
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Basics about Data Structures

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ This topic will describe:
§ Concrete data structures that can be used to store information
§ Basic forms of memory allocation

• Contiguous
• Linked
• Indexed

§ Prototypical examples of these: arrays and linked lists
§ Other data structures:

• Trees
• Hybrids
• Higher-dimensional arrays

§ Finally, we will discuss the run-time of queries and operations on
arrays and linked lists

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Memory Allocation

□ Memory allocation can be classified as either
§ Contiguous
§ Linked
§ Indexed

□ Prototypical examples:
§ Contiguous allocation: arrays
§ Linked allocation: linked lists

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Contiguous Allocation

□ An array stores n objects in a contiguous space of
memory

□ Unfortunately, if more memory is required, a request for
new memory usually requires copying all information
into the new memory

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Linked Allocation

□ Linked storage such as a linked list associates two
pieces of data with each item being stored:
§ The object itself, and
§ A reference to the next item

• In C++, the reference is the address of the next node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Linked Allocation

□ This is a class describing such a node

template <typename Type>
class Node {

private:
Type node_value;
Node *next_node;

public:
// ...

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Linked Allocation

□ The operations on this node must include:
§ Constructing a new node
§ Accessing (retrieving) the value
§ Accessing the next node

Node(const Type& = Type(), Node* = nullptr);
Type value() const;
Node *next() const;

• Pointing to nothing has been represented as:
C NULL
Python None
Java/C# null
C++ (old) 0
C++ (new) nullptr
Symbolically Ø

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Linked Allocation

□ For a linked list, however, we also require an object
which links to the first object

□ The actual linked list class must store two pointers
§ A head and tail:

Node *head;
Node *tail;

□ Optionally, we can also keep a count
int count;

□ The next_node of the last node is assigned nullptr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Linked Allocation

□ The class structure would be:

template <typename Type>
class List {

private:
Node<Type> *head;
Node<Type> *tail;
int count;

public:
// constructor(s)...
// accessor(s)...
// mutator(s)...

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Indexed Allocation

□ With indexed allocation, an array of pointers
(possibly NULL) link to allocated
memory locations

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Indexed Allocation

□ Matrices can be implemented using indexed allocation:

1 2 3
4 5 6
æ ö
ç ÷
è ø

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Indexed Allocation

□ Matrices can be implemented using indexed allocation
§ Most implementations of matrices (or higher-dimensional arrays)

use indices pointing into a single contiguous block of memory

Row-major order Column-major order

C Matlab, Fortran

1 2 3
4 5 6
æ ö
ç ÷
è ø

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Other Allocation Formats

□ We will look at some variations or hybrids of these
memory allocations including:
§ Trees
§ Graphs
§ Deques (linked arrays)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Trees

□ The linked list can be used to store linearly ordered data
§ What if we have multiple next pointers?

□ A rooted tree is similar to a linked list but with multiple
next pointers

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Trees

□ A tree is a variation of a linked list:
§ Each node points to an arbitrary number of subsequent nodes
§ Useful for storing hierarchical data
§ Useful for storing sorted data
§ Usually we will restrict ourselves to trees where each node

points to at most two other nodes

https://towardsdatascience.com/8-useful-tree-data-structures-worth-knowing-8532c7231e8c

https://towardsdatascience.com/8-useful-tree-data-structures-worth-knowing-8532c7231e8c

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Graphs

□ Suppose we allow arbitrary relations between any two
objects in a container
§ Given 𝑛 objects, there are 𝑛(𝑛 − 1) possible relations

• If we allow symmetry, this reduces to (𝑛!−𝑛)/2

§ For example, consider a network

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Graphs in Two-dim. Arrays

Suppose we allow arbitrary relations between any two
objects in a container
§ We could represent this using a two-dimensional array
§ In this case, the matrix is

symmetric
A B C D E F G H I J K L

A × × ×

B × × × × ×

C × × × × × ×

D × × ×

E × ×

F × ×

G × × ×

H × × ×

I × ×

J × × ×

K × × ×

L × × ×

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Graphs in Array of Linked Lists

Suppose we allow arbitrary relations between any two
objects in a container
§ Alternatively, we could use a hybrid: an array of linked lists

A

B

C

D

E

F

G

H

I

J

K

L

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Hybrid data structures

□ The UNIX inode (a data structure in UNIX file system that describes a file

system object such as a file or a directory) is used to store
information about large files for block devices
§ The first twelve entries can reference the first twelve blocks (48 KB)

https://www.cnet.com/tech/computing/available-hard-drive-space-block-sizes-and-size-terminology/

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Hybrid data structures

□ The Unix inode is used to store information about large
files
§ The next entry is a pointer to an array that stores the next 1024

blocks

This stores files up to 4 MB
on a 32-bit computer

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Hybrid data structures

□ The Unix inode is used to store information about large
files
§ The next entry has two levels of indirection for files up to 4 GB

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Hybrid data structures

□ The Unix inode is used to store information about large
files
§ The last entry has three levels of indirection for files up to 4 TB

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Algorithm run times

□ Once we have chosen a data structure to store both the
objects and the relationships, we must implement the
queries or operations as algorithms
§ The Abstract Data Type will be implemented as a class
§ The data structure will be defined by the member variables
§ The member functions will implement the algorithms

□ The question is, how do we determine the efficiency of
the algorithms?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Operations

□ We will use the following matrix to describe operations
at the locations within the structure

Front/1st Arbitrary
Location

Back/nth

Find ? ? ?
Insert ? ? ?

Erase ? ? ?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Operations on Arrays

□ Given a sorted array, we have the following run times:

Front/1st Arbitrary
Location

Back/nth

Find Good Good Good
Insert Bad Bad Good* Bad

Erase Bad Bad Good

* only if the array is not full

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Operations on Singly-linked Lists

□ For a singly linked list with a head and tail pointer, we
have:

Front/1st Arbitrary
Location

Back/nth

Find Good Bad Good
Insert Good Bad Good

Erase Good Bad Bad

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Operations on Singly-linked Lists

□ If we have a pointer to the kth entry, we can insert or
erase at that location quite easily

Front/1st Arbitrary
Location

Back/nth

Find Good Good Good
Insert Good Good Good
Erase Good Good Bad

• Note, this requires a little bit of trickery:
we must modify the value stored in the kth node

• This is a common coding interview question!

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Operations on Doubly-linked Lists

□ For a doubly linked list, one operation becomes more
efficient:

Front/1st Arbitrary
Location

Back/nth

Find Good Good Good
Insert Good Good Good
Erase Good Good Good

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Next Lecture

□ The next topic, asymptotic analysis, will provide the
mathematics that will allow us to measure the efficiency
of algorithms

□ It will also allow us to measure the memory
requirements of both the data structure and any
additional memory required by the algorithms

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Summary

□ In this topic, we have introduced the concept of data
structures
§ We discussed contiguous, linked, and indexed allocation
§ We looked at arrays and linked lists
§ We considered

• Trees
• Two-dimensional arrays
• Hybrid data structures

§ We considered the run time of the algorithms required to
perform various queries and operations on specific data
structures:

• Arrays and linked lists

