Advanced Thermodynamics (M2794.007900)

Chapter 4

Applications of the First Law

Min Soo Kim

Seoul National University




4.1 Heat Capacity

The heat capacity C

C = lim(Q) o0

AT) ~dT

Specific heat capacity = heat capacity per unit mass

1 /6Q\ dq
“Tm\ar) " ar

Q = C AT
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4.1 Heat Capacity

The specific heat c,,, where the heat is
supplied at constant volume | ] 2)
(@)
c, = |—
v dT , (1)
¥ = const,
P = const,
The specific heat c,, where the heat is toy —Tw Tes —o T
supplied at constant pressure
0 il n
el
dT . ” : .
p Figure 4.1 Heat addition on different conditions [2]

[2] http://cfile25.uf.tistory.com/image/246FE841534790190378A0
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4.1 Heat Capacity

Heat Capacity of Selected Substances
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Figure 4.2 Heat capacity of selected substances [3]

[3] https://upload.wikimedia.org/wikipedia/en/c/cb/Heat_Capacity_of Selected_Substances.PNG
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4.1 Heat Capacity

Water Specific Heat Capacity vs Temperature (p = 1 bar)
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Figure 4.3 Water Heat capacity [4]

[4] http://physics.stackexchange.com/questions/287910/why-water-heat-capacity-has-minimum-at-body-temperature
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4.2 Mayer’s Equation

We wish to find the relationship between ¢, and ¢, for an ideal gas

dU = §Q — PdV

du = 6q — Pdv

u=u(v,T) Ideal gas » u=u(T)

The equation of state is Pv = RT

du={2%) av+ (%) ar
”_avT” or)
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4.2 Mayer’s Equation

Ju Ju
6q = <ﬁ>v dT + <%>T + Pldv

To obtain c,,, we divide this equation by dT and hold the volume constant
so that dv=0. The result, which holds for any reversible process is

_(6q\ _ (Ou
v~ \ar) ~\or)

This follows from the Gay-Lussac-Joule experiment. Thus




4.2 Mayer’s Equation

6q = c,dT + Pdv

Pdv + vdP = RdT

6q = (c,+R)dT —ycﬁ; For constant pressure

_ 5_61) = (5_‘1) — —
Cp_(dTp g dTp_C”+R_CP
“Cp=Cyt+R Mayer’s equation

C
y=-+ The ratio of specific heat capacities
CU
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4.2 Mayer’s Equation

1. Gay-Lussac—Joule Experiment

In this experiment, an adiabatic chamber (thermally insulating walls
which allow no heat transfer) with two compartments separated by a
breakable diaphragm is constructed. We consider the state of the gas to
be determined by (V. T') since P is iixed by the equation of state. Gas
of volume Vj. and temperature T; is introduced into one of the com-
partments while in the other there is a vacuum. When the diaphragm
is broken, the gas undergoes a “free” expansion which does N work.
The gas has a new volume and potentially a new temperature which

can be measured. However N{) temperature change is observed!
diaphrazm
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4.3 Enthalpy and Heats of Transformation

The heat of transformation is the heat transfer accompanying a phase change.
A change of phase is an isothermal and isobaric process and entails a change
of volume, so work is always done on or by a system in a phase change.

w = P(v, —vy)

du = 6q — Pdv

Or, for a finite change, (u, —uy) =1—P(v, — v;)

l=(u2+Pv2)—(u1+Pv1)

[ is the latent heat of transformation per kilomole associated with a given
phase change (for constant T and P)
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4.3 Enthalpy and Heats of Transformation

Let h=u+ Pv h is the specific enthalpy.

Since u, p, and v are all state variables, h is also a state variable.

SO, l=jdq=(u2—u1)+p(v2—v1)=h2—h1
T

Q

p
B v
p

v W

shaft

.. The latent heat of transformation is equal to
the difference in enthalpies of the two phases.




dh = oh dT
h = h(T, P) = (a—T) + (

6q = du + Pdv = dh — vdP

oh oh
5q = <ﬁ>p dT + [<5>T — v] dP

oh
opP

4.4 Relationships Involving Enthalpy
) ap

h=u+ Pv dh = du + Pdv + vdP
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4.4 Relationships Involving Enthalpy

: dq
C, = |—
Since D (dT)p
From previous equation, we can get ¢, = (—ah)
’ p aT/ p
From the result of the Joule-Thomson experiment, it will be shown that

5), =0

for an ideal gas.

Then 8q = cp,dT — vdP

. o= () =2
Thus, for an ideal gas p~\or/), ~ ar
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4.4 Relationships Involving Enthalpy

2.

Joule-Thompson Experiment

In this experiment, an adiabatic cylinder is constructed with a porous
plug in the middle. A gas in state (P, V3, T1) is introduced on one side
of the porous plug and held in place by a piston which is able to move
and which can push the gas through the porous plug. Another piston is
placed on the other side of the porous plug . Initially it is placed right
up against the porous plug so that the volume of gas on the other side
of the cylinder is (). When the piston is pressed into the adiabatic metal
cylinder. gas will be forced through the porous plug, and collect on the
other side. When all of the gas has been pushed through, the gas on
the other side of the plug is in state (P, V5, T3) . Experimentally, it is
found that while T} = T, while P, # F..
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4.5 Comparison of u and h

The parallel expressions involving the internal energy and the enthalpy

Table Analogous relations involving the internal energy and the enthalpy

Internal energy u

Enthalpy h

Reversible process

|ldeal gas

du = §q — Pdv

B ou
v = oT )

6q = c,dT + Pdv

(c"m) 0
v T

dh = 6q + vdP

__(0h
Cp = ﬁ
p
8q = c,dT — vdP

@), =0




4.5 Comparison of uand h

Thermodynamic potentials: relations of the internal energy and the enthalpy

Thermodynamic - I S

potentials are
useful for the

description of l ' F
non-cyclic = U-TS

processes. Internal Helmholtz
energy free energy
U = energy needed to F = energy needed to
create a system create a system

minus the energy
+ you can get from

the environment.

Y I I: U+PV G = U+PV-TS

They are used

, Enthalpy Gibbs
along with the free energy
First Law of H = energy needed to G = total energy needed
Thermodynamics. create a system to create a system
plus the work and make room for
System work and needed to make it minus the energy
entropy play a room for it you can get from

the environment.

major role.

Figure 4.5 Relations of Thermodynamic potentials [8]

[8] http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/imgheat/tpot2.gif
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4.6 Work Done in an Adiabatic Process

We now wish to find the specific work done in an adiabatic process involving
an ideal gas. Setting g = 0 in §q = ¢,dT — vdP, we obtain

vdP = cpdT

We also have

6q = ¢,dT + Pdv

Which for §g = 0 yields

Pdv = —c,dT
vdP__c_p__ or dP_ dv
pdv Cy 4 P 14 v
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4.6 Work Done in an Adiabatic Process

This equation can be easily integrated to give
PvY =K

Where K is constant of integration. This is the relationship between the pressure
and volume for an adiabatic process involving an ideal gas.

Since y > 1, it follows that P falls off more rapidly with v for an adiabatic process
than it does for an isothermal process (for which Pv =constant).

The work done in the adiabatic process is

v
2 Vs,

1
W=dev=Kfv_ydv:—(Kv1—Y)
1—)/ v
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4.6 Work Done in an Adiabatic Process

Now, K = PvY at both limits; if we use K = P,v) at the upper limit and K = P, v/

at the lower limit, we obtain

1
W:m[szz—Pﬂh]

For an expansion, v, > v,,w > 0, and the work is done by the gas; for a
compression the work is done by the surroundings on the gas.

Note that for a reversible adiabatic process, w = u; —u, = ¢,(T; — Ty),
which is another useful expression for an ideal gas.






