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Outline

□ This topic will describe:
§ Concrete data structures that can be used to store information
§ Basic forms of memory allocation

• Contiguous
• Linked
• Indexed

§ Prototypical examples of these:  arrays and linked lists
§ Other data structures:

• Trees
• Hybrids
• Higher-dimensional arrays

§ Finally, we will discuss the run-time of queries and operations on 
arrays and linked lists
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Memory Allocation

□ Memory allocation can be classified as either
§ Contiguous
§ Linked
§ Indexed

□ Prototypical examples:
§ Contiguous allocation: arrays
§ Linked allocation: linked lists
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Contiguous Allocation

□ An array stores n objects in a contiguous space of 
memory

□ Unfortunately, if more memory is required, a request for 
new memory usually requires copying all information 
into the new memory



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Linked Allocation

□ Linked storage such as a linked list associates two 
pieces of data with each item being stored:
§ The object itself, and
§ A reference to the next item

• In C++, the reference is the address of the next node
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Linked Allocation

□ This is a class describing such a node 

template <typename Type>
class Node {

private:
Type node_value;
Node *next_node;

public:
// ...

};
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Linked Allocation

□ The operations on this node must include:
§ Constructing a new node
§ Accessing (retrieving) the value
§ Accessing the next node

Node( const Type& = Type(), Node* = nullptr );
Type value() const;
Node *next() const; 

• Pointing to nothing has been represented as:
C NULL
Python None
Java/C# null
C++ (old) 0
C++ (new) nullptr
Symbolically Ø
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Linked Allocation

□ For a linked list, however, we also require an object 
which links to the first object

□ The actual linked list class must store two pointers
§ A head and tail:

Node *head;
Node *tail;

□ Optionally, we can also keep a count
int count;

□ The next_node of the last node is assigned nullptr
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Linked Allocation

□ The class structure would be:

template <typename Type>
class List {

private:
Node<Type> *head;
Node<Type> *tail;
int count;

public:
// constructor(s)...
// accessor(s)...
// mutator(s)...

};
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Indexed Allocation

□ With indexed allocation, an array of pointers
(possibly NULL) link to allocated
memory locations
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Indexed Allocation

□ Matrices can be implemented using indexed allocation:

1 2 3
4 5 6
æ ö
ç ÷
è ø
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Indexed Allocation

□ Matrices can be implemented using indexed allocation
§ Most implementations of matrices (or higher-dimensional arrays) 

use indices pointing into a single contiguous block of memory

Row-major order Column-major order 

C Matlab, Fortran

1 2 3
4 5 6
æ ö
ç ÷
è ø
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Other Allocation Formats

□ We will look at some variations or hybrids of these 
memory allocations including:
§ Trees
§ Graphs
§ Deques (linked arrays)
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Trees

□ The linked list can be used to store linearly ordered data
§ What if we have multiple next pointers?

□ A rooted tree is similar to a linked list but with multiple 
next pointers
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Trees

□ A tree is a variation of a linked list:
§ Each node points to an arbitrary number of subsequent nodes
§ Useful for storing hierarchical data
§ Useful for storing sorted data
§ Usually we will restrict ourselves to trees where each node 

points to at most two other nodes

https://towardsdatascience.com/8-useful-tree-data-structures-worth-knowing-8532c7231e8c

https://towardsdatascience.com/8-useful-tree-data-structures-worth-knowing-8532c7231e8c
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Graphs

□ Suppose we allow arbitrary relations between any two 
objects in a container
§ Given 𝑛 objects, there are 𝑛(𝑛 − 1) possible relations

• If we allow symmetry, this reduces to (𝑛!−𝑛)/2

§ For example, consider a network
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Graphs in Two-dim. Arrays

Suppose we allow arbitrary relations between any two 
objects in a container
§ We could represent this using a two-dimensional array
§ In this case, the matrix is

symmetric
A B C D E F G H I J K L

A × × ×

B × × × × ×

C × × × × × ×

D × × ×

E × ×

F × ×

G × × ×

H × × ×

I × ×

J × × ×

K × × ×

L × × ×
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Graphs in Array of Linked Lists

Suppose we allow arbitrary relations between any two 
objects in a container
§ Alternatively, we could use a hybrid:  an array of linked lists
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Hybrid data structures

□ The UNIX inode (a data structure in UNIX file system that describes a file 

system object such as a file or a directory) is used to store 
information about large files for block devices
§ The first twelve entries can reference the first twelve blocks (48 KB)

https://www.cnet.com/tech/computing/available-hard-drive-space-block-sizes-and-size-terminology/
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Hybrid data structures

□ The Unix inode is used to store information about large 
files
§ The next entry is a pointer to an array that stores the next 1024 

blocks

This stores files up to 4 MB 
on a 32-bit computer
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Hybrid data structures

□ The Unix inode is used to store information about large 
files
§ The next entry has two levels of indirection for files up to 4 GB
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Hybrid data structures

□ The Unix inode is used to store information about large 
files
§ The last entry has three levels of indirection for files up to 4 TB
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Algorithm run times

□ Once we have chosen a data structure to store both the 
objects and the relationships, we must implement the 
queries or operations as algorithms
§ The Abstract Data Type will be implemented as a class
§ The data structure will be defined by the member variables
§ The member functions will implement the algorithms

□ The question is, how do we determine the efficiency of 
the algorithms?
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Operations

□ We will use the following matrix to describe operations 
at the locations within the structure

Front/1st Arbitrary
Location

Back/nth

Find ? ? ?
Insert ? ? ?

Erase ? ? ?
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Operations on Arrays

□ Given a sorted array, we have the following run times:

Front/1st Arbitrary
Location

Back/nth

Find Good Good Good
Insert Bad Bad Good* Bad

Erase Bad Bad Good

* only if the array is not full
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Operations on Singly-linked Lists

□ For a singly linked list with a head and tail pointer, we 
have:

Front/1st Arbitrary
Location

Back/nth

Find Good Bad Good
Insert Good Bad Good

Erase Good Bad Bad
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Operations on Singly-linked Lists

□ If we have a pointer to the kth entry, we can insert or 
erase at that location quite easily

Front/1st Arbitrary
Location

Back/nth

Find Good Good Good
Insert Good Good Good
Erase Good Good Bad

• Note, this requires a little bit of trickery:  
we must modify the value stored in the kth node

• This is a common coding interview question!
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Operations on Doubly-linked Lists

□ For a doubly linked list, one operation becomes more 
efficient:

Front/1st Arbitrary
Location

Back/nth

Find Good Good Good
Insert Good Good Good
Erase Good Good Good
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Next Lecture

□ The next topic, asymptotic analysis, will provide the 
mathematics that will allow us to measure the efficiency 
of algorithms

□ It will also allow us to measure the memory 
requirements of both the data structure and any 
additional memory required by the algorithms
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Summary

□ In this topic, we have introduced the concept of data 
structures
§ We discussed contiguous, linked, and indexed allocation
§ We looked at arrays and linked lists
§ We considered

• Trees
• Two-dimensional arrays
• Hybrid data structures

§ We considered the run time of the algorithms required to 
perform various queries and operations on specific data 
structures:

• Arrays and linked lists


