

Transport Layer - Socket -

Kyunghan Lee
Networked Computing Lab (NXC Lab)
Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Socket programming

Goal: learn how to build client/server applications that communicate using sockets

Socket: door between application process and end-to-end-transport protocol

Socket programming

Two socket types for two transport services:

- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Application Example:

- client reads a line of characters (data) from its keyboard and sends data to server
- 2. server receives the data and converts characters to uppercase
- 3. server sends modified data to client
- 4. client receives modified data and displays line on its screen

Socket programming

UDP: no "connection" between client & server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-oforder

Application viewpoint:

□ UDP provides *unreliable* transfer of groups of bytes ("datagrams") between client and server

Client/server socket interaction: UDP

client server (running on server IP) create socket: create socket, port= x: clientSocket = serverSocket = socket(AF_INET,SOCK_DGRAM) socket(AF_INET,SOCK_DGRAM) Create datagram with server IP and port=x; send datagram via read datagram from clientSocket serverSocket write reply to read datagram from serverSocket clientSocket specifying client address, close port number

clientSocket

Socket programming with TCP

Client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

Client contacts server by:

- Creating TCP socket,
 specifying IP address, port
 number of server process
- when client creates socket:
 client TCP establishes
 connection to server TCP

- When contacted by client,
 server TCP creates new socket
 for server process to
 communicate with that
 particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients

Application viewpoint:

TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server

Client/server socket interaction: TCP

client server (running on host ID) create socket, port=x, for incoming request: serverSocket = socket() create socket, wait for incoming TCP connection setup connect to **hostid**, port=**x** connection request connectionSocket = clientSocket = socket() serverSocket.accept() send request using read request from clientSocket connectionSocket write reply to connectionSocket read reply from clientSocket close close connectionSocket

clientSocket

Socket: Application-TCP Interaction

□ Linux transport-layer implementation

Latency from Socket

- Transport-layer implementation with socket buffer
 - Imperfect synchronization between F(t) and R(t) in action

Latency from Socket

- Process scheduling latency
 - Determined by Linux Kernel's CFS scheduler
 - Order of some milliseconds

Latency from Socket

D1: App to TCP

D2: TCP to TCP

□ D3: TCP to App

D: App to App Latency

Transport Layer

Kyunghan Lee
Networked Computing Lab (NXC Lab)
Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Objectives

- understand
 principles behind
 transport layer
 services:
 - multiplexing and demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connectionoriented reliable transport
 - TCP congestion control

Transport services and protocols

- provide logical communication between app processes running on different hosts
- transport protocols run in end systems
 - send side: breaks app messages into segments, passes to network layer
 - rcv side: reassembles segments into messages, passes to app layer
- more than one transport protocol available to apps
 - Internet: TCP and UDP

Transport vs. Network layer

- network layer: logical communication between hosts
- transport layer: logical communication between processes
 - relies on, enhances, network layer services

household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- □ hosts = houses
- □ processes = kids
- app messages = letters in envelopes
- transport protocol = Ann and Bill who demux to in-house siblings
- network-layer protocol = postal service

Internet transport-layer protocols

- reliable, in-order delivery (TCP)
 - congestion control
 - flow control
 - connection setup
- unreliable, unordered delivery: UDP
 - no-frills extension of "besteffort" IP
- □ services not available:
 - delay guarantees
 - bandwidth guarantees

Multiplexing/Demultiplexing

multiplexing at sender:

handle data from multiple sockets, add transport header (later used for demultiplexing)

demultiplexing at receiver:

use header info to deliver received segments to correct socket

How demultiplexing works

- host receives IP datagrams
 - each datagram has source IP address, destination IP address
 - each datagram carries one transport-layer segment
 - each segment has source, destination port number
- host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

recall: created socket has host-local port #:

DatagramSocket mySocket1

= new DatagramSocket(12534);

- recall: when creating datagram to send into UDP socket, must specify
 - destination IP address
 - destination port #

- when host receives UDP segment:
 - checks destination port # in segment

 directs UDP segment to socket with that port # IP datagrams with same dest. port #, but different source IP addresses and/or source port numbers will be directed to same socket at dest.

Connectionless demux: Example

DatagramSocket serverSocket = new DatagramSocket(6428); DatagramSocket mySocket1 DatagramSocket mySocket2 = new DatagramSocket (5775); = new DatagramSocket(9157); application application application transdort transport transport network network networ link link link physical physica physical source port: 6428 source port: ? dest port: 9157 dest port: ? source port: ? source port: 9157 dest port: ? dest port: 6428

Connection-oriented demux

- TCP socket identified by 4-tuple:
 - source IP address
 - source port number
 - dest IP address
 - dest port number
- demux: receiver uses all four values to direct segment to appropriate socket

- Server host may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
- Web servers have different sockets for each connecting client
 - non-persistent HTTP will have different socket for each request

Connection-oriented demux: example

three segments, all destined to IP address: B, dest port: 80 are demultiplexed to different sockets

Connection-oriented demux: example

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones" Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out-of-order to app

Connectionless:

- no handshaking between UDP sender, receiver
- each UDP segment handled independently of others

- UDP use:
 - streaming multimedia apps (loss tolerant, rate sensitive)
 - DNS
 - SNMP
- reliable transfer over UDP:
 - add reliability at application layer
 - application-specific error recovery!

UDP: segment header

UDP segment format

length, in bytes of UDP segment, including header

why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small header size
- no congestion control: UDP can blast away as fast as desired

UDP checksum

Goal:

detect "errors" (e.g., flipped bits) in transmitted segment

Sender:

- treat segment contents, including header fields, as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected.
 But maybe errors
 nonetheless? More later

Internet checksum: example

example: add two 16-bit integers

										0 0							
wraparound	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	 1 →
sum			0							1 0							

Reading Assignment #3 – Chapter

Quiz #2: November 2^{nd} (4~5 questions)

Chapter 3	Transport Layer						
	3.1	-	ntroduction and Transport-Layer Services				
		3.1.1	Relationship Between Transport and Network Layers	216			
		3.1.2	Overview of the Transport Layer in the Internet	219			
	3.2	Multip	plexing and Demultiplexing	221			
	3.3	Conne	ectionless Transport: UDP	228			
		3.3.1	UDP Segment Structure	232			
		3.3.2	UDP Checksum	232			
	3.4	Principles of Reliable Data Transfer					
		3.4.1	Building a Reliable Data Transfer Protocol	236			
		3.4.2	Pipelined Reliable Data Transfer Protocols	245			
		3.4.3	Go-Back-N (GBN)	249			
		3.4.4	Selective Repeat (SR)	254			
	3.5	3.5 Connection-Oriented Transport: TCP		261			
		3.5.1	The TCP Connection	261			
		3.5.2	TCP Segment Structure	264			
		3.5.3	Round-Trip Time Estimation and Timeout	269			
		3.5.4	Reliable Data Transfer	272			
		3.5.5	Flow Control	280			
		3.5.6	TCP Connection Management	283			
	3.6	Principles of Congestion Control					
		3.6.1	The Causes and the Costs of Congestion	289			
		3.6.2	Approaches to Congestion Control	296			
	3.7	TCP Congestion Control					
		3.7.1	Fairness	307			
		3.7.2	Explicit Congestion Notification (ECN): Network-assisted				
			Congestion Control	310			
	3.8	Summary					
	Homework Problems and Questions						
	Programming Assignments						
	Wireshark Labs: Exploring TCP, UDP						
	Inter	Interview: Van Jacobson					

