
Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Complete Binary Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

2

Outline

□ Introducing complete binary trees
§ Background
§ Definitions
§ Examples
§ Logarithmic height
§ Array storage

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

3

Background

□ A perfect binary tree has ideal properties but restricted
in the number of nodes: n = 2h + 1 – 1 for h = 0, 1, …

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023,

□ We require binary trees which are
§ Similar to perfect binary trees, but
§ Defined for all n

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

4

Definition

□ A complete binary tree filled at each depth from left to
right:
§ The order is identical to that of a breadth-first traversal

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

5

Recursive Definition

□ Recursive definition:
i) a binary tree with a single node is a complete binary tree

of height h = 0
ii) a complete binary tree of height h is a tree where either:

§ The left sub-tree is a complete tree of height h – 1 and the right sub-
tree is a perfect tree of height h – 2, or

§ The left sub-tree is perfect tree with height h – 1 and the right sub-tree
is complete tree with height h – 1

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

6

Height

□ Theorem
The height of a complete binary tree with n nodes is h = ⌊ lg(n) ⌋

Proof:
§ Base case:

• When n = 1 then ⌊ lg(1) ⌋ = 0 and a tree with one node is a
complete tree with height h = 0

§ Inductive step:
• Assume that a complete tree with n nodes has height ⌊lg(n)⌋
• Must show that ⌊lg(n + 1)⌋ gives the height of a complete tree with
n + 1 nodes

• Two cases:
ü If the tree with n nodes is perfect, and
ü If the tree with n nodes is complete but not perfect

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

7

Height

□ Case 1 (the tree is perfect):
§ If it is a perfect tree then

• Adding one more node must increase the height

§ Before the insertion, it had n = 2h + 1 – 1 nodes:

§ Thus,

§ However,

() () ()
()

1 1

1 1

1

2 2 1 2

lg 2 lg 2 1 lg 2 1

lg 2 1 1

h h h

h h h

h

h h

h h

+ +

+ +

+

< - <

= < - < = +

ê ú£ - < +ë û

()lg n h=ê úë û

() () ()1 1lg 1 lg 2 1 1 lg 2 1h hn h+ +ê ú ê ú+ = - + = = +ê úë û ë û ë û

Correct for
a perfect tree

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

8

Height

□ Case 2 (the tree is complete but not perfect):
§ If it is not a perfect tree of height h then

§ Consequently, the height is unchanged: ⌊lg(n + 1)⌋ = h

□ By mathematical induction, the statement must be true
for all n ≥ 1

() () () ()
() ()

1

1

1

2 2 1
2 1 1 2

lg 2 lg 2 1 lg 1 lg 2 1

lg 2 1 lg 1 1

h h

h h

h h h

h

n
n

h n h

h n h

+

+

+

£ < -

+ £ + <

= < + £ + < = +

ê ú£ + £ + < +ê úë ûë û

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

9

Array storage

□ We are able to store a complete tree as an array
§ Traverse the tree in breadth-first order, placing the entries into

the array
§ What if it is not a complete tree?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Array storage

□ We can store this in an array after a quick traversal:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

11

Array storage

□ To insert another node while maintaining the complete-
binary-tree structure, we must insert into the next array
location

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

12

Array storage

□ To remove a node while keeping the complete-tree
structure, we must remove the last element in the array

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

13

□ Leaving the first entry blank yields a bonus:
§ The children of the node with index k are in 2k and 2k + 1
§ The parent of node with index k is in k ÷ 2

• Note that index is always an integer

Array storage

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

14

□ Leaving the first entry blank yields a bonus:
§ In C++, this simplifies the calculations:

Array storage

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

parent = k >> 1;
left_child = k << 1;
right_child = left_child | 1;

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

15

Array storage
□ For example, node 10 has index 5:

§ Its children 13 and 23 have indices 10 and 11, respectively

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

16

Array storage

□ For example, node 10 has index 5:
§ Its children 13 and 23 have indices 10 and 11, respectively
§ Its parent is node 9 with index 5/2 = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

17

Array storage

□ Question: why not store any tree as an array using
breadth-first traversals?
§ There is a significant potential for a lot of wasted memory

□ Consider this tree with 12 nodes would require an array
of size 32
§ Adding a child to node K doubles the required memory

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

18

Array storage

□ In the worst case, an exponential
amount of memory is required

□ These nodes would be stored
in entries 1, 3, 6, 13, 26, 52, 105

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

19

Summary

□ In this topic, we have covered the concept of a
complete binary tree:
§ A useful relaxation of the concept of a perfect binary tree
§ It has a compact array representation

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

Balanced Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University

https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

21

Outline

□ In this topic, we will:
§ Introduce the idea of balance
§ We will introduce a few examples

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

22

Background

□ Run times depend on the height of the trees

□ As was noted in the previous section:
§ The best case height is Q(ln(n))
§ The worst case height is Q(n)

□ The average height of a randomly generated binary
search tree is actually Q(ln(n))
§ However, following random insertions and erases, the average

height Q (𝑛) tends to increase to
• This is yet to be proven. Check more in Textbook (Weiss) $4.3.6

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

23

Requirement for Balance

□ We want to ensure that the run times never fall into
𝜔(ln(n))

□ Requirement:
§ We must maintain a height which is Q(ln(n))

□ To do this, we will define an idea of balance

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Examples

□ For a perfect tree, all nodes have the same number of
descendants on each side

□ Perfect binary trees are balanced while linked lists are
not

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

25

Examples

□ This binary tree would also probably not be considered
to be “balanced” at the root node

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

26

Examples

□ How about this example?
§ The root seems balanced, but what about the left sub-tree?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

27

Definition for Balance

□ We need a quantitative definition of balance

□ “Balanced” may be defined by:
§ Height balancing: comparing the heights of the two sub trees
§ Null-path-length balancing: comparing the null-path-length of

each of the two sub-trees (the length to the closest null sub-
tree/empty node)

§ Weight balancing: comparing the number of null sub-trees in
each of the two sub trees

□ We will have to mathematically prove that if a tree
satisfies the definition of balance, its height is Q(ln(n))

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

28

Balanced Trees

□ Height balancing:
§ AVL trees

• AVL: named after inventors Adelson-Velsky and Landis

□ Null-path-length balancing
§ Red-Black Trees

□ Weight-Balanced Trees
§ BB Trees

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

29

AVL Trees

□ A node is AVL balanced
§ if two sub-trees differ in height by at most one

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

30

Red-Black Trees

□ Red-black trees maintain balance by
§ All nodes are colored red or black (0 or 1)

□ Requirements:
§ The root must be black
§ All children of a red node

must be black
§ Any path from the root

to an empty node must
have the same number
of black nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

31

Red-Black Trees

□ Red-black trees are null-path-length balanced in that the
null-path length going through one sub-tree must not
be greater than twice the null-path length going
through the other
§ For all path

• # of black nodes >= # of red nodes

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

32

Weight-Balanced Trees

□ Recall: an empty node/null subtree is any position within
a binary tree that could be filled with the next insertion:
§ This tree has 9 nodes and 10 empty nodes:

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

33

Weight-Balanced Trees

□ The ratios of the empty nodes at the root node are 5/10
and 5/10

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

34

Weight-Balanced Trees

□ The ratios of the empty nodes at this node are 2/5 and
3/5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

35

Weight-Balanced Trees

□ The ratios of the empty nodes at this node, however,
are 4/5 and 1/5

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

36

Weight-Balanced Trees

□ Bounded balance trees (BB(𝑎) trees) maintain weight
balance requiring that neither side has less than a
proportion of the empty nodes, i.e., both proportions fall
in [𝑎, 1 – 𝑎]
§ With one node, both are 0.5

§ With two, the proportions are 1/3 and 2/3

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

37

Summary

□ In this talk, we introduced the idea of balance
§ We require O(ln(n)) run times
§ Balance will ensure the height is Q(ln(n))

□ There are numerous definitions:
§ AVL trees use height balancing
§ Red-black trees use null-path-length balancing
§ BB(a) trees use weight balancing

References
□ Blieberger, J., Discrete Loops and Worst Case Performance,

Computer Languages, Vol. 20, No. 3, pp.193-212, 1994.

