Basics about Data Structures

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

& Introduction to Data Structures, ECE430.217, 2021 FALL
“ﬁ&gﬁ SEOUL NATIONAL UNIVERSITY

NXC

LAB

Outline

0 This topic will describe:

Concrete data structures that can be used to store information

Basic forms of memory allocation
e Contiguous

e Linked

® |ndexed
Prototypical examples of these: arrays and linked lists
Other data structures:

® [rees

e Hybrids

e Higher-dimensional arrays

Finally, we will discuss the run-time of queries and operations on
arrays and linked lists

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Memory Allocation

0 Memory allocation can be classified as either

= Contiguous
» Linked
* |Indexed

0 Prototypical examples:
= Contiguous allocation: arrays
» Linked allocation: linked lists

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Contiguous Allocation

0 An array stores n objects in a contiguous space of
memory

0 Unfortunately, if more memory is required, a request for

new memory usually requires copying all information
into the new memory

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Linked Allocation

0 Linked storage such as a linked list associates two
pieces of data with each item being stored:

» The object itself, and
» A reference to the next item
¢ |In C++, the reference is the address of the next node

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB

e
Linked Allocation

0 This is a class describing such a node

template <typename Type>
class Node {

private:
Type node value; . .
Node *next node; Q G
public:
//

}s

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

e
Linked Allocation

0 The operations on this node must include:
= Constructing a new node

= Accessing (retrieving) the value
= Accessing the next node

Node(const Type& = Type(), Node* = nullptr);
Type value() const;
Node *next() const;

* Pointing to nothing has been represented as:

C NULL
Python None
Java/C# null
C++ (old) 0

C++ (new) nullptr

Symbolically (%)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

e
Linked Allocation

0 For a linked list, however, we also require an object
which links to the first object

0 The actual linked list class must store two pointers

» A head and tail:
Node *head;
Node *tail;

0 Optionally, we can also keep a count
int count;

0 The next_node of the last node is assigned nullptr

head 77

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Linked Allocation
0 The class structure would be:

template <typename Type>
class List {
private:
Node<Type> *head;
Node<Type> *tail;
int count;
public:
// constructor(s)...
// accessor(s)...
// mutator(s)...

s

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Indexed Allocation

0 With indexed allocation, an array of pointers
(possibly NULL) link to allocated
memory locations

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Indexed Allocation

0 Matrices can be implemented using indexed allocation:

1 2 3
4 5 6

1

2

3
/’ 4
5
6

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

12

Indexed Allocation

0 Matrices can be implemented using indexed allocation

= Most implementations of matrices (or higher-dimensional arrays)
use indices pointing into a single contiguous block of memory

Row-major order Column-major order
1 2 3
1 1
4 5 6 / 2 <l =
3 2
> -~
4 5
P
5 3
6 6
C Matlab, Fortran

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

13

Other Allocation Formats

0 We will look at some variations or hybrids of these
memory allocations including:
= Trees
= Graphs
= Deques (linked arrays)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Trees

0 The linked list can be used to store linearly ordered data
= What if we have multiple next pointers?

0 A rooted tree is similar to a linked list but with multiple
next pointers

root Q
(B) G

© ©

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

14

LAB

15
Trees
0 A tree is a variation of a linked list:
= Each node points to an arbitrary number of subsequent nodes
» Useful for storing hierarchical data
» Useful for storing sorted data
= Usually we will restrict ourselves to trees where each node
points to at most two other nodes
Root
Height
B of the
ol > tree
Parent —”4 \\ SIb|IngS
L8 (E) (8 e
Children Leaf nodes
https://towardsdatascience.com/8-useful-tree-data-structures-worth-knowing-8532c7231e8c
Introductionstgcg)jtaNS;[rulgllilr:st EE:EVASSS?—;\Z, 2021 FALL N x c I_AB

https://towardsdatascience.com/8-useful-tree-data-structures-worth-knowing-8532c7231e8c

Graphs

0 Suppose we allow arbitrary relations between any two

objects in a container

= Given n objects, there are n(n — 1) possible relations
e |f we allow symmetry, this reduces to (n*—n)/2

= For example, consider a network

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

16

LAB

17

Graphs in Two-dim. Arrays

Suppose we allow arbitrary relations between any two
objects in a container
= We could represent this using a two-dimensional array

» |n this case, the matrix is A BCDETFGH I J KL
symmetric A x x x
B[x X x | x X
C X X X | x x | x
D X X X
E X X
Fl|x|x
G x | x X
H X X X
| X X
J I x| x x
K X X X
L x | x X

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

18

Graphs in Array of Linked Lists

Suppose we allow arbitrary relations between any two
objects in a container
= Alternatively, we could use a hybrid: an array of linked lists

TA—~E-K—2
O OnOng”
TO—~0O—-K—2

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

— R« — I O mmQOnN ® >
|
>
@
Q

19

Hybrid data structures

0 The UNIX inode (a data structure in UNIX file system that describes a file
system object such as a file or a directory) is used to store
information about large files for block devices

= The first twelve entries can reference the first twelve blocks (48 KB)

I

0x186d601c
0x847ac84f
©x73a83cbl
oxc83af73f
0x91cc391a
0x459bocle
oxf9327aac
0x581934c9
Oxaac3af38
0x93bag93fd
0x28583de2
0x6349daf3

i N

\ NI
Ui,

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

https://www.cnet.com/tech/computing/available-hard-drive-space-block-sizes-and-size-terminology/

Hybrid data structures

0 The Unix inode is used to store information about large

files

= The next entry is a pointer to an array that stores the next 1024

blocks

0x186d601c
0x847ac84f
Ox73a83cbl
oxc83af73f
0x91cc391a
0x459bocle
oxf9327aac
0x581934c9
Oxaac3af38
0x93bad93fd
0x28583de2

0x6349daf3
0x93bag93fd

(VI ununwmuuunm
e numﬁ[
I\Ill[ll]l]l\l\l\l\lll[m

i
gy

i

This stores files up to 4 MB
on a 32-bit computer

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

20

LAB

Hybrid data structures

0 The Unix inode is used to store information about large
files
= The next entry has two levels of indirection for files up to 4 GB

|

0x186d601c
0x847ac84f
0x73a83cbl
oxc83af73f
0x91cc391a
0x459b0cle
oxf9327aac
0x581934¢9
Oxaac3af38
0x93ba93fd
0x28583de2
0x6349daf3
0x93bag3fd
0xde791a51

i
IIIII]I]\I]]JI\IMHII]]]]]JIJIU[Im

I]N\I\I[I[Illll]]l\l\m

UIJIlIIlIIIII]IJIJlmIIlIIIIIJIJIJllm

{1 T T

LI vA
y
(N

gy
iy

\
Juunnnnit
unnnnnnnn
i
mmnnunmmwmmmurﬂ

mlmmnnnmnmwnmuﬁ

ﬂﬂﬂﬂ\lﬁmﬂﬂﬂﬂ]ﬂlﬁmﬂﬂﬂl{

i

"

|

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

22

Hybrid data structures

0 The Unix inode is used to store information about large
files
= The last entry has three levels of indirection for files up to 4 TB

[

E . £ £
= o | E
0x186d601c = Ve g B,_¢ -
0x847ac84f E —T - et i I g (|
0x73a83cbl = ! | e | E
oxc83afr3F eSS E Z ,’1 024 . f %
@x91cc391a ‘> = = g, E & - B
0x459b0cl - | g g - g -
e§f9327:ai - R E é f 1024 % é | E
0x581934c9 E B e, T —— [} E = B | B
Oxaac3af38 g o g % = é = - 8 | %
oxassaades 1024 : | 1024 =sib
0x6349daf3 N = . = i i =~ 1024
0x93bag3fd —] | E B E fomaan: — & —
0xd0791a51/7 *\ % 4 1 é L g % 1
oxe92a9cd5 : g % % g %
— — : sV AW Vé R . é v§ é é %
— — 1 1024 = B0 F
: é N % 10247
— — % E =
£ EE &
[osmomn | g "BS B
= =
| 10249
Introduction to Data Structures, ECE430.217, 2021 FALL % % N x c I_AB
SEOUL NATIONAL UNIVERSITY =

23

Algorithm run times

0 Once we have chosen a data structure to store both the
objects and the relationships, we must implement the
queries or operations as algorithms

= The Abstract Data Type will be implemented as a class
» The data structure will be defined by the member variables
= The member functions will implement the algorithms

0 The question is, how do we determine the efficiency of
the algorithms?

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

24

Operations

0 We will use the following matrix to describe operations
at the locations within the structure

Front/1st Arbitr.a Y Back/nth
Location
Find ? ? ?
Insert ? ? ?
Erase ? ? ?

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

25

Operations on Arrays

0 Given a sorted array, we have the following run times:

Front/1st Arbitr.a Y Back/nth
Location
Find
Insert Bad Bad " Bad
Erase Bad Bad

*only if the array is not full

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

26

Operations on Singly-linked Lists

0 For a singly linked list with a head and tail pointer, we

have:
Front/1st Arbitr.a Y Back/nth
Location
Find Bad
Insert Bad
Erase Bad Bad

list head >@ >CB> > oo >CY> @ 2%,

list tail

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

27

Operations on Singly-linked Lists

0 If we have a pointer to the ki entry, we can insert or
erase at that location quite easily

Front/1st Arbitr.a Y Back/nth
Location
Find
Insert Good
Erase Good Bad

list_head —»(A)—»(B)—> = @_@_.@
list tail

* Note, this requires a little bit of trickery:
we must modify the value stored in the kth node
« This is a common coding interview question!

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

28

Operations on Doubly-linked Lists

0 For a doubly linked list, one operation becomes more

efficient:
Front/1st Arbitr.a Y Back/nth
Location
Find
Insert
Erase Good

list head
PO =0= =0 =G

Tisk €311

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

29

Next Lecture

0 The next topic, asymptotic analysis, will provide the

mathematics that will allow us to measure the efficiency
of algorithms

o It will also allow us to measure the memory
requirements of both the data structure and any
additional memory required by the algorithms

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

30

Summary

0 In this topic, we have introduced the concept of data
structures

= We discussed contiguous, linked, and indexed allocation
» We looked at arrays and linked lists
= We considered

® Trees

e Two-dimensional arrays

e Hybrid data structures

= We considered the run time of the algorithms required to
perform various queries and operations on specific data
structures:

e Arrays and linked lists

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

