Transport Layer
- Socket -

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QLL‘(_.;»“ . . .
,\}?_-:"i\’:‘g Introduction to Data Communication Networks, M2608.001200, 2021 FALL

¥

%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

2

Socket programming

Goal: learn how to build client/server applications that
communicate using sockets

Socket: door between application process and end-to-end-
transport protocol

application socket application Controlled by
\ app developer

—— Controlled by OS

Internet

A
v

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Socket programming

Two socket types for two transport services:
- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Appllcatlon Example:
. client reads a line of characters (data) from its keyboard and
sends data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Socket programming

UDP: no “connection” between client & server

0 no handshaking before sending data

0 sender explicitly attaches IP destination address and port # to each
packet

O receiver extracts sender |P address and port# from received packet

UDP: transmitted data may be lost or received out-of-
order

Application viewpoint:
o UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

5

Client/server socket interaction: UDP

server (running on server |P)

create socket, port= x:

serverSocket =
socket(AF_INET,SOCK_DGRAM)

client

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

l port=x; send datagram via
read datagram from clientSocket

serverSocket

!

write reply to —

serverSocket
specifying
client address,
port number

— read datagram from
clientSocket

close
clientSocket

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Socket programming with TCP

Client must contact server o When contacted by client,

o0 server process must first be server TCP creates new socket
running for server process to

communicate with that

O server must have created . .
particular client

socket (door) that welcomes

client’ s contact = allows server to talk with
multiple clients
Client contacts server by: = source port numbers used
0 Creating TCP socket, to distinguish clients
specifying IP address, port
number of server process Application viewpoint:

0 when client creates socket:
client TCP establishes
connection to server TCP

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

7
Client/server socket interaction: TCP
server (running on host ID) client
create socket,
port=x, for incoming
request:
serverSocket = socket()
wait for incoming TCP connection setup create socket,
CONNECtion reqUEst @ == == == == == == = CONNectto hostid, port=x
connectionSocket = clientSocket = socket()
serverSocket.accept()
— l send request using
read requeSt from / clientSocket
connectionSocket
write reply to —_ v
connectionSocket —, read reply from
1 clientSocket
close 1
connectionSocket clpse
clientSocket
Introduction to Data C;(I)Ergratr;:lc:_l‘EiI?Nl\lieLtvdarlséIQ/IS%%C()&OM200, 2021 FALL N x c I.AB

R
Socket: Application-TCP Interaction

0 Linux transport-layer implementation

¥
%E BSD Socket Layer Socket
L L Interface
g o PF_INET PF_PACKET PF_UNIX PF_IPX 1| |o
53
o < ISOCK_ ISOCK_ 4 4
Qi G || § STREAM § DGRAM | ¢ I -
TCP || UDP AN _RAW | DGRAM Layers
IPV4
v v v
v

Intel E1000 Hardware

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Latency from Socket

0 Transport-layer implementation with socket buffer
= Imperfect synchronization between F(t) and R(t) in action

TCP_socket()

F(t)

sk_buffer
[TCP

~—

Congestion Control
Algorithm

A\ 4

Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2
&

NXC

9

LAB

10
0 Process scheduling latency
= Determined by Linux Kernel’s CFS scheduler
» Order of some milliseconds
| Programmatic Scheduler Interface I Legend :
A QIS Services| | |
| Non-Kemel
| Layer I
Process Scheduler |
Memory i | Y I I
Manager :' |S\,rstem Call Interface IPC : Kernel Sub- I
em
I | L |
:,E Architecture Independent : | I
_; Scheduler “: | | Module I
St P = e | |
1 ¥ I I
File System Architecture Specific Scheduling Policy I Multiol I
Schedulers | Moudl.llil)e: |
¥ 3 I I
' |
Kernel| | —Depends OHI
vy ¥ I Data Flow—pl
CPU Hardware |) ... Cortrol Flove- |
-----J
Introduction to Data C ication Net ks, M2608.001200, 2021 FALL
D e NXC]LAB

Latency from Socket

o D1:ApptoTCP A ‘
> D2:TCP 1o TCP S S
0 D3: TCP to App T m ﬁ Q ST

| D2 f

D: App to App Latency

8
25810] ,] | | 00
..... write()
=—tcp_sendmsg() goasener 600l
248 -~ -tcp_recymsg() ' R]

8 ==read() SOCket write awwemeem ol

'l;‘ (|n a Batch) esnnnuee s ’ § 500 -

g246r (naBatch) . P | _

c |t LT 7] e

0] . ®©

g 244+ /| . e

Q 300

>

Somt =

= 200

© | e

g 245,07 ot o 100 -

o H
2.38 o= by D2 D3 D
236 | | | | | | | | |

43 43.2 434 43.6 43.8 44 442 44 4 446 44 8 45
o timestamp (sec)
;Eké-;""@, Introduction to Data Communication Networks, M2608.001200, 2021 FALL
%‘LEEV SEOUL NATIONAL UNIVERSITY N x c I.AB

Transport Layer

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QLL‘(_.;»“ . . .
,\}?_-:"i\’:‘g Introduction to Data Communication Networks, M2608.001200, 2021 FALL

¥

%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

13

Objectives
» understand * |earn about Internet
principles behind transport layer
transport layer protocols:
services: « UDP: connectionless
« multiplexing and transport
demultiplexing « TCP: connection-
e reliable data oriented reliable
transfer transport
e flow control « TCP congestion control

 congestion control

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Transport services and protocols

1 M . . application

= provide logical communication M

)

between app processes <
running on different hosts -

= transport protocols run in end
systems

 send side: breaks app
messages into segments,
passes to network layer

e rcv side: reassembles
segments into messages,

apMeation
passes to app layer

transport

e networ
@ data link

physical

= more than one transport
. = x
protocol available to apps g e

* |Internet: TCP and UDP

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

15

Transport vs. Network layer

= network layer: logical - household analogy:
communication 12 kids in Ann’s house sending
between hosts letters to 12 kids in Bill ’s

house:
0 hosts = houses

= transport layer: logical 0 processes = kids
communication O app messages = letters in
between processes envelopes

o transport protocol = Ann and
Bill who demux to in-house
siblings

e relies on, enhances,
network layer services

0 network-layer protocol =
postal service

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

16
Internet transport-layer protocols
0 reliable, in-order delivery oot
(TCP) S
= congestion control e phy“ca't et
= networNde ata lin —
[ﬂOW Control data.linlr O ysical
physica S - i
= connection setup &
g oh .
0 unreliable, unordered > J e N
SO data link S
delivery: UDP B v
y U « .netwqu 0
= no-frills extension of “best- e
effort” IP Tk ., TS
. . physical network
O services not available: cota i fnetvr
/ {physical E;iiclgl
= delay guarantees = :
» bandwidth guarantees
Introduction to Data C;(I)Ergratr;:lc:_l‘EiI?Nl\lieLtvdarlséIQ/IS%%C()&OM200, 2021 FALL N x c I_AB

17

Multiplexing/Demultiplexing

multiplexing at sender:

~demultiplexing at receiver:
handle data from multiple P . J
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
applice
application W [2[I] socket
Q process

transport trangp:ﬁ |

network network
- link link \ &

physical physicl

Introduction to Data Communication Networks, M2608.001200, 2021 FALL c
SEOUL NATIONAL UNIVERSITY N x I.AB

How demultiplexing works

32 bitS —

» host receives |IP datagrams)
* each datagram has source IP

source port # | dest port #

address, destination IP
address

* each datagram carries one

other header fields

transport-layer segment

* each segment has source,
destination port number

» host uses IP addresses &
port numbers to direct

application data
(payload)

segment to appropriate
socket

SEOUL NATIONAL UNIVERSITY

TCP/UDP segment format

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c

18

LAB

19

Connectionless demultiplexing

» recall: created socket has host-local = recall: when creating
port #: datagram to send into UDP

DatagramSocket mySocketl SOCket' must specncy

= new DatagramSocket (12534) ; * deSt!nat!On IP address
* destination port #

= when host receives UDP

segment: IP datagrams with same dest.
* checks destination port # in port #, but different source IP
segment ‘ addresses and/or source port

numbers will be directed to

« directs UDP segment to socket
same socket at dest.

with that port #

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

20

Connectionless demux: Example

DatagramSocket serverSocket

= new DatagramSocket (6428) ;

DatagramSocket mySocket2 DatagramSocket mySocketl

new DatagramSocket (9157) ; = new DatagramSocket (5775);

application

application application
44
y trangdoft ‘
transgdrt netvdr¥ transporit
netwdl link network
link ohydida link
~ physida physical \
- « | | > =
source port: 6428 source port: ?
’ dest port: 9157 L dest port: ?
> e ¥
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

21

Connection-oriented demux

= TCP socket identified by =~ = Server host may support

4-tuple: many simultaneous TCP
* source IP address sockets:
* source port number * each socket identified by its
 dest IP address own 4-tuple
» dest port number = Web servers have
s demux: receiver uses all different sockets for each
four values to direct connecting client
segment to appropriate * non-persistent HTTP will
socket have different socket for

each request

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

22
Connection-oriented demux: example
application
application application
SR
4 tragspdrt i
transpcI>rt nethork trﬁnsport
networfk link ngtwork
link physicai lifk -
W |physicyl o8l | physical
server: Q’,,,
N IP address B -
host: <= host:
IP address A source IPport: B,80 <= IP address C
dest IPport: A,9157 source IP,port: C,5775
| .|.> dest IPport: B,80
source |IPport: A,2157
dest IP, port: B,80 4'|'—
I sourcg IP,port: C,2157
) t IPport: B,80
three segments, all destined to IP address: B, estihport- 222

dest port: 80 are demultiplexed to different sockets

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

23

Connection-oriented demux: example

threaded server

application
application P application
ran=Tp
4 tragspdrt 1R
transpzi)rt retdork trfnsport
network link ng¢twork
link ohykica lingk -
W/ |physicyl gl physical
server: Q ,
- IP address B S
host: <= host:
IP address A source IPport: B,80 < IP address C
dest IP,port: A, 9157 source IP,port: C,5775
1 dest IPport: B,80
source |P,port: A,9157
dest IP, port: B,80 4;

source |P,port: C,9157
dest IPport: B,80

Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY N x c I.AB

24
UDP: User Datagram Protocol [RFC 768]
o “no frills,” “bare bones” Internet = UDP use:
transport protocol = streaming multimedia apps
0 “best effort” service. UDP (loss tolerant, rate sensitive)
segments may be: = DN5
| = SNMP
ts liable transf UDP:
= delivered out-of-order to app reflable trzfms. ,er over -
= add reliability at application
layer
o Connectionless: = application-specific error
= no handshaking between recovery!
UDP sender, receiver
= each UDP segment handled
independently of others
Introduction to Data %cgrgratr;\ilci_l‘EiI?Nl\ﬁ_tvdarxéQ/IS?%C()&OM200, 2021 FALL N x c I_AB

25

UDP: segment header

< 32 bItS >

................... |ength, in bytes Of UDP
segment, including
header

application — why is there a UDP?

data " no connection establishment

(payload) (which can add delay)

= simple: no connection state at
sender, receiver

= small header size

UDP segment format " no congestion control: UDP can

blast away as fast as desired

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

e
UDP checksum

Goal:

detect “errors” (e.g., flipped bits) in transmitted segment

Sender: Receiver:

0 treat segment contents, 0 compute checksum of received
including header fields, as segment
sequence of 16-bit integers 0 check if computed checksum

o checksum: addition (one’s equals checksum field value:
complement sum) of = NO - error detected
segment contents = YES - no error detected.

0 sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

27

Internet checksum: example

example: add two 16-bit integers

2
=
=
o
o
=
-
o
o
=
=
o
o
[
[
o

\4

1)
5
-
o
-
-
=
o
-
-
=
o
-
-
=
=
o
=)

Introduction to Data Communication Networks, M2608.001200, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

28

Reading Assignment #3 — Chapter

Quiz #2: November 274 (4~5 questions)

Chapter 3 Transport Layer 215
31 Introduction and Transport-Layer Services 216
3.1.1 Relationship Between Transport and Network Layers 216
3.1.2 Overview of the Transport Layer in the Intemnet 219
32 Muluplexing and Demultiplexing 221
3.3 Connectionless Transport: UDP 228
3.3.1 UDP Segment Structure 232
332 UDP Checksum 232
34 Principles of Reliable Data Transfer 234
34.1 Building a Reliable Data Transfer Protocol 236
342 Pipelined Reliable Data Transfer Protocols 245
343 Go-Back-N (GBN) 249
344 Selective Repeat (SR) 254
35 Connection-Oriented Transport: TCP 261
3.5.1 The TCP Connection 261
352 TCP Segment Structure 264
353 Round-Trip Time Estimation and Timeout 269
354 Reliable Data Transfer 272
355 Flow Control 280
356 TCP Connection Management 283
3.6 Pnnciples of Congestion Control 289
3.6.1 The Causes and the Costs of Congestion 289
3.6.2 Approaches to Congestion Control 296
37 TCP Congestion Control 297
3.7.1 Fairness 307

372 Explicit Congestion Notification (ECN): Network-assisted
Congestion Control 310
38 Summary 32
Homework Problems and Questions 34
Programming Assignments 329
Wireshark Labs: Exploring TCP, UDP 330
Interview: Van Jacobson 131

Introduction to Data Communication Networks, M2608.001200, 2021 FALL
SEOUL NATIONAL UNIVERSITY N x c I-AB

