Chapter 7

Applications of the Second Law

Min Soo Kim
Seoul National University

7.1 Entropy Changes in Reversible Processes

For reversible process, $\quad \delta q_{r}=d u+P d v$

1. Adiabatic process: $\quad \delta q_{r}=0, d s=0, s=$ constant
2. Isothermal process: $\quad s_{2}-s_{1}=\int_{1}^{2} \frac{\delta q_{r}}{T}=\frac{q_{r}}{T}$

7.1 Entropy Changes in Reversible Processes

3. Isothermal (and isobaric) change of phase : $s_{2}-s_{1}=\frac{l}{T}$
4. Isochoric process: $\quad s_{2}-s_{1}=\int_{1}^{2} c_{v} \frac{d T}{T}=c_{v} \ln \frac{T_{2}}{T_{1}}$
5. Isobaric process : $\quad \frac{\delta q_{r}}{T}=\frac{d h}{T}-\frac{v}{T} d P=d s$

$$
s_{2}-s_{1}=\int_{1}^{2} c_{p} \frac{d T}{T}=c_{p} \ln \frac{T_{2}}{T_{1}}
$$

7.2 Temperature-Entropy Diagrams

The total quantity of heat transferred in a reversible process from state 1 to state 2 is given by

$$
q_{r}=\int_{1}^{2} T d s
$$

The T-s diagram is simple rectangle for a Carnot cycle.

The area under the curve is

$$
\oint T d s=\sum q_{r}=w
$$

Figure 7.1 T-s diagram for a Carnot cycle [1]
since $\oint d u=0$

7.3 Entropy Change of the Surroundings (Reversible)

The heat flow out of the surroundings at every point is equal in magnitude and opposite in sign to the heat flow into the system.

$$
d q_{\text {in }}=d q_{o u t}=d q_{r}
$$

For a reversible process, temperature of system and its surroundings are equal.

7.3 Entropy Change of the Surroundings (Reversible)

So,

$$
\left(\frac{\delta q_{r}}{T+d T}\right)_{\text {surroundings }} \approx\left(\frac{\delta q_{r}}{T}\right)_{\text {surroundings }}=(\delta \boldsymbol{S})_{\text {surroundings }}
$$

and from

$$
\begin{aligned}
& d s_{\text {system }}+d s_{\text {surroundings }}=d s_{\text {universe }} \\
& |d s|_{\text {surroundings }}=-|d s|_{\text {system }} \quad \& \quad|d s|_{\text {universe }}=0
\end{aligned}
$$

Surroundings
$T+d T$

7.3 Entropy Change of the Surroundings (Irreversible)

However for an irreversible case,

$$
\Delta T>0
$$

and

$$
\left(\frac{\delta q_{r}}{T}\right)_{\text {surroundings }}>\left(\frac{\delta q_{r}}{T+\Delta T}\right)_{\text {surroundings }}=(\Delta S)_{\text {surroundings }}
$$

7.3 Entropy Change of the Surroundings (Irreversible)

So,

$$
\Delta \boldsymbol{s}_{\text {system }}+\Delta \boldsymbol{s}_{\text {surroundings }}=\Delta \boldsymbol{s}_{\text {universe }}>0
$$

(Entropy generation!)

7.4 Entropy Change for an Ideal Gas

With $d u=c_{v} d T$, we have

$$
\frac{q_{r}}{T}=\frac{c_{v} d T}{T}+\frac{P}{T} d v=d s
$$

For a reversible process, For an ideal gas, $\mathrm{P} / \mathrm{T}=\mathrm{R} / v$, so

$$
d s=c_{v} \frac{d T}{T}+R \frac{d v}{v}
$$

Integrating, we have

$$
s_{2}-s_{1}=c_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right)
$$

7.5 The Tds Equations

From the combined first and second laws, $\mathbf{T d s}=\boldsymbol{d} \boldsymbol{u}+\boldsymbol{P} \boldsymbol{d} \boldsymbol{v}$

$$
T d s=c_{p} d T-T\left(\frac{\partial v}{\partial T}\right)_{p} d P \quad(s=s(T, P))
$$

(※ Assignments) Entropy can be expressed as a function of specific volume and pressure or temperature and specific volume. Prove the below two equations using Maxwell relations.

$$
\begin{array}{ll}
T d s=c_{p}\left(\frac{\partial T}{\partial v}\right)_{p} d v+c_{v}\left(\frac{\partial T}{\partial P}\right)_{v} d P & (s=s(v, P)) \\
T d s=c_{v} d T+T\left(\frac{\partial P}{\partial T}\right)_{v} d v & (s=s(T, v))
\end{array}
$$

7.5 The Tds Equations

Let T and P be the independent variables.
The enthalpy is $h \equiv u+P v$ thus,

$$
\begin{aligned}
T d s & =d h-v d P \\
& =\left[\left(\frac{\partial h}{\partial T}\right)_{P} d T+\left(\frac{\partial h}{\partial P}\right)_{T} d P\right]-v d P \\
d s & =\frac{1}{T}\left(\frac{\partial h}{\partial T}\right)_{P} d T+\frac{1}{T}\left[\left(\frac{\partial h}{\partial P}\right)_{T}-v\right] d P
\end{aligned}
$$

7.5 The Tds Equations

With $s=s(T, P)$, we have

$$
\begin{aligned}
& d s=\left(\frac{\partial s}{\partial T}\right)_{P} d T+\left(\frac{\partial s}{\partial P}\right)_{T} d P \\
& d s=\frac{1}{T}\left(\frac{\partial h}{\partial T}\right)_{P} d T+\frac{1}{T}\left[\left(\frac{\partial h}{\partial P}\right)_{T}-v\right] d P
\end{aligned}
$$

Since T and P are independent, it follows that

$$
\left(\frac{\partial s}{\partial T}\right)_{P}=\frac{1}{T}\left(\frac{\partial h}{\partial T}\right)_{P} \quad \text { and } \quad\left(\frac{\partial s}{\partial P}\right)_{T}=\frac{1}{T}\left[\left(\frac{\partial h}{\partial P}\right)_{T}-v\right]
$$

7.5 The Tds Equations

The differential $d s$ is exact. Therefore,

$$
\left[\frac{\partial}{\partial P}\left(\frac{\partial s}{\partial T}\right)_{P}\right]_{T}=\frac{\partial^{2} s}{\partial P \partial T}=\frac{\partial^{2} s}{\partial T \partial P}=\left[\frac{\partial}{\partial T}\left(\frac{\partial s}{\partial P}\right)_{T}\right]_{P}
$$

Substituting last two Equations from previous slide, we get

$$
\begin{aligned}
& \frac{1}{T} \frac{\partial^{2} h}{\partial P \partial T}=\frac{1}{T}\left[\frac{\partial^{2} h}{\partial T \partial P}-\left(\frac{\partial v}{\partial T}\right)_{P}\right]-\frac{1}{T^{2}}\left[\left(\frac{\partial h}{\partial P}\right)_{T}-v\right] \\
& \quad \leftrightarrow\left(\frac{\partial h}{\partial P}\right)_{T}=-T\left(\frac{\partial v}{\partial T}\right)_{P}+v
\end{aligned}
$$

7.5 The Tds Equations

For a reversible process $\quad c_{P}=\left(\frac{\partial h}{\partial T}\right)_{P}$

$$
T d s=c_{P} d T-T\left(\frac{\partial v}{\partial T}\right)_{P} d P
$$

Finally, since the coefficient of volume expansion $\beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}$, we have

$$
T d s=c_{P} d T-T v \beta d P
$$

