Chapter 13

The Nature of Thermodynamics

Min Soo Kim
Seoul National University

13.1 Boltzmann Statistics

- Distinguishability : Classical Statistics

In classical mechanics, trajectories can be built up from the information of states of particles.

The trajectories allow us to distinguish particle whether they are identical or not.

13.1 Boltzmann Statistics

- Distinguishability : Quantum Statistics

In quantum mechanics, Our knowledge of states is imperfect because the states are hobbled according to Heisenberg's uncertainty principle. It means that it is impossible to distinguish identical particles.

13.1 Boltzmann Statistics

- Boltzmann statistics

Boltzmann statistics is for distinguishable particles.
Therefore, Boltzmann statistics is applied to particles of classical gas or on there positions in solid lattice.

Consider N molecules with internal energy E in cubic volume V
Each energy level, ϵ_{i} has N_{i} molecules with g_{i} degeneracies.

$$
\left.\begin{array}{l}
\sum N_{i}=N \\
\sum N_{i} \epsilon_{i}=E
\end{array}\right\} \text { two constraints of the system }
$$

13.1 Boltzmann Statistics

- Number of rearrangement

First, select N_{1} distinguishable particles from a total of N to be placed
in the first energy level with arrangement among g_{1} choices.
Ex) seven particles for $1^{\text {st }}$ energy level of $g_{i}=6$

$$
w_{1}={ }_{N} C_{N_{1}} \cdot g_{1}{ }^{N_{1}}=\frac{N!\cdot g_{1}{ }^{N_{1}}}{\left(N-N_{1}\right)!N_{1}!}
$$

13.1 Boltzmann Statistics

Next step is to do same work for $2^{\text {nd }}$ energy level among ($N-N_{1}$) particles
These works are done in sequence until last N_{n} particles are distributed.
Thus, the number of rearrangement becomes

$$
\begin{aligned}
w_{B}= & \prod w_{i}=\left({ }_{N} C_{N_{1}} \cdot g_{1}{ }^{N_{1}}\right) \times\left({ }_{N-N_{1}} C_{N_{2}} \cdot g_{2}{ }^{N_{2}}\right) \times \cdots \times\left({ }_{N_{n}} C_{N_{n}} \cdot g_{n}{ }^{N_{n}}\right) \\
& =\left(\frac{N!}{\left(N-N_{1}\right)!N_{1}!} g_{1}^{N_{1}}\right) \times\left(\frac{\left(N-N_{1}\right)!}{\left(N-N_{1}-N_{2}\right)!N_{2}!} g_{2}^{N_{2}}\right) \times \cdots \times\left(\frac{N_{n}!}{0!N_{n}!} g_{n}^{N_{n}}\right) \\
& \Longrightarrow w_{B}=N!\prod \frac{g_{i}{ }^{N_{i}}}{N_{i}!}
\end{aligned}
$$

13.3 Boltzmann Distributions

- Boltzmann distributions

From Stirling's approximation, $\ln (N!)=N \ln (N)-N$

$$
\begin{aligned}
\ln \left(w_{B}\right) & =\ln (N!)+\sum\left[N_{i} \ln \left(g_{i}\right)-\ln \left(N_{i}!\right)\right] \\
& =\ln (N!)+\sum\left[N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right]
\end{aligned}
$$

N_{i} for $j^{\text {th }}$ energy level is undetermined yet
\rightarrow Method of Lagrange multiplier is used to obtain most probable macro state under two constraints, $\sum N_{i}=N, \sum N_{i} \epsilon_{i}=E$

$$
\frac{\partial\left(\ln \left(w_{B}\right)\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}-N\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}-E\right)}{\partial N_{i}}=0
$$

13.3 Boltzmann Distributions

Applying method of Lagrange multipliers to Boltzmann distributions,

$$
\begin{gathered}
\frac{\partial\left(\sum N_{i} \ln \left(g_{i}\right)-\sum N_{i} \ln \left(N_{i}\right)+\sum N_{i}\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}\right)}{\partial N_{i}}=0 \\
\Longrightarrow \ln \left(g_{i}\right)-\ln \left(N_{i}\right)-\frac{N_{i}}{N_{i}}+1+\alpha+\beta \epsilon_{i}=0
\end{gathered}
$$

Then, number distribution becomes
Boltzmann distribution function

$$
\ln \left(\frac{N_{i}}{g_{i}}\right)=\alpha+\beta \epsilon_{i} \longrightarrow \xrightarrow{N_{i} / g_{i}}=e^{\alpha+\beta \varepsilon_{i}}=f_{i}\left(\varepsilon_{i}\right)
$$

13.3 Boltzmann Distributions

- Physical relation of constant β

$$
\begin{gathered}
\sum N_{i} \ln g_{i}-\sum N_{i} \ln N_{i}+\alpha \sum N_{i}+\beta \sum N_{i} \varepsilon_{i}=0 \\
\sum N_{i} \ln g_{i}-\sum N_{i} \ln N_{i}=-\alpha N-\beta U \\
\ln \left(w_{B}\right)=\ln (N!)+\sum\left[N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right] \\
=\ln (N!)+\sum\left[N_{i} \ln \left(N_{i} e^{-\alpha-\beta \epsilon_{i}}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right] \\
=\ln (N!)+\sum\left[N_{i} \ln \left(N_{i}\right)-\alpha N_{i}-\beta N_{i} \epsilon_{i}-N_{i} \ln \left(N_{i}\right)+N_{i}\right] \\
=\ln (N!)+N-\alpha \mathbf{N}-\boldsymbol{\beta} \mathbf{U}
\end{gathered}
$$

13.3 Boltzmann Distributions

Using the statistical definition of entropy,

$$
S=k \ln \left(w_{B}\right)=k \ln (N!)+k(1-\alpha) \mathrm{N}-k \beta \mathrm{U}=S_{0}-k \beta \mathrm{U}
$$

In classical thermodynamics,

$$
d S(U, V)=\frac{1}{T} d U+\frac{P}{T} d V=\left(\frac{\partial S}{\partial U}\right)_{V} d U+\left(\frac{\partial S}{\partial V}\right)_{U} d V \rightarrow\left(\frac{\partial S}{\partial U}\right)_{V}=\frac{1}{T}
$$

From the previous result, $S=k \ln (N!)+k(1-\alpha) \mathrm{N}-k \beta \mathrm{U}=S_{0}-k \beta \mathrm{U}$

$$
\left(\frac{\partial S}{\partial U}\right)_{V}=-k \beta
$$

Comparing these two results, the constant β becomes

$$
\beta=-\frac{1}{k T}
$$

13.3 Boltzmann Distributions

$$
N_{i}=g_{i} e^{\alpha+\beta \varepsilon_{i}}=g_{i} e^{\alpha} e^{-\varepsilon_{i} / k T}
$$

For the value of e^{α},

$$
\begin{aligned}
& N=\sum_{i} N_{i}=e^{\alpha} \sum_{i} g_{i} e^{-\varepsilon_{i} / k T} \\
& e^{\alpha}=\frac{N}{\sum g_{i} e^{-\varepsilon_{i} / k T}}
\end{aligned}
$$

And hence,

$$
f_{i}=\frac{N_{i}}{g_{i}}=\frac{N e^{-\varepsilon_{i} / k T}}{\sum g_{i} e^{-\varepsilon_{i} / k T}}
$$

(Boltzmann distribution)

Partition function Z

13.3 Boltzmann Distributions

- Partition function

Partition function is defined to

$$
Z \equiv \sum_{i=1}^{\infty} g_{i} e^{\beta \epsilon_{i}}
$$

Partition function has information of degeneracy and energy level.
There are two consequences of partition function.

1) $N=\sum_{i=1}^{\infty} N_{i}=\sum_{i=1}^{\infty} g_{i} e^{\alpha+\beta \epsilon_{i}}=e^{\alpha} Z \quad e^{\alpha}=\frac{N}{Z}$
2) $E=\sum_{i=1}^{\infty} N_{i} \epsilon_{i}=\sum_{i=1}^{\infty} g_{i} \epsilon_{i} e^{\alpha+\beta \epsilon_{i}}=e^{\alpha}\left(\frac{\partial Z}{\partial \beta}\right)_{V}=\frac{N}{Z}\left(\frac{\partial Z}{\partial \beta}\right)_{V}=N\left(\frac{\partial \ln (Z)}{\partial \beta}\right)_{V}$

13.3 Boltzmann Distributions

- Distribution function

From previous results, the number distributions N_{i}

$$
N_{i}=g_{i} e^{\alpha} e^{\beta \epsilon_{i}}=g_{i} \frac{N}{Z} e^{-\frac{\epsilon_{i}}{k T}}
$$

Then, the Boltzmann distribution function is defined as below.

$$
f\left(\epsilon_{i}\right) \equiv \frac{N_{i}}{g_{i}}=\frac{N e^{-\frac{\epsilon_{i}}{k T}}}{Z}
$$

13.4 Fermi-Dirac Distribution

- Fermion

1) Fermion is indistinguishable particle which obeys Pauli's exclusion principle.
2) Pauli's exclusion principle means that no quantum state can accept more than one particle.
3) Examples of fermions are electron, positron, proton, neutron, and neutrino.

Periodic Table: Radioactive Elements

Lanthanide Series	La	Ce	Pr	Nd Num	$\mathbf{P m}$	Sm	Eu $\begin{aligned} & 151 \\ & 6 \end{aligned}$	Gd	$\mathbf{T b}$	Dy	Ho Hom	Er 18: 7a	Tm \pm	Yb \%	$\mathbf{L u}$ 0π
Actinide Series	Ac	Th	Pa	${ }^{2 \pi} \mathbf{U}$	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\underline{\mathrm{Lr}}$

ENGINEERING
15/34
COLLEGEOF ENGINEERING
SEOULNATIONAL UNIVERSITY
SEOUL NATIONAL UNIVERSITY
서 울 대 학 교 공 과 대 학

13.4 Fermi-Dirac Distribution

- Number of rearrangement

Distribution of n_{i} particles among g_{i} state boxes.

$$
\begin{gathered}
\varepsilon_{i} \uparrow N_{i}<g_{i}
\end{gathered} \quad \begin{gathered}
\text { Ex) three particles for } \\
i^{t h} \text { energy level of } g_{i}=6
\end{gathered}
$$

13.4 Fermi-Dirac Distribution

- Fermi-Dirac distributions

From Stirling's approximation, $\ln (N!)=N \ln (N)-N$

$$
\begin{aligned}
\ln \left(w_{F D}\right) & =\sum\left[\ln \left(g_{i}!\right)-\ln \left(N_{i}!\right)-\ln \left(\left(g_{i}-N_{i}\right)!\right)\right] \\
& =\sum\left[g_{i} \ln \left(g_{i}\right)-g_{i}-N_{i} \ln \left(N_{i}\right)+N_{i}-\left(g_{i}-N_{i}\right) \ln \left(g_{i}-N_{i}\right)+\left(g_{i}-N_{i}\right)\right]
\end{aligned}
$$

N_{i} for $j^{t h}$ energy level is undetermined yet.
\rightarrow Method of Lagrange multiplier is used to obtain most probable macro state under two constraints, $\sum N_{i}=N, \sum N_{i} \epsilon_{i}=E$

$$
\frac{\partial\left(\ln \left(w_{F D}\right)\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}-N\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}-E\right)}{\partial N_{i}}=0
$$

13.4 Fermi-Dirac Distribution

Applying method of Lagrange multipliers to Fermi-Dirac distributions,

$$
\begin{gathered}
\frac{\partial\left(\sum\left[g_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)-\left(g_{i}-N_{i}\right) \ln \left(g_{i}-N_{i}\right)\right]\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}\right)}{\partial N_{i}}=0 \\
\longrightarrow-\ln \left(N_{i}\right)-\frac{N_{i}}{N_{i}}+\ln \left(g_{i}-N_{i}\right)+\frac{g_{i}-N_{i}}{g_{i}-N_{i}}+\alpha+\beta \epsilon_{i}=0
\end{gathered}
$$

Then, number distribution becomes

$$
\ln \left(\frac{g_{i}}{N_{i}}-1\right)=-\alpha-\beta \epsilon_{i} \longrightarrow \quad N_{i}=g_{i} \frac{1}{e^{-\alpha-\beta \epsilon_{i}}+1}
$$

13.4 Fermi-Dirac Distribution

- Distribution function

Provisionally, we associated α with the chemical potential μ divided by $k T$, and reserve for later the physical interpretation of this connection.

$$
\alpha=\frac{\mu}{k T}
$$

Then, the Fermi-Dirac distribution function is defined as below.

$$
f\left(\epsilon_{i}\right) \equiv \frac{N_{i}}{g_{i}}=\frac{1}{e^{-\alpha-\beta \epsilon_{i}}+1}=\frac{1}{e^{\left(\epsilon_{i}-\mu\right) / k T}+1}
$$

13.5 Bose-Einstein Distribution

- Boson

1) Boson is indistinguishable particle not obeying Pauli's exclusion principle.
2) Thus, one micro-state can be occupied by several Bosons.
3) Photon is the most notable example of Boson.

Difference between fermions and bosons
(http://quantum-bits.org/)

13.5 Bose-Einstein Distribution

- Number of rearrangement

Rearrangement of $N_{i}+g_{i}-1$ symbols into $g_{i}-1$ partitions (degeneracy) and N_{i} particles.

$\bullet \bullet||\odot ० ०| \odot ๐| \mid \quad N_{i}+g_{i}-1$ symbols
$\stackrel{G}{g}-1$ partitions
Ex) seven particles for
$i^{\text {th }}$ energy level of $g_{i}=6$

$$
g_{i}<N_{i}
$$

$$
w_{B E}=\prod_{N_{i}+g_{i}-1} C_{g_{i}-1}=\prod \frac{\left(N_{i}+g_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!}
$$

13.5 Bose-Einstein Distribution

- Bose-Einstein distributions

From Stirling's approximation, $\ln (N!)=N \ln (N)-N$

$$
\begin{aligned}
\ln \left(w_{B E}\right) & =\sum\left[\ln \left(\left(N_{i}+g_{i}-1\right)!\right)-\ln \left(N_{i}!\right)-\ln \left(\left(g_{i}-1\right)!\right)\right] \\
& =\sum\left[\left(N_{i}+g_{i}-1\right) \ln \left(N_{i}+g_{i}-1\right)-N_{i} \ln \left(N_{i}\right)-\left(g_{i}-1\right) \ln \left(g_{i}-1\right)\right]
\end{aligned}
$$

N_{i} for $i^{\text {th }}$ energy level is undetermined yet
\rightarrow Method of Lagrange multiplier is used to obtain the most probable macro state under two constraints, $\sum N_{i}=N, \sum N_{i} \epsilon_{i}=E$
$\frac{\partial\left(\ln \left(w_{B E}\right)\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}-N\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}-E\right)}{\partial N_{i}}=0$

13.5 Bose-Einstein Distribution

Applying method of Lagrange multipliers to Bose-Einstein distributions,

$$
\begin{gathered}
\frac{\partial\left(\sum\left[\left(N_{i}+g_{i}-1\right) \ln \left(N_{i}+g_{i}-1\right)-\sum N_{i} \ln \left(N_{i}\right)\right]\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}\right)}{\partial N_{i}}=0 \\
\longrightarrow \ln \left(N_{i}+g_{i}-1\right)+\frac{g_{i}+N_{i}-1}{g_{i}+N_{i}-1}-\ln \left(N_{i}\right)-\frac{N_{i}}{N_{i}}+\alpha+\beta \epsilon_{i}=0
\end{gathered}
$$

Then, number distribution becomes

$$
\ln \left(\frac{N_{i}+g_{i}-1}{N_{i}}\right)=-\alpha-\beta \epsilon_{i} \longrightarrow \quad N_{i}=g_{i} \frac{1}{e^{-\alpha-\beta \epsilon}-1}
$$

13.5 Bose-Einstein Distribution

- Distribution function

$$
N_{i}=g_{i} \frac{1}{e^{-\alpha-\beta \epsilon}-1} \quad\left(\alpha=\frac{\mu}{k T}, \beta=-\frac{1}{k T}\right)
$$

Then, the Bose-Einstein distribution function is defined as below.

$$
f\left(\epsilon_{i}\right) \equiv \frac{N_{i}}{g_{i}}=\frac{1}{e^{-\alpha-\beta \epsilon_{i}}-1}=\frac{1}{e^{\left(\epsilon_{i}-\mu\right) / k T}-1}
$$

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

- Maxwell-Boltzmann Statistics

For dilute system, $N_{i} \ll g_{i}$ for all i, which is called dilute gas.

$$
\begin{aligned}
& w_{B E}=\prod \frac{\left(g_{i}+N_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!}=\prod \frac{\left(g_{i}+N_{i}-1\right) \cdot\left(g_{i}+N_{i}-2\right) \cdots\left(g_{i}+1\right) \cdot\left(g_{i}\right)}{N_{i}!} \approx \prod \frac{g_{i}^{N_{i}}}{N_{i}!} \\
& w_{F D}=\prod \frac{\left(g_{i}\right)!}{N_{i}!\left(g_{i}-N_{i}\right)!}=\prod \frac{\left(g_{i}\right) \cdot\left(g_{i}-1\right) \cdots\left(g_{i}-N_{i}+2\right) \cdot\left(g_{i}-N_{i}+1\right)}{N_{i}!} \approx \prod \frac{g_{i}^{N_{i}}}{N_{i}!}
\end{aligned}
$$

Therefore, both Fermion and Boson follow Maxwell-Boltzmann statistics for dilute gas.

$$
w_{M B}=\prod \frac{g_{i}^{N_{i}}}{N_{i}!}
$$

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

- Maxwell-Boltzmann distributions

From Stirling's approximation, $\ln (N!)=N \ln (N)-N$

$$
\ln \left(w_{M B}\right)=\sum\left[N_{i} \ln \left(g_{i}\right)-\ln \left(N_{i}!\right)\right]=\sum\left[N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right]
$$

N_{i} for $i^{t h}$ energy level is undetermined yet.
\rightarrow Method of Lagrange multiplier is used to obtain the most probable macro state under two constraints, $\sum N_{i}=N, \sum N_{i} \epsilon_{i}=E$
$\frac{\partial\left(\ln \left(w_{M B}\right)\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}-N\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}-E\right)}{\partial N_{i}}=0$

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

Applying method of Lagrange multipliers to Maxwell-Boltzmann distributions,

$$
\begin{aligned}
& \frac{\partial\left(\sum\left[N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right]\right)}{\partial N_{i}}+\alpha \frac{\partial\left(\sum N_{i}\right)}{\partial N_{i}}+\beta \frac{\partial\left(\sum N_{i} \epsilon_{i}\right)}{\partial N_{i}}=0 \\
& \longrightarrow \ln \left(g_{i}\right)-\ln \left(N_{i}\right)-\frac{N_{i}}{N_{i}}+1+\alpha+\beta \epsilon_{i}=0
\end{aligned}
$$

Then, number distribution becomes

$$
\begin{aligned}
\ln \left(\frac{g_{i}}{N_{i}}\right)=-\alpha-\beta \epsilon_{i} \longrightarrow & N_{i}=g_{i} e^{\alpha+\beta \epsilon_{i}} \\
& f\left(\epsilon_{i}\right) \equiv \frac{N_{i}}{g_{i}}=\frac{1}{e^{-\alpha-\beta \epsilon_{i}}+0}
\end{aligned}
$$

13.6 Dilute Gases and the Maxwell-Boltzmann Distribution

- Distribution function

$$
N_{i}=g_{i} e^{-\alpha-\beta \epsilon} \quad\left(\alpha=\frac{\mu}{k T}, \quad \beta=-\frac{1}{k T}\right)
$$

Then, the Maxwell-Boltzmann distribution function is defined as below.

$$
f\left(\epsilon_{i}\right) \equiv \frac{N_{i}}{g_{i}}=e^{\alpha+\beta \epsilon_{i}}=e^{-\frac{\left(\epsilon_{i}-\mu\right)}{k T}}=\frac{N}{Z} e^{-\epsilon_{i} / k T} \quad\left(e^{\frac{\mu}{k T}}=\frac{N}{Z}\right)
$$

13.7 The Connection of Classical and Statistical Thermodynamics

- Energy transition

$$
\begin{aligned}
& U=\sum N_{i} \epsilon_{i} \\
& d U=\sum N_{i} d \epsilon_{i}+\sum \epsilon_{i} d N_{i}=\sum N_{i} \frac{d \epsilon_{i}(V)}{d V} d V+\sum \epsilon_{i} d N_{i}
\end{aligned}
$$

This statistical expression can be matched with classical expression.

$$
\begin{aligned}
& d U=\delta Q-\delta W=T d S-P d V \\
& \sum N_{i} \frac{d \epsilon_{i}(V)}{d V} d V+\sum \epsilon_{i} d N_{i}=-P d V+T d S \\
& \qquad \sum N_{i} d \epsilon_{i}=-P d V \quad \sum \epsilon_{i} d N_{i}=T d S
\end{aligned}
$$

13.7 The Connection of Classical and Statistical Thermodynamics

Heat transfer to the system : particles are re-distributed so that particles are shifted from lower to higher energy level.

Isentropic process with work done : the energy levels are shifted to higher values with no re-distribution.

Heat transfer

Work done

13.7 The Connection of Classical and Statistical Thermodynamics

- Physical relations of constant α

For a dilute gas,

$$
\begin{gathered}
S=k \ln \left(w_{M B}\right)=k \sum\left[N_{i} \ln \left(\frac{g_{i}}{N_{i}}\right)+N_{i}\right]=k \sum\left[N_{i} \ln \left(e^{-\alpha-\beta \epsilon_{i}}\right)+N_{i}\right] \\
=k \sum\left[N_{i}\left(\ln \left(\frac{Z}{N}\right)+1\right)-\frac{1}{k T} N_{i} \epsilon_{i}\right] \\
\left(\because e^{\alpha}=\frac{N}{Z}, \beta=-\frac{1}{k T}\right) \\
\longrightarrow S=N k\left(\ln \left(\frac{Z}{N}\right)+1\right)+\frac{U}{T}
\end{gathered}
$$

13.7 The Connection of Classical and Statistical Thermodynamics

In classical thermodynamics,

$$
d F(U, V, N)=-S d T-P d V+\mu d N \rightarrow\left(\frac{\partial F}{\partial N}\right)_{V, T}=\mu
$$

From the previous result, $s=N k\left(\ln \left(\frac{Z}{N}\right)+1\right)+\frac{U}{T}$

$$
\begin{aligned}
& F=U-T S=-N k T\left(\ln \left(\frac{Z}{N}\right)+1\right) \\
& \left(\frac{\partial F}{\partial N}\right)_{V, T}=-k T\left(\ln \left(\frac{Z}{N}\right)+1\right)+\frac{N k T}{N} \\
& \longrightarrow \mu=-k T\left(\ln \left(\frac{Z}{N}\right)\right)
\end{aligned}
$$

13.7 The Connection of Classical and Statistical Thermodynamics

Recalling that $\frac{N}{Z}=e^{\alpha}$, constant α is associated with chemical potential and temperature as it is previously introduced.

$$
\alpha=\ln \left(\frac{N}{Z}\right)=\frac{\mu}{k T}
$$

13.8 Comparison of the Distributions

- Number distributions for identical indistinguishable particles

$$
\frac{N_{i}}{g_{i}}=\frac{1}{e^{\left(\epsilon_{i}-\mu\right) / k T}+a} \quad a=\left\{\begin{aligned}
+1 & \text { for FD statistics } \\
-1 & \text { for BE statistics } \\
0 & \text { for MB statistics }
\end{aligned}\right.
$$

