Stacks

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QUEDD
I Introduction to Data Structures, ECE430.217, 2021 FALL

¥

“%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

Outline

0 This topic discusses the concept of a stack:
= Description of an Abstract Stack
= List applications
* Implementation

= Example applications
e Parsing: XHTML, C++
e Function calls
e Reverse-Polish calculators
e Robert’s Rules

= Standard Template Library

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

e
Abstract Stack

0 An Abstract Stack (Stack ADT) is an abstract data type
which emphasizes specific operations:
= Insertions and removals are performed individually
= Inserted objects are pushed onto the stack

= The top of the stack is the most recently object pushed onto the
stack

= When an object is popped from the stack, the current top is
erased

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Abstract Stack

o Also called a last-in—first-out (LIFO) behaviour
= Graphically, we may view these operations as follows:

Check more: https://en.wikipedia.ora/wiki/Undefined behavior

0 There are two exceptions associated with abstract stacks:

= |t is an undefined operation to call either pop or top on an empty
stack

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

https://en.wikipedia.org/wiki/Undefined_behavior

Applications

o Numerous applications:

= Parsing code:
* Matching parenthesis
e XML (e.g., XHTML)
» Tracking function calls
= Dealing with undo/redo operations
= Reverse-Polish calculators

0 The stack is a very simple data structure

= Given any problem, if it is possible to use a stack, this
significantly simplifies the solution

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Stack: Implementations

0 We will look at two implementations of stacks:
= Singly linked lists
» One-ended arrays

0 Note: The optimal asymptotic run time of any algorithm
is O(1)

= The run time of the algorithm is independent of the number of
objects being stored in the container

= We will always attempt to achieve this lower bound

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Implementation: w/ Linked-List

0 Operations at the front of a singly linked list are all ®(1)

list_head >O—>O—>O—> =+ WO
list tail

Front/1st Back/nth

Find (1) e(1)
Insert O(1) 0(1)
Erase O(1) O(n)

0 The desired behavior of an Abstract Stack can be
performed by all operations at the front of linked-list

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

8

Stack-as-List Class

0 The stack class using a singly linked list has a single
private member variable:

template <typename Type>
class Stack {
private:
Single list<Type> list;
public:
bool empty() const;
Type top() const;
void push(Type const &);
} Type pop();

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

9

Stack-as-List Class

0 The empty and push functions just call the appropriate
functions of the Single_list class

template <typename Type>
bool Stack<Type>::empty() const {
return list.empty();

template <typename Type>
void Stack<Type>::push(Type const &obj) {
list.push front(obj);

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

LAB

L
Stack-as-List Class

0 The top and pop functions, however, must check the
boundary case:

template <typename Type>
Type Stack<Type>::top() const {
if (empty()) {
throw underflow(); ,
} // template <typename Type>
// Type Stack<Type>::pop() {
return list.front(); // if (empty()) {
} // throw underflow();

return list.pop front();

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

11

Implementation: w/ Array

0 For one-ended arrays, all operations at the back are ®(1)

o

Front/1st Back/nth

Find 0(1) O(1)
Insert O(n) O(1)
Erase O(n) O(1)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

12

Stack-as-Array Class

0 We need to store an array:

» |n C++, this is done by storing the address of the first entry
template <typename Type>
class Stack {
private:
int stack size;
int array_ capacity;
Type *array;
public:
Stack(int = 10);
~Stack();
bool empty() const;
Type top() const;
void push(Type const &);
Type pop();
¥

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Empty
0 The stack is empty if the stack size is zero:

template <typename Type>
bool Stack<Type>::empty() const {
return (stack size == 0);

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

14

Top

0 If there are n objects in the stack, the last is located at
index n—1

template <typename Type>
Type Stack<Type>::top() const {

if (empty()) {
throw underflow();

return array[stack size - 1];

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Pop

0 Removing an object simply involves reducing the size
= By decreasing the size, the previous top of the stack is now at

the location stack_size

template <typename Type>
Type Stack<Type>::pop() {

if (empty()) {
throw underflow();

--stack _size;
return array[stack size];

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

15

LAB

16
Push
0 Pushing an object onto the stack can only be performed
if the array is not full
template <typename Type>
void Stack<Type>::push(Type const &obj) {
if (stack size == array_capacity) {
throw overflow(); // return ??
}
array[stack size] = obj;
++stack _size;
}
Introductionstgcg)jtaNS;[rulgllilr:st EE:EVASSS?—;\Z, 2021 FALL N x c I_AB

Exceptions

0 The case where the array is full is not defined in the
Abstract Stack

o If the array is filled, we have five options:

Increase the size of the array

Throw an exception

lgnore the element being pushed
Replace the current top of the stack

Put the pushing process to “sleep” until something else
removes the top of the stack

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

17

LAB

Array Capacity

0 If dynamic memory is available, you can increase the
array capacity

0 If we increase the array capacity, the question is:
= How much?
= 1) By a constant? array_capacity += c;
= 2) By a multiple? array_capacity *= c;

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-___
Array Capacity Enlargement and Run times

0 First, we recognize that any time that we push onto a full
stack, this requires to copy n items and the run time is

O(n)

0 Therefore, push is usually ®(1) except when new
memory is required

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

20

Array Capacity Enlargement and Run times

0 To state the average run time, we will introduce the
concept of amortized time:
= |f n operations requires O(f(n)) in total, we will say that an
individual operation has an amortized run time of ®(f(n)/n)
= Therefore, if inserting n objects requires:
« O(n?) items to be copied, the amortized time is B(n)
« O(n) items to be copied, the amortized time is O(1)

Definition

Amortized cost: Given a sequence of n
operations, the amortized cost is:

Cost(n operations)

n

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Array Capacity: Increase by 1

0 Let us consider the case of increasing the capacity by 1

each time the array is full

= With each insertion when the array is full, this requires all entries

to be copied

BEE

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

21

LAB

22

Array Capacity: Increase by 1

0 Suppose we insert n objects
= The pushing of the k" object on the stack requires k- 1 copies

The total number of copies is now given by:

- (n+1) n(n—1) >
(k=D)=| D k|-n=""""n= =0l
S| Trfr- =)ol
= Therefore, the amortized number of copies

is given by ,
@(”J = 0(n)
n

= Therefore, each push would run in
®(n) time

= The wasted space,
however, is ®(0)

ion to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY N x c I.AB

©)

23

Array Capacity: Doubling

0 Suppose we double the number of entries each time
the array is full

= Now the number of copies appears to be significantly
fewer

e

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Array Capacity: Doubling

0 Suppose we double the array size each time it is full:

= This is difficult to solve for an arbitrary n so instead, we will
restrict
the number of objects we are inserting to n = 2" objects

= We will then assume that the behavior for intermediate values
of n will be similar

I [[[[|
| IuEE
I [[|
ISR | |
(s [] | |
o] iy] e e i) |

IR [[[[]

S [[T TTTTTTTTT]
N [[TTTTTTITTITIT]

I [[[[[T TTTTT11

(e e S TN [[TTTTTTT]

(e e P [TTTTTTT1

(T T T [T T 1T 117

| ANEEEEE

(e e e T [[[[T]

OTTTTTTITTI I T T T I T T T T T T T T T II T 1111

(7 e e o o T e T T T 1 | [[|

(T A W AT MW T i, 1 [[|

S T S S S S S R S S S =SS =S | |

(e e e o o e] [[|

| iNEEEEEEEEE

il

Introduction to Data Structures, ECE430.217, 2021 FAL
SEOUL NATIONAL UNIVERSITY

b JJ I I I))) 0

,_
=

C|LAB

Array Capacity: Doubling

0 Suppose we double the array size each time it is full:
= Inserting n = 2" objects would therefore require
1,2,4,8, ..., 2
copies, for once we add the last object, the array will be full
= The total number of copies is therefore:

>

-1
2f =20 _1=2" 1=n-1=0(n)

0

b
I

» Therefore, the amortized number of
copies per insertion is O(1)

= The wasted space,
however, is O(n)

il

Introduction to Data Structures, ECE430.217, 2021 FAL
SEOUL NATIONAL UNIVERSITY

I [[[[|
| IuEE
I [[|
ISR | |
(s [] | |
o e e o e [|

IR [[[[]

N [[TTTTTTITTITIT]

I [[[[[T TTTTT11

(e e S TN [[TTTTTTT]

e e e P N [[T TTTTT

e I [T T T T T
(T v e e e A A [~ [[[[[|

OTTTTTTITTI I T T T I T T T T T T T T T II T 1111

(7 e e o o T e T T T 1 | [[|

(T A W AT MW T i, 1 [[|

(e e e o o e] [[|
S T S S S S S R S S S =SS =S | |

(e TP [[T T T 1T

| INEEEEEEEE

e [[[T T T TTTITd

Syvgg 201 e e o e o o e v |

,_
=

C|LAB

26
Application: Parsing
0 Most parsing uses stacks
0 Examples includes:
= Matching tags in XHTML
* |n C++, matching
* parentheses (...)
e brackets,and [...]
® braces{...}
Introductionstgcg)jtaNS;[rulgllilr:st 55:5\/4;3;_;5, 2021 FALL N x c I.AB

Parsing XHTML
0 XHTML is made of nested

= opening tags, e.g., <some_identifier>, and
* matching closing tags, e.g., </some_identifier>
<html>
<head><title>Hello</title></head>

<body><p>This appears in the <i>browser</i>.</p></body>
</html>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

27

LAB

Parsing XHTML

0 Nesting indicates that any closing tag must match the
most recent opening tag

0 Strategy for parsing XHTML:
» read though the XHTML linearly
= place the opening tags in a stack

= when a closing tag is encountered, check that it matches what is
on top of the stack

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

28

LAB

-___
Parsing XHTML

<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>
</html>

<html>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-___ _
Parsing XHTML

<html>
<title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>
</html>

<html> <head>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-___
Parsing XHTML

<html>

<head> Hello</title></head>

<body><p>This appears in the <i>browser</i>.</p></body>
</html>

<html> <head> <title>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-__
Parsing XHTML

<html>

<head><title>Hello </head>

<body><p>This appears in the <i>browser</i>.</p></body>
</html>

<html> <head>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-__
Parsing XHTML

<html>

<head><title>Hello</title>

<body><p>This appears in the <i>browser</i>.</p></body>
</html>

<html>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-___
Parsing XHTML

<html>
<head><title>Hello</title></head>
<p>This appears in the <i>browser</i>.</p></body>
</html>

<html> <body>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-___
Parsing XHTML

<html>

<head><title>Hello</title></head>

<body><p>This appears in the <i>browser</i>.</p></body>
</html>

<html> <body> <p>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-__
Parsing XHTML

<html>

<head><title>Hello</title></head>

<body><p>This appears in the browser</i>.</p></body>
</html>

<html> <body> <p> <i>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-___
Parsing XHTML

<html>

<head><title>Hello</title></head>

<body><p>This appears in the <i>browser .</p></body>
</html>

<html> <body> <p>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-_______________________________________ _
Parsing XHTML

<html>

<head><title>Hello</title></head>

<body><p>This appears in the <i>browser</i>. </body>
</html>

<html> <body>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-______________________________________ _
Parsing XHTML

<html>

<head><title>Hello</title></head>

<body><p>This appears in the <i>browser</i>.</p>
</html>

<html>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-_______________________________________ _
Parsing XHTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the <i>browser</i>.</p></body>

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Parsing XHTML

0 We are finished parsing, and the stack is empty

o Possible errors:

= a closing tag which does not match the opening tag on top of

the stack
= a closing tag when the stack is empty

= the stack is not empty at the end of the document

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

41

LAB

42

Reverse-Polish Notation

0 Normally, mathematics is written using what we call
in-fix notation:
3+4)x5-6
0 The operator is placed (inserted) between two operands

0 One weakness: parentheses are required
3+4)x 5-6 = 29
3+4 x 5-6 = 17
3+4 x(5-6)= -1
3+4)x(5-6)= -7

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Reverse-Polish Notation

0 In Reverse-Polish Notation (RPN), the operations are
placed first, followed by the operator:

3+4) x 5-6
=2 34+ 5 x 6 -

0 Parsing reads left-to-right and performs any operation
on the last two operands:

34 +5 x 6 -

-> 7 5 x 6 -
- 35 6 -
29

RPN = https://en.wikipedia.org/wiki/Reverse_Polish_notation
PN or NPN => https://en.wikipedia.org/wiki/Polish_notation 34+ vs. +34

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

43

LAB

Reverse-Polish Notation
0 Other examples:
345 x + 6 -
= 3 20 + 6 —
-> 23 6 —
-> 17
3456 x +
= 3 4 -] X +
= 3 -4 -
-> —1
O L AT oML ONvERaTy ALt NXC|LAB

Reverse-Polish Notation

0 Benefits:
= No ambiguity and no brackets are required

= |tis the same process used by a computer to perform
computations:

e operands must be loaded before performing the operation
= Reverse-Polish can be processed using stacks

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

45

LAB

Reverse-Polish Notation

0 The easiest way to parse reverse-Polish notation is to

use an operand stack:

= operands are processed by pushing them onto the stack

= when processing an operator:

* pop the last two items off the operand stack,

* perform the operation, and
* push the result back onto the stack

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

46

LAB

47

Reverse-Polish Notation

0 Evaluate the following reverse-Polish expression using a
stack:

123 +456 x -7 x4+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

48

Reverse-Polish Notation

0 Push 1 onto the stack

123 +456 x -7 x4+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

49

Reverse-Polish Notation

0 Push 1 onto the stack

123 +456 x -7 x4+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

50

Reverse-Polish Notation

0 Push 3 onto the stack
123 +456 x -7 x+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

51

Reverse-Polish Notation

0 Pop3and2andpush2 + 3 =5
123 +456x -7 x+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

52

Reverse-Polish Notation

0 Push 4 onto the stack
123 +456 x -7 x+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

53

Reverse-Polish Notation

0 Push 5 onto the stack
123 +456 x -7 x+ -89 x +

— | U1 B O

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

54
Reverse-Polish Notation
0 Push 6 onto the stack
123 +45 6 x -7 x4+ -89 x +
6
5
4
5
1
P D S SO 2 NXC]LAB

55
Reverse-Polish Notation
0 Pop 6 and 5 and push 5 x 6 = 30
123 +45 6 x -7 x4+ -89 x +
30
4
5
1
P D S SO 2 NXC]LAB

56
Reverse-Polish Notation
0 Pop 30 and 4 and push 4 — 30 = -26
123 +45 6 x -7 x4+ -89 x +
26
5
1
P D S SO 2 NXC]LAB

57

Reverse-Polish Notation

0 Push 7 onto the stack
123 +456 x -7 x4+ -89 x +

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

58
Reverse-Polish Notation
0 Pop 7 and =26 and push =26 x 7 = 182
123 +45 6 x -7 x + -89 x +
~-182
5
1
P D S SO 2 NKC]LAB

59
Reverse-Polish Notation
0 Pop-182 and 5 and push =182 + 5 = =177
123 +45 6 x -7 x + -89 x +
177
1
e S S NKC]LAB

60
Reverse-Polish Notation
0 Pop-177 and 1 and push 1 - (-177) =178
123 +45 6 x -7 x + -89 x +
178
P D S SO 2 NXC]LAB

61

Reverse-Polish Notation

0 Push 8 onto the stack
123 +456 x -7 x4+ -89 x +

178

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

62

Reverse-Polish Notation

0 Push 1 onto the stack

123 +456 x -7 x4+ -89 x +

178

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

63
Reverse-Polish Notation
0 Pop 9 and 8 and push 8 x 9 =72
123 +45 6 x -7 x4+ -89 x +
/2
178
P S SRR NKC]LAB

64
Reverse-Polish Notation
0 Pop 72 and 178 and push 178 + 72 = 250
123 +45 6 x -7 x4+ -89 x +
250
P S SRR NKC]LAB

65

Reverse-Polish Notation

0 Thus
123 +456 x -7 x + -89 x +

evaluates to the value on the top: 250

0 The equivalent in-fix notation is
(1T-(2+3)+((4-(5x6)x7))+ (8 x9)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

66
Function Calls
0 In the Computer Architecture class, you will see how stacks are
implemented in CPUs to facilitate function calling
0 Function calls are similar to problem solving presented earlier:
= you write a function to solve a problem
= the function may require sub-problems to be solved, hence, it may call
another function
= once a function is finished, it returns to the function which called it
functi 1
uncuion one Call Stack
}
function two() {
three();
} three()
two() two() two()
function three() { one() one() one() one() one()
console.trace("Call
Stack");
) O 6066 6 6
https://en.wikipedia.org/wiki/Call_stack
Introductionstg(g)jtaNS;;ulgllJ\lrzst 55:5\/4;3;_;5, 2021 FALL N x c I_AB

67

Summary: Stacks

0 The stack is the simplest of all ADTs

» Understanding how a stack works may be trivial

= May be not that simple to understand its applications and
meanings

0 We looked at:
= Parsing, function calls, and reverse Polish

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

68

References

o Donald E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3
Ed., Addison Wesley, 1997, §2.2.1, p.238.

o Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §11.1, p.200.
o Weiss, Data Structures and Algorithm Analysis in C++, 3 Ed., Addison Wesley, §3.6, p.94.

o Koffman and Wolfgang, “Objects, Abstraction, Data Strucutes and Design using C++", John
Wiley & Sons, Inc., Ch. 5.

o Wikipedia, http://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

