

Complete Binary Trees

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

Outline

Introducing complete binary trees

- Background
- Definitions
- Examples
- Logarithmic height
- Array storage

Background

- A perfect binary tree has ideal properties but restricted in the number of nodes: n = 2^{h+1} – 1 for h = 0, 1, ...
 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023,
- □ We require binary trees which are
 - Similar to perfect binary trees, but
 - Defined for all n

Definition

- A complete binary tree filled at each depth from left to right:
 - The order is identical to that of a breadth-first traversal

Recursive Definition

□ Recursive definition:

- i) a binary tree with a single node is a complete binary tree of height h = 0
- ii) a complete binary tree of height *h* is a tree where either:
- The left sub-tree is a complete tree of height h 1 and the right subtree is a perfect tree of height h – 2, or
- The left sub-tree is perfect tree with height h 1 and the right sub-tree is complete tree with height h 1

Height

🗆 Theorem

The height of a complete binary tree with *n* nodes is $h = \lfloor \lg(n) \rfloor$

Proof:

- Base case:
 - When n = 1 then [lg(1)] = 0 and a tree with one node is a complete tree with height h = 0
- Inductive step:
 - Assume that a complete tree with *n* nodes has height [lg(*n*)]
 - Must show that [lg(n + 1)] gives the height of a complete tree with n + 1 nodes
 - Two cases:
 - \checkmark If the tree with *n* nodes is perfect, and
 - \checkmark If the tree with *n* nodes is complete but not perfect

Height

□ Case 1 (the tree is perfect):

- If it is a perfect tree then
 - Adding one more node must increase the height
- Before the insertion, it had $n = 2^{h+1} 1$ nodes:

$$2^{h} < 2^{h+1} - 1 < 2^{h+1}$$
$$h = \lg(2^{h}) < \lg(2^{h+1} - 1) < \lg(2^{h+1}) = h + 1$$
$$h \le \lfloor \lg(2^{h+1} - 1) \rfloor < h + 1$$

• Thus, $\lfloor \lg(n) \rfloor = h$

Correct for a perfect tree

• However, $\lfloor \lg(n+1) \rfloor = \lfloor \lg(2^{h+1}-1+1) \rfloor = \lfloor \lg(2^{h+1}) \rfloor = h+1$

Height

□ Case 2 (the tree is complete but not perfect):

• If it is not a perfect tree of height *h* then

$$2^{h} \leq n < 2^{h+1} - 1$$

$$2^{h} + 1 \leq n+1 < 2^{h+1}$$

$$h = \lg(2^{h}) < \lg(2^{h} + 1) \leq \lg(n+1) < \lg(2^{h+1}) = h+1$$

$$h \leq \lfloor \lg(2^{h} + 1) \rfloor \leq \lfloor \lg(n+1) \rfloor < h+1$$

- Consequently, the height is unchanged: [lg(n + 1)] = h
- □ By mathematical induction, the statement must be true for all $n \ge 1$

□ We are able to store a complete tree as an array

- Traverse the tree in breadth-first order, placing the entries into the array
- What if it is not a complete tree?

□ We can store this in an array after a quick traversal:

 To insert another node while maintaining the completebinary-tree structure, we must insert into the next array location

To remove a node while keeping the complete-tree structure, we must remove the last element in the array

□ Leaving the first entry blank yields a bonus:

- The children of the node with index k are in 2k and 2k + 1
- The parent of node with index k is in k ÷ 2
 - Note that index is always an integer

□ Leaving the first entry blank yields a bonus:

In C++, this simplifies the calculations:

□ For example, node 10 has index 5:

Its children 13 and 23 have indices 10 and 11, respectively

□ For example, node 10 has index 5:

- Its children 13 and 23 have indices 10 and 11, respectively
- Its parent is node 9 with index 5/2 = 2

- Question: why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider this tree with 12 nodes would require an array of size 32
 - Adding a child to node K doubles the required memory

- In the worst case, an exponential amount of memory is required
- These nodes would be stored in entries 1, 3, 6, 13, 26, 52, 105

Summary

- In this topic, we have covered the concept of a complete binary tree:
 - A useful relaxation of the concept of a perfect binary tree
 - It has a compact array representation

Balanced Trees

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

Outline

\Box In this topic, we will:

- Introduce the idea of balance
- We will introduce a few examples

Background

Run times depend on the height of the trees

- \square As was noted in the previous section:
 - The best case height is $\Theta(\ln(n))$
 - The worst case height is $\Theta(n)$
- □ The average height of a randomly generated binary search tree is actually $\Theta(\ln(n))$
 - However, following random insertions and erases, the average height Θ (\sqrt{n}) tends to increase to
 - This is yet to be proven. Check more in Textbook (Weiss) \$4.3.6

Requirement for Balance

- □ We want to ensure that the run times never fall into $\omega(\ln(n))$
- □ Requirement:
 - We must maintain a height which is $\Theta(\ln(n))$
- □ To do this, we will define an idea of balance

Examples

 For a perfect tree, all nodes have the same number of descendants on each side

 Perfect binary trees are balanced while linked lists are not

Examples

 This binary tree would also probably not be considered to be "balanced" at the root node

Examples

□ How about this example?

The root seems balanced, but what about the left sub-tree?

Definition for Balance

We need a quantitative definition of balance

- □ "Balanced" may be defined by:
 - *Height balancing*: comparing the heights of the two sub trees
 - Null-path-length balancing: comparing the null-path-length of each of the two sub-trees (the length to the closest null subtree/empty node)
 - Weight balancing: comparing the number of null sub-trees in each of the two sub trees
- \Box We will have to mathematically prove that if a tree satisfies the definition of balance, its height is $\Theta(\ln(n))$

Balanced Trees

Height balancing:

- AVL trees
 - AVL: named after inventors Adelson-Velsky and Landis
- Null-path-length balancing
 - Red-Black Trees
- Weight-Balanced Trees
 - BB Trees

AVL Trees

- A node is AVL balanced
 - if two sub-trees differ in height by at most one

Red-Black Trees

Red-black trees maintain balance by

- All nodes are *colored* red or black (0 or 1)
- □ Requirements:
 - The root must be black
 - All children of a red node must be black
 - Any path from the root to an empty node must have the same number of black nodes

Red-Black Trees

- Red-black trees are null-path-length balanced in that the null-path length going through one sub-tree must not be greater than twice the null-path length going through the other
 - For all path
 - # of black nodes >= # of red nodes

- Recall: an empty node/null subtree is any position within a binary tree that could be filled with the next insertion:
 - This tree has 9 nodes and 10 empty nodes:

The ratios of the empty nodes at the root node are 5/10 and 5/10

The ratios of the empty nodes at this node are 2/5 and 3/5

 The ratios of the empty nodes at this node, however, are 4/5 and 1/5

- Bounded balance trees (BB(a) trees) maintain weight balance requiring that neither side has less than a proportion of the empty nodes, *i.e.*, both proportions fall in [a, 1 – a]
 - With one node, both are 0.5

Summary

 \Box In this talk, we introduced the idea of balance

- We require O(ln(n)) run times
- Balance will ensure the height is $\Theta(\ln(n))$
- □ There are numerous definitions:
 - AVL trees use height balancing
 - Red-black trees use null-path-length balancing
 - BB(a) trees use weight balancing

References

 Blieberger, J., Discrete Loops and Worst Case Performance, Computer Languages, Vol. 20, No. 3, pp.193-212, 1994.

