
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Stacks

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ This topic discusses the concept of a stack:
§ Description of an Abstract Stack
§ List applications
§ Implementation
§ Example applications

• Parsing: XHTML, C++
• Function calls
• Reverse-Polish calculators
• Robert’s Rules

§ Standard Template Library

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Abstract Stack

□ An Abstract Stack (Stack ADT) is an abstract data type
which emphasizes specific operations:
§ Insertions and removals are performed individually
§ Inserted objects are pushed onto the stack
§ The top of the stack is the most recently object pushed onto the

stack
§ When an object is popped from the stack, the current top is

erased

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Abstract Stack

□ Also called a last-in–first-out (LIFO) behaviour
§ Graphically, we may view these operations as follows:

□ There are two exceptions associated with abstract stacks:
§ It is an undefined operation to call either pop or top on an empty

stack

Check more: https://en.wikipedia.org/wiki/Undefined_behavior

https://en.wikipedia.org/wiki/Undefined_behavior

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Applications

□ Numerous applications:
§ Parsing code:

• Matching parenthesis
• XML (e.g., XHTML)

§ Tracking function calls
§ Dealing with undo/redo operations
§ Reverse-Polish calculators

□ The stack is a very simple data structure
§ Given any problem, if it is possible to use a stack, this

significantly simplifies the solution

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Stack: Implementations

□ We will look at two implementations of stacks:
§ Singly linked lists
§ One-ended arrays

□ Note: The optimal asymptotic run time of any algorithm
is Q(1)
§ The run time of the algorithm is independent of the number of

objects being stored in the container
§ We will always attempt to achieve this lower bound

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Implementation: w/ Linked-List

□ Operations at the front of a singly linked list are all Q(1)

□ The desired behavior of an Abstract Stack can be
performed by all operations at the front of linked-list

Front/1st Back/nth

Find Q(1) Q(1)
Insert Q(1) Q(1)
Erase Q(1) Q(n)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Stack-as-List Class

□ The stack class using a singly linked list has a single
private member variable:

template <typename Type>
class Stack {

private:
Single_list<Type> list;

public:
bool empty() const;
Type top() const;
void push(Type const &);
Type pop();

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Stack-as-List Class

□ The empty and push functions just call the appropriate
functions of the Single_list class

template <typename Type>
bool Stack<Type>::empty() const {

return list.empty();
}

template <typename Type>
void Stack<Type>::push(Type const &obj) {

list.push_front(obj);
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Stack-as-List Class

□ The top and pop functions, however, must check the
boundary case:

template <typename Type>
Type Stack<Type>::top() const {

if (empty()) {
throw underflow();

}

return list.front();
}

template <typename Type>
Type Stack<Type>::pop() {

if (empty()) {
throw underflow();

}

return list.pop_front();
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Implementation: w/ Array

□ For one-ended arrays, all operations at the back are Q(1)

Front/1st Back/nth

Find Q(1) Q(1)
Insert Q(n) Q(1)
Erase Q(n) Q(1)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Stack-as-Array Class

□ We need to store an array:
§ In C++, this is done by storing the address of the first entry

template <typename Type>
class Stack {

private:
int stack_size;
int array_capacity;
Type *array;

public:
Stack(int = 10);
~Stack();
bool empty() const;
Type top() const;
void push(Type const &);
Type pop();

};

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

Empty

□ The stack is empty if the stack size is zero:

template <typename Type>
bool Stack<Type>::empty() const {

return (stack_size == 0);
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

Top

□ If there are n objects in the stack, the last is located at
index n – 1

template <typename Type>
Type Stack<Type>::top() const {

if (empty()) {
throw underflow();

}

return array[stack_size - 1];
}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Pop

□ Removing an object simply involves reducing the size
§ By decreasing the size, the previous top of the stack is now at

the location stack_size

template <typename Type>
Type Stack<Type>::pop() {

if (empty()) {
throw underflow();

}

--stack_size;
return array[stack_size];

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Push

□ Pushing an object onto the stack can only be performed
if the array is not full

template <typename Type>
void Stack<Type>::push(Type const &obj) {

if (stack_size == array_capacity) {
throw overflow(); // return ??

}

array[stack_size] = obj;
++stack_size;

}

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Exceptions

□ The case where the array is full is not defined in the
Abstract Stack

□ If the array is filled, we have five options:
§ Increase the size of the array
§ Throw an exception
§ Ignore the element being pushed
§ Replace the current top of the stack
§ Put the pushing process to “sleep” until something else

removes the top of the stack

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Array Capacity

□ If dynamic memory is available, you can increase the
array capacity

□ If we increase the array capacity, the question is:
§ How much?
§ 1) By a constant? array_capacity += c;
§ 2) By a multiple? array_capacity *= c;

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Array Capacity Enlargement and Run times

□ First, we recognize that any time that we push onto a full
stack, this requires to copy n items and the run time is
Q(n)

□ Therefore, push is usually Q(1) except when new
memory is required

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

20

Array Capacity Enlargement and Run times

□ To state the average run time, we will introduce the
concept of amortized time:
§ If n operations requires Q(f(n)) in total, we will say that an

individual operation has an amortized run time of Q(f(n)/n)
§ Therefore, if inserting n objects requires:

• Q(n2) items to be copied, the amortized time is Q(n)
• Q(n) items to be copied, the amortized time is Q(1)

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Array Capacity: Increase by 1

□ Let us consider the case of increasing the capacity by 1
each time the array is full
§ With each insertion when the array is full, this requires all entries

to be copied

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Array Capacity: Increase by 1

□ Suppose we insert n objects
§ The pushing of the kth object on the stack requires k – 1 copies
§ The total number of copies is now given by:

§ Therefore, the amortized number of copies
is given by

§ Therefore, each push would run in
Q(n) time

§ The wasted space,
however, is Q(0)

()2
11 2

)1(
2
)1()1(nnnnnnnkk

n

k

n

k

Q=
-

=-
+

=-÷
÷
ø

ö
ç
ç
è

æ
=- åå

==

()n
n
n

Q=÷÷
ø

ö
çç
è

æ
Q

2

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Array Capacity: Doubling

□ Suppose we double the number of entries each time
the array is full
§ Now the number of copies appears to be significantly

fewer

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Array Capacity: Doubling

□ Suppose we double the array size each time it is full:
§ This is difficult to solve for an arbitrary n so instead, we will

restrict
the number of objects we are inserting to n = 2h objects

§ We will then assume that the behavior for intermediate values
of n will be similar

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Array Capacity: Doubling

□ Suppose we double the array size each time it is full:
§ Inserting n = 2h objects would therefore require

1, 2, 4, 8, …, 2h–1

copies, for once we add the last object, the array will be full
§ The total number of copies is therefore:

§ Therefore, the amortized number of
copies per insertion is Q(1)

§ The wasted space,
however, is O(n)

() ()
1

1 1

0
2 2 1 2 1 1

h
hk h

k
n n

-
- +

=

= - = - = - =Qå

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Application: Parsing

□ Most parsing uses stacks

□ Examples includes:
§ Matching tags in XHTML
§ In C++, matching

• parentheses (...)
• brackets, and [...]
• braces { ... }

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Parsing XHTML

□ XHTML is made of nested
§ opening tags, e.g., <some_identifier>, and
§ matching closing tags, e.g., </some_identifier>

<html>
<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Parsing XHTML

□ Nesting indicates that any closing tag must match the
most recent opening tag

□ Strategy for parsing XHTML:
§ read though the XHTML linearly
§ place the opening tags in a stack
§ when a closing tag is encountered, check that it matches what is

on top of the stack

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <head>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <head> <title>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <head> <title>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <head>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <body>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <body> <p>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <body> <p> <i>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <body> <p> <i>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

38

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <body> <p>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

39

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html> <body>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

40

Parsing XHTML
<html>

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

</html>

<html>

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

41

Parsing XHTML

□ We are finished parsing, and the stack is empty

□ Possible errors:
§ a closing tag which does not match the opening tag on top of

the stack
§ a closing tag when the stack is empty
§ the stack is not empty at the end of the document

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

42

Reverse-Polish Notation

□ Normally, mathematics is written using what we call
in-fix notation:

(3 + 4) × 5 – 6
□ The operator is placed (inserted) between two operands

□ One weakness: parentheses are required
(3 + 4) × 5 – 6 = 29
3 + 4 × 5 – 6 = 17
3 + 4 × (5 – 6) = –1
(3 + 4) × (5 – 6) = –7

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

43

Reverse-Polish Notation

□ In Reverse-Polish Notation (RPN), the operations are
placed first, followed by the operator:

(3 + 4) × 5 – 6
è 3 4 + 5 × 6 –

□ Parsing reads left-to-right and performs any operation
on the last two operands:

3 4 + 5 × 6 –
è 7 5 × 6 –
è 35 6 –

29
RPN è https://en.wikipedia.org/wiki/Reverse_Polish_notation
PN or NPN è https://en.wikipedia.org/wiki/Polish_notation vs.

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

44

Reverse-Polish Notation
□ Other examples:

3 4 5 × + 6 –
è 3 20 + 6 –
è 23 6 –
è 17

3 4 5 6 – × +
è 3 4 –1 × +
è 3 –4 +
è –1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

45

Reverse-Polish Notation

□ Benefits:
§ No ambiguity and no brackets are required
§ It is the same process used by a computer to perform

computations:
• operands must be loaded before performing the operation

§ Reverse-Polish can be processed using stacks

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

46

Reverse-Polish Notation

□ The easiest way to parse reverse-Polish notation is to
use an operand stack:
§ operands are processed by pushing them onto the stack
§ when processing an operator:

• pop the last two items off the operand stack,
• perform the operation, and
• push the result back onto the stack

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

47

Reverse-Polish Notation

□ Evaluate the following reverse-Polish expression using a
stack:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

48

Reverse-Polish Notation

□ Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

49

Reverse-Polish Notation

□ Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

2
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

50

Reverse-Polish Notation

□ Push 3 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

3
2
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

51

Reverse-Polish Notation

□ Pop 3 and 2 and push 2 + 3 = 5

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

52

Reverse-Polish Notation

□ Push 4 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

4
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

53

Reverse-Polish Notation

□ Push 5 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5
4
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

54

Reverse-Polish Notation

□ Push 6 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

6
5
4
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

55

Reverse-Polish Notation
□ Pop 6 and 5 and push 5 × 6 = 30

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

30
4
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

56

Reverse-Polish Notation

□ Pop 30 and 4 and push 4 – 30 = –26

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–26
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

57

Reverse-Polish Notation

□ Push 7 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

7
–26
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

58

Reverse-Polish Notation
□ Pop 7 and –26 and push –26 × 7 = –182

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–182
5
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

59

Reverse-Polish Notation

□ Pop –182 and 5 and push –182 + 5 = –177

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–177
1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

60

Reverse-Polish Notation

□ Pop –177 and 1 and push 1 – (–177) = 178

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

178

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

61

Reverse-Polish Notation

□ Push 8 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

8
178

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

62

Reverse-Polish Notation

□ Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

9
8

178

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

63

Reverse-Polish Notation
□ Pop 9 and 8 and push 8 × 9 = 72

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

72
178

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

64

Reverse-Polish Notation

□ Pop 72 and 178 and push 178 + 72 = 250

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

250

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

65

Reverse-Polish Notation

□ Thus
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

evaluates to the value on the top: 250

□ The equivalent in-fix notation is
((1 – ((2 + 3) + ((4 – (5 × 6)) × 7))) + (8 × 9))

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

66

Function Calls
□ In the Computer Architecture class, you will see how stacks are

implemented in CPUs to facilitate function calling
□ Function calls are similar to problem solving presented earlier:

§ you write a function to solve a problem
§ the function may require sub-problems to be solved, hence, it may call

another function
§ once a function is finished, it returns to the function which called it

https://en.wikipedia.org/wiki/Call_stack

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

67

Summary: Stacks

□ The stack is the simplest of all ADTs
§ Understanding how a stack works may be trivial
§ May be not that simple to understand its applications and

meanings

□ We looked at:
§ Parsing, function calls, and reverse Polish

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

68

References
□ Donald E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd

Ed., Addison Wesley, 1997, §2.2.1, p.238.

□ Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §11.1, p.200.

□ Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §3.6, p.94.

□ Koffman and Wolfgang, “Objects, Abstraction, Data Strucutes and Design using C++”, John
Wiley & Sons, Inc., Ch. 5.

□ Wikipedia, http://en.wikipedia.org/wiki/Stack_(abstract_data_type)

