 20 digits
cout << "|z| = " << z.abs() << endl;
cout << "|w| = " << w.abs() << endl;
z.normalize();
w.normalize();
cout << "After normalization, |z]| = " << z.abs() << endl;
cout << "After normalization, |w| = " << w.abs() << endl;
return 0;
}
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY NXC]|LAB




Pointers

0 One of the simplest ideas in C, but one which most
students have a problem with is a pointer

= Every variable is stored somewhere in memory

» That address is an integer, so why can’t we store an address in a
variable?

MAN, | 5)CK AT THIS GAME..
CAN YOU GIVE ME.
A FEW POINTERS?

( Ox3A28213A
Ox6339292C,
Ox 7363632E.
| HATE YOU.

ast

http://xkcd.com/138/

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

28

LAB



29

Pointers

0 We could simply have an ‘address’ type:
address ptr; // store an address
// THIS IS WRONG

however, the compiler does not know what it is an
address of (is it the address of an int, a double, etc.)

0 Instead, we have to indicate what it is pointing to:
int *ptr; // a pointer to an integer
// the address of the integer variable 'ptr’

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




30

Pointers

0 First we must get the address of a variable

This is done with the & operator
(ampersand/address of)

0 For example,

int m = 5; // m is an int storing 5
int *ptr; // a pointer to an int (What does this mean?)
ptr = &m; // assign to ptr the

// address of m

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




31

Pointers

0 We can even print the addresses:

int m = 5; // m is an int storing 5
int *ptr; // a pointer to an int
ptr = &m; // assign to ptr the

// address of m
cout << ptr << endl;

prints Oxffffd352, a 32-bit number

= |n case of a computer using 32-bit addresses
= This can point byte-addresses of up to 2432 ~ 4 x 109 = 4GB

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




Pointers

o0 We have pointers: we would now like to manipulate
what is stored at that address

0 We can access/modify what is stored at that memory
location by using the * operator (dereference)

int m = 5;
int *ptr;
ptr = &m;
cout << *ptr << endl; // prints 5

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

32

LAB



33

Pointers

o Similarly, we can moditfy values stored at an address:

int m = 5;

int *ptr;
ptr = &nm;
*ptr = 3; // store 3 at that memory location
cout << m << endl; // prints 3
OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YoU | WELL, THATS WHAT A
HOH? S FALLING ASLEER AND NISSTER, STUMBLE, | SEGFAULT FEELS LIKE.
UH? YOU IMAGINE YOURSELF | AND JOLT AWAKE? 3
BEFORE. YoU WALKING OR YEAH! DOUBLE - CHECK YOUR
HIT (OMPILE, M SOMETHING, : ;ﬁ DAMN POINTERS, OKAY?

a il h (&4

http://xkcd.com/371/

int* arr = new int[10];

delete[] arr;
cout << arr[10] << endl; «——— Segmentation Fault

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




34

Pointers

0 Pointers to objects must, similarly be dereferenced:
Complex z( 3, 4 );
Complex *pz;
pz = &z;
cout << z.abs() << endl;
cout << (*pz).abs() << endl;

0 One short hand for this is to replace
(*pz).abs();
with
pz->abs();

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




35

Memory Allocation

0 Memory allocation in C++ is done through the new
operator

0 This is an explicit request to the operating system for

memory
= This is a very expensive operation

= The OS must:

* Find the appropriate amount of memory,
¢ |ndicate that it has been allocated, and
® Return the address of the first memory location

0 Memory deallocation differs, however:
= C++ requires the user to explicitly deallocate memory

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB




36

Memory Allocation

0 Inside a function, memory allocation of declared
variables is dealt with by the compiler

int my func() {
Complex<double> z (3, 4); // calls constructor with 3, 4
// creates 3 + 4j
// 16 bytes are allocated by the compiler

double r = z.abs(); // 8 bytes are allocated by the compiler

return O; // The compiler reclaims the 24 bytes

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




37

Memory Allocation

0 Memory for a single instance of a class (one object) is
allocated using the new operator, e.g.,

Complex<double> *pz = new Complex<double>( 3, 4 );

0 The new operator returns the address of the first byte of
the memory allocated

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




38

Memory Allocation

0 We can even print the address to the screen

If we were to execute
cout << "The address pz is " << pz << endl;

we would see output like this:
The address pz is 0x00ef3b40

0 Next, to deallocate the memory (once we're finished
with it) we must explicitly tell the operating system using
the delete operator:

delete pz;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB



39

Memory Allocation

0 Consider a linked list where each node is allocated:
new Node<Type>( obj )

o Such a call will be made each time a new element is

added to the linked list

0 For each new, there must be a corresponding delete:
= Each removal of an object requires a call to delete

= |f a non-empty list is itself being deleted, the destructor must
call delete on all remaining nodes

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY




40

A Quick Introduction to C++

O To summarize:

» These are very basic C++ things and may not be enough to
complete the assignments!

* You will need to self-study if you are not familiar/comfortable
with theses!

= Online tutorials

® http://www.cplusplus.com/doc/tutorial/

® https://www.w3schools.com/cpp/

* https://www.learncpp.com/

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY



http://www.cplusplus.com/doc/tutorial/
https://www.w3schools.com/cpp/
https://www.learncpp.com/

Reading Assignment #2 — Chapter 2

Quiz #1: 9/30 (covering chapters 1 and 2, 4-5 questions, 40 mins, Lecture will follow)

MARK ALLEN WEISS

DATA STRUCTURES

AND

ALGORITHM ANALYSIS

IN

s

Chapter 2 Algorithm Analysis

Mathematical Background 51

Model 54
What to Analyze 54
Running-Time Calculations 57

2.4.1 A Simple Example 58

2.4.2 General Rules 58

2.4.3 Solutions for the Maximum Subsequence
Sum Problem 60

2.4.4 Logarithms in the Running Time 66

2.4.5 Limitations of Worst-Case Analysis 70

Summary 70

Exercises 71

References 76

Chapter 3 Lists, Stacks, and Queues
3.1 Abstract Data Types (ADTs) 77

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

77

NXC

LAB



	W2-1.C_C++.pdf
	W2-2.C_C++.pdf



