Chapter 2

Equations of State

Min Soo Kim
Seoul National University

2.2 Equation of State of an Ideal Gas

$$
\begin{equation*}
P V=\frac{m}{M} R T \tag{2.1}
\end{equation*}
$$

m : mass of gas
M: molecular weight
R : universal constant
$\left(8.314 \times 10^{3} \frac{\mathrm{~J}}{\text { kilomole. }}\right)$

- Since $n \equiv \frac{m}{M}$ is the number of kilomoles of the gas, the equation of state of an ideal gas is

$$
\begin{equation*}
P V=n R T \tag{2.2}
\end{equation*}
$$

2.2 Equation of State of an Ideal Gas

- In Equation (2.2) we note that the extensive variable V divided by n , the number of kilomoles of the gas, is the specific volume v.
- Thus the equation of state can be written $\boldsymbol{P v}=\boldsymbol{R} \boldsymbol{T}$
- The projections of the surface $f(P, v, T)=0$ on the $P-v$ plane, $P-T$ plane, and the $v-T$ plane are shown in Figure 2.1

Figure 2.1 Diagrams for an ideal gas. (a) the isotherms are equilateral hyperbolae; (b) the isochores are straight lines; (c) the isobars are also straight lines.

2.3 Van Der Waals' Equation for a Real Gas

$$
\begin{equation*}
\left(P+\frac{a}{v^{2}}\right)(v-b)=R T \tag{2.3}
\end{equation*}
$$

a and b : characteristic constants

- The term $\frac{a}{v^{2}}$ arises from the intermolecular forces due to the overlap of electron clouds.
- The constant b takes into account the finite volume occupied by the molecules.
- Multiplication of Equation (2.3) by v^{2} yields the equation

$$
\begin{equation*}
P v^{3}-(P b+R T) v^{2}+a v-a b=0 \tag{2.4}
\end{equation*}
$$

2.3 Van Der Waals' Equation for a Real Gas

- Equation (2.4) is a cubic equation in v with three roots, only one of which needs to be real.
- In Figure 2.2 some isotherms calculated from the van der Waals equation have been drawn.

Figure 2.2 Isotherms for a Van Der Waals' gas.

2.4 P-v-T Surfaces for Real Substances

- Figure 2.3 is a schematic diagram of the $P-v-T$ surface for a substance that contracts on freezing

Figure 2.3 $P-v-T$ surface for a substance that contracts on freezing

COLLEGEOF ENGINEERING
SEOUL NATIONAL UNIVERSITY
서 울 대 학 교 공 과 대 학

2.4 P - v-T Surfaces for Real Substances

- Notice the regions(solid, liquid, gas or vapor) in which the substance can exist in a single phase only.
- Elsewhere two phases can exist simultaneously in equilibrium, and along the so-called triple line, all three phases can coexist.

Figure $2.4 P-T$ diagrams for (a) a substance that contracts on freezing; and (b) a substances that expands on freezing

2.5 Expansivity and Compressibility

- Suppose that the equation of state of a given substance is written in the form

$$
\begin{equation*}
v=v(T, P) \tag{2.5}
\end{equation*}
$$

- Taking the differential, we obtain

$$
\begin{equation*}
d v=\left(\frac{\partial v}{\partial T}\right)_{p} d T+\left(\frac{\partial v}{\partial P}\right)_{T} d P \tag{2.6}
\end{equation*}
$$

- The expansivity, or coefficient of volume expansion, is given by

$$
\begin{equation*}
\beta \equiv \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P} \tag{2.7}
\end{equation*}
$$

- This is the fractional change of volume resulting from a change in temperature, at constant pressure.

2.5 Expansivity and Compressibility

- Similarly, the isothermal compressibility is defined as

$$
\begin{equation*}
k \equiv-\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_{T} \tag{2.8}
\end{equation*}
$$

- This is the fractional change in volume as the pressure changes, with the temperature held constant.
- The negative sign is used since the volume always decreases with increasing pressure (at constant temperature)
- For an ideal gas, $v=R T / P$

$$
\begin{align*}
& \beta=\frac{1}{v}\left(\frac{R}{P}\right)=\frac{1}{T} \tag{2.9}\\
& k=-\frac{1}{v}\left(-\frac{R T}{P^{2}}\right)=\frac{1}{P} \tag{2.10}
\end{align*}
$$

2.7 Specific heat

- Specific heat: the amount of heat required to change a unit mass of a substance by one degree in temperature
$C_{P}, C_{V} \rightarrow$ The properties we can measure

$$
\begin{equation*}
u=u(T, v) \tag{2.11}
\end{equation*}
$$

$\left.d u=\left(\frac{\partial u}{\partial T}\right)_{v} d T+\frac{\partial u}{\partial v}\right)_{T} d v$

$$
\begin{align*}
\delta Q & =\Delta U+\delta W & & \\
& =\Delta U+P d v & & \text { If there is no } \\
& =\Delta U & & \tag{2.13}
\end{align*}
$$

2.7 Specific heat

Easier to measure heat and internal energy in difference

$$
\left.\left.C_{v}=\frac{\partial u}{\partial T}\right)_{v}=\frac{\partial Q}{\partial T}\right)_{v} \longrightarrow C_{v} \text { can be measured }
$$

2.7 Specific heat

$$
\begin{align*}
h & \equiv u+p v \\
& =h(T, P) \tag{2.14}\\
d h & \left.=\left(\frac{\partial h}{\partial T}\right)_{P} d T+\frac{d h}{d p}\right)_{T} d P \tag{2.15}\\
\delta Q)_{I d e a} & =T d s=d u+P d v \\
& =d h-v d P \tag{2.16}
\end{align*}
$$

If there is no pressure change (constant P)

2.7 Specific heat

Constant pressure

Amount of heat added $=\Delta h$
$\left.\left.C_{P} \equiv \frac{\partial h}{\partial T}\right)_{P}=\frac{\partial Q}{\partial T}\right)_{P}$
C_{P} can be measured

2.8 Maxwell equation

$$
\begin{align*}
d u & =T d s-P d v \tag{2.17}\\
u & =u(s, v) \tag{2.18}\\
d u & =\underbrace{\left.\frac{\partial u}{\partial s}\right)_{v}}_{T} d s+\left(\frac{\partial u}{\partial v}\right)_{S} d v \tag{2.19}\\
\frac{\partial^{2} U}{\partial v \partial s} & \left.\left.=\left(\frac{\partial T}{\partial v}\right)_{s}=\frac{\partial^{2} U}{\partial s \partial v}=-\left(\frac{\partial P}{\partial s}\right)_{v} \longrightarrow \frac{\partial T}{\partial v}\right)_{S}=-\frac{\partial p}{\partial s}\right)_{v}
\end{align*}
$$

2.8 Maxwell equation

$$
\begin{aligned}
J= & \frac{\partial(P, v)}{\partial(T, s)}=1 \\
& \text { Jacobian } \\
& d x d y=r d r d \theta \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& J=\frac{\partial(x, y)}{\partial(r, \theta)}=\operatorname{det}\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r \\
& \left.\frac{\partial(T, s)}{\partial(v, s)}=\frac{\partial(P, v)}{\partial(v, s)}=-\frac{\partial(P, v)}{\partial(s, v)}=-\frac{\partial P}{\partial s}\right)_{v}
\end{aligned}
$$

2.9 Various equations of state

Cubic equation of state (EOS)

- Van der Waals EOS (1873)

$$
p=\frac{R T}{v-b}-\frac{a}{v^{2}}
$$

- Peng-Robinson (PR) EOS (1976)

$$
p=\frac{R T}{v-b}-\frac{a(T)}{v^{2}+2 b v-b^{2}}
$$

- Redlich-Kwong (RK) EOS (1949)

$$
p=\frac{R T}{v-b}-\frac{a}{\sqrt{T} v(v+b)}
$$

- Patel-Teja EOS (1982)

$$
p=\frac{R T}{v-b}-\frac{a(T)}{v^{2}+(b+c) v-b c}
$$

- Soave-Redlich-Kwong (SRK) EOS (1972)

$$
p=\frac{R T}{v-b}-\frac{a(T)}{v(v+b)}
$$

2.9 Various equations of state

Virial equation of state (EOS)

- BWR (Benedict-Webb-Rubin) Starling EOS (1970)

$$
\begin{aligned}
Z=\frac{p v}{R T}=1 & +\rho_{r}\left(E_{1}-\frac{E_{2}}{T_{r}}-\frac{E_{3}}{T_{r}^{3}}+\frac{E_{9}}{T_{r}^{4}}-\frac{E_{11}}{T_{r}^{5}}\right)+\rho_{r}^{2}\left(E_{5}-\frac{E_{6}}{T_{r}}-\frac{E_{10}}{T_{r}^{2}}\right) \quad E_{i}=a_{i}+\gamma_{o} b_{i} \\
& +\rho_{r}^{5}\left(\frac{E_{7}}{T_{r}}+\frac{E_{12}}{T_{r}^{2}}\right)+\frac{E_{8} \rho_{r}^{2}}{T_{r}^{3}}\left(1+E_{4} \rho_{r}^{2}\right) \exp \left(-E_{4} \rho_{r}^{2}\right)
\end{aligned}
$$

- Lee-Kesler EOS (1975)

$$
Z=\frac{p v}{R T}=1+\frac{B}{v_{r}}+\frac{C}{v_{r}^{2}}+\frac{D}{v_{r}^{5}}+\frac{c_{4}}{T_{r}^{3} v_{r}^{2}}\left(\beta+\frac{\gamma}{v_{r}^{2}}\right) \exp \left(-\frac{\gamma}{v_{r}^{2}}\right)
$$

$$
B=b_{1}-\frac{b_{2}}{T_{r}}-\frac{b_{3}}{T_{r}^{2}}-\frac{b_{4}}{T_{r}^{3}}
$$

$$
C=c_{1}-\frac{c_{2}}{T_{r}}+\frac{c_{3}}{T_{r}^{3}}
$$

$$
Z=Z^{(0)}+\frac{\omega}{\omega^{(r)}}\left(Z^{(r)}-Z^{(0)}\right)
$$

$$
D=d_{1}+\frac{d_{2}}{T_{r}}
$$

$$
a_{1}=R T
$$

- MBWR EOS $(1973,1987)$

$$
a_{2}=b_{1} T+b_{2} T^{1 / 2}+b_{3}+\frac{b_{4}}{T}+\frac{b_{5}}{T^{2}}
$$

$$
a_{9}=\frac{b_{19}}{T^{2}}
$$

$$
p=\sum_{i=1}^{9} a_{i}(T) \rho^{i}+\exp \left(-\delta^{2}\right) \sum_{i=10}^{15} a_{i}(T) \rho^{2 i-17}
$$

$$
a_{3}=b_{6} T+b_{7}+\frac{b_{8}}{T}+\frac{b_{9}}{T^{2}}
$$

$$
a_{10}=\frac{b_{20}}{T^{2}}+\frac{b_{21}}{T^{3}}
$$

$$
a_{4}=b_{10} T+b_{11}+\frac{b_{12}}{T}
$$

$$
a_{11}=\frac{T_{22}}{T^{2}}+\frac{T_{23}}{T^{4}}
$$

$$
a_{5}=b_{13}
$$

$$
a_{12}=\frac{b_{24}}{T^{2}}+\frac{b_{25}}{T^{3}}
$$

$$
\delta=\frac{\rho}{\rho_{r}}
$$

$$
a_{6}=\frac{b_{14}}{T}+\frac{b_{15}}{T^{2}}
$$

$$
a_{13}=\frac{b_{26}}{T^{2}}+\frac{b_{27}}{T^{4}}
$$

$$
a_{7}=\frac{b_{16}}{T}
$$

$$
a_{14}=\frac{b_{28}}{T^{2}}+\frac{b_{29}}{T^{3}}
$$

$$
a_{8}=\frac{b_{17}}{T}+\frac{b_{18}}{T^{2}}
$$

$$
a_{15}=\frac{b_{30}}{T^{2}}+\frac{b_{31}}{T^{3}}+\frac{b_{32}}{T^{4}}
$$

2.9 Various equations of state

Multi-parameter equation of state (EOS)

- Helmholtz energy equation of state (EOS) for pure fluid

$$
\begin{gathered}
\alpha(\delta, \tau)=\frac{a(\rho, T)}{R T}=\frac{a^{0}(\rho, T)+a^{r}(\rho, T)}{R T}=\alpha^{0}(\delta, \tau)+\alpha^{r}(\delta, \tau) \\
\alpha^{0}(\delta, \tau)=\frac{a^{0}(\rho, T)}{R T}=\frac{h_{0}^{0} \tau}{R T_{c}}-\frac{s_{0}^{0}}{R}-1+\ln \frac{\delta \tau_{0}}{\delta_{0} \tau}-\frac{\tau}{R} \int_{\tau_{0}}^{\tau} \frac{c_{p}^{0}}{\tau^{2}} d \tau+\frac{1}{R} \int_{\tau_{0}}^{\tau} \frac{c_{p}^{0}}{\tau} d \tau \\
\alpha^{0}(\delta, \tau)=a_{1}+a_{2} \tau+\ln \delta+\left(c_{0}-1\right) \ln \tau-\sum_{i=1}^{N_{p}} \frac{n_{i} \tau^{t_{i}}}{t_{i}\left(t_{i}-1\right)}+\sum_{k=1}^{N_{e}} v_{k} \ln \left[1-\exp \left(-u_{k} \tau / T_{c}\right)\right]
\end{gathered}
$$

Helmholtz energy

$$
a=u-T s
$$

Departure function

$$
\begin{aligned}
& \alpha^{r}(\delta, \tau)= \sum_{k=1}^{K_{p}} n_{k} \delta^{d_{k}} \tau^{t_{k}}+\sum_{k=K_{p}+1}^{K_{p}+K_{e}} n_{k} \delta^{d_{k}} \tau^{t_{k}} \exp \left(-\delta^{l_{k}}\right) \\
&+\sum_{k=K_{p}+K_{e}+1}^{K_{p}+K_{e}+K_{G}} n_{k} \delta^{d_{k}} \tau^{t_{k}} \exp \left[-\eta_{k}\left(\delta-\epsilon_{k}\right)^{2}-\beta_{k}\left(\tau-\gamma_{k}\right)^{2}\right] \\
&+\sum_{k=K_{p}+K_{e}+K_{G}+1}^{K_{p}+K_{e}+K_{G}+K_{N}} n_{k} \delta \Delta^{b_{k} \psi} \\
& \delta=\frac{\rho}{\rho_{r}} \quad \tau=\frac{T_{r}}{T}
\end{aligned}
$$

