Chapter 4

Applications of the First Law

Min Soo Kim
Seoul National University

4.1 Heat Capacity

The heat capacity C

$$
C=\lim _{\Delta T \rightarrow 0}\left(\frac{Q}{\Delta T}\right)=\frac{\delta Q}{d T} \quad Q=C \Delta T
$$

Specific heat capacity = heat capacity per unit mass

$$
c=\frac{1}{m}\left(\frac{\delta Q}{d T}\right)=\frac{\delta q}{d T}
$$

4.1 Heat Capacity

The specific heat c_{v}, where the heat is supplied at constant volume

$$
c_{v}=\left(\frac{\delta Q}{d T}\right)_{v}
$$

The specific heat $\boldsymbol{c}_{\boldsymbol{p}}$, where the heat is supplied at constant pressure

$$
c_{p}=\left(\frac{\delta Q}{d T}\right)_{p}
$$

Figure 4.1 Heat addition on different conditions [2]

4.1 Heat Capacity

Figure 4.2 Heat capacity of selected substances [3]

[^0]
4.1 Heat Capacity

Figure 4.3 Water Heat capacity [4]

4.2 Mayer's Equation

We wish to find the relationship between c_{v} and c_{p} for an ideal gas

$$
\begin{aligned}
& d U=\delta Q-P d V \\
& d u=\delta q-P d v \\
& u=u(v, T) \quad \text { Ideal gas } u=u(T)
\end{aligned}
$$

The equation of state is $P v=R T$

$$
d u=\left(\frac{\partial u}{\partial v}\right)_{T} d v+\left(\frac{\partial u}{\partial T}\right)_{v} d T
$$

4.2 Mayer's Equation

$$
\delta q=\left(\frac{\partial u}{\partial T}\right)_{v} d T+\left[\left(\frac{\partial u}{\partial v}\right)_{T}+P\right] d v
$$

To obtain c_{v}, we divide this equation by dT and hold the volume constant so that $\mathrm{dv}=0$. The result, which holds for any reversible process is

$$
c_{v}=\left(\frac{\delta q}{d T}\right)_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

This follows from the Gay-Lussac-Joule experiment. Thus

$$
\left(\frac{\partial u}{\partial v}\right)_{T}=0
$$

4.2 Mayer's Equation

$$
\begin{aligned}
& \delta q=c_{v} d T+P d v \\
& P d v+v d P=R d T \\
& \delta q=\left(c_{v}+R\right) d T-v d P \quad \text { For constant pressure } \\
& c_{p}=\left(\frac{\delta q}{d T}\right)_{p} \Rightarrow\left(\frac{\delta q}{d T}\right)_{p}=c_{v}+\mathrm{R}=c_{p} \\
& \therefore \boldsymbol{c}_{p}=\boldsymbol{c}_{v}+\boldsymbol{R} \quad \text { Mayer's equation } \\
& \gamma=\frac{c_{p}}{c_{v}} \quad \text { The ratio of specific heat capacities }
\end{aligned}
$$

4.2 Mayer's Equation

1. Gay-Lussac-Joule Experiment

In this experiment, an adiabatic chamber (thermally insulating walls which allow no heat transfer) with two compartments separated by a breakable diaphragm is constructed. We consider the state of the gas to be determined by (V, T) since P is fixed by the equation of state. Gas of volume V_{1}, and temperature T_{1} is introduced into one of the compartments while in the other there is a vacuum. When the diaphragm is broken, the gas undergoes a "free" expansion which does $N O$ work. The gas has a new volume and potentially a new temperature which can be measured. However NO temperature change is observed!

4.3 Enthalpy and Heats of Transformation

The heat of transformation is the heat transfer accompanying a phase change.
A change of phase is an isothermal and isobaric process and entails a change of volume, so work is always done on or by a system in a phase change.

$$
\begin{gathered}
w=P\left(v_{2}-v_{1}\right) \\
d u=\delta q-P d v
\end{gathered}
$$

Or, for a finite change, $\quad\left(u_{2}-u_{1}\right)=l-P\left(v_{2}-v_{1}\right)$

$$
l=\left(u_{2}+P v_{2}\right)-\left(u_{1}+P v_{1}\right)
$$

l is the latent heat of transformation per kilomole associated with a given phase change (for constant T and P)

4.3 Enthalpy and Heats of Transformation

Let $\quad h \equiv u+P v \quad h$ is the specific enthalpy.
Since u, p, and v are all state variables, h is also a state variable.
So, $\quad l=\int d q=\left(u_{2}-u_{1}\right)+p\left(v_{2}-v_{1}\right)=h_{2}-h_{1}$

\therefore The latent heat of transformation is equal to the difference in enthalpies of the two phases.

4.4 Relationships Involving Enthalpy

$$
\begin{aligned}
& h=h(T, P) \quad d h=\left(\frac{\partial h}{\partial T}\right)_{P} d T+\left(\frac{\partial h}{\partial P}\right)_{v} d P \\
& h=u+P v \quad d h=d u+P d v+v d P \\
& \delta q=d u+P d v=d h-v d P \\
& \delta q=\left(\frac{\partial h}{\partial T}\right)_{P} d T+\left[\left(\frac{\partial h}{\partial P}\right)_{T}-v\right] d P
\end{aligned}
$$

4.4 Relationships Involving Enthalpy

Since $\quad c_{p}=\left(\frac{\delta q}{d T}\right)_{p}$

From previous equation, we can get $\quad c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}$

From the result of the Joule-Thomson experiment, it will be shown that

$$
\left(\frac{\partial h}{\partial P}\right)_{T}=0
$$

for an ideal gas.

Then

$$
\delta q=c_{p} d T-v d P
$$

Thus, for an ideal gas $\quad c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}=\frac{d h}{d T}$

4.4 Relationships Involving Enthalpy

2. Joule-Thompson Experiment

In this experiment, an adiabatic cylinder is constructed with a porous plug in the middle. A gas in state $\left(P_{1}, V_{1}, T_{1}\right)$ is introduced on one side of the porous plug and held in place by a piston which is able to move and which can push the gas through the porous plug. Another piston is placed on the other side of the porous plug. Initially it is placed right up against the porous plug so that the volume of gas on the other side of the cylinder is 0 . When the piston is pressed into the adiabatic metal cylinder, gas will be forced through the porous plug, and collect on the other side. When all of the gas has been pushed through, the gas on the other side of the plug is in state $\left(P_{2}, V_{2}, T_{2}\right)$. Experimentally, it is found that while $T_{1}=T_{2}$ while $P_{1} \neq P_{2}$.

4.5 Comparison of u and h

The parallel expressions involving the internal energy and the enthalpy
Table Analogous relations involving the internal energy and the enthalpy

	Internal energy u	Enthalpy h
Reversible process	$d u=\delta q-P d v$	$d h=\delta q+v d P$
$c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}$	$c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}$	
Ideal gas	$\delta q=c_{v} d T+P d v$	$\delta q=c_{p} d T-v d P$
$\left(\frac{\partial u}{\partial v}\right)_{T}=0$	$\left(\frac{\partial h}{\partial P}\right)_{T}=0$	

4.5 Comparison of u and h

Thermodynamic potentials: relations of the internal energy and the enthalpy

Figure 4.5 Relations of Thermodynamic potentials [8]

4.6 Work Done in an Adiabatic Process

We now wish to find the specific work done in an adiabatic process involving an ideal gas. Setting $\delta q=0$ in $\delta q=c_{p} d T-v d P$, we obtain

$$
v d P=c_{p} d T
$$

We also have

$$
\delta q=c_{v} d T+P d v
$$

Which for $\delta q=0$ yields

$$
\begin{gathered}
P d v=-c_{v} d T \\
\frac{v d P}{p d v}=-\frac{c_{p}}{c_{v}}=-\gamma \quad \text { or } \quad \frac{d P}{P}=-\gamma \frac{d v}{v}
\end{gathered}
$$

4.6 Work Done in an Adiabatic Process

This equation can be easily integrated to give

$$
P v^{\gamma}=K
$$

Where K is constant of integration. This is the relationship between the pressure and volume for an adiabatic process involving an ideal gas.

Since $\gamma>1$, it follows that P falls off more rapidly with v for an adiabatic process than it does for an isothermal process (for which $P v=$ constant).

The work done in the adiabatic process is

$$
w=\int P d v=K \int_{v_{1}}^{v_{2}} v^{-\gamma} d v=\left.\frac{1}{1-\gamma}\left(K v^{1-\gamma}\right)\right|_{v_{1}} ^{v_{2}}
$$

4.6 Work Done in an Adiabatic Process

Now, $K=P v^{\gamma}$ at both limits; if we use $K=P_{2} v_{2}^{\gamma}$ at the upper limit and $K=P_{1} v_{1}^{\gamma}$ at the lower limit, we obtain

$$
w=\frac{1}{1-\gamma}\left[P_{2} v_{2}-P_{1} v_{1}\right]
$$

For an expansion, $v_{2}>v_{1}, w>0$, and the work is done by the gas; for a compression the work is done by the surroundings on the gas.

Note that for a reversible adiabatic process, $w=u_{1}-u_{2}=c_{v}\left(T_{1}-T_{2}\right)$, which is another useful expression for an ideal gas.

[^0]: [3] https://upload.wikimedia.org/wikipedia/en/c/cb/Heat_Capacity_of_Selected_Substances.PNG

