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Outline

□ Introducing complete binary trees
§ Background
§ Definitions
§ Examples
§ Logarithmic height
§ Array storage
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Background

□ A perfect binary tree has ideal properties but restricted 
in the number of nodes:  n = 2h + 1 – 1 for h = 0, 1, …

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, ....

□ We require binary trees which are
§ Similar to perfect binary trees, but
§ Defined for all n
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Definition

□ A complete binary tree filled at each depth from left to 
right:
§ The order is identical to that of a breadth-first traversal
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Recursive Definition

□ Recursive definition:  
i) a binary tree with a single node is a complete binary tree 

of height h = 0
ii) a complete binary tree of height h is a tree where either:

§ The left sub-tree is a complete tree of height h – 1 and the right sub-
tree is a perfect tree of height h – 2, or

§ The left sub-tree is perfect tree with height h – 1 and the right sub-tree 
is complete tree with height h – 1
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Height

□ Theorem
The height of a complete binary tree with n nodes is h = ⌊ lg(n) ⌋

Proof:
§ Base case:

• When n = 1 then ⌊ lg(1) ⌋ = 0 and a tree with one node is a 
complete tree with height h = 0

§ Inductive step:
• Assume that a complete tree with n nodes has height ⌊lg(n)⌋
• Must show that ⌊lg(n + 1)⌋ gives the height of a complete tree with
n + 1 nodes

• Two cases:
ü If the tree with n nodes is perfect, and
ü If the tree with n nodes is complete but not perfect
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Height

□ Case 1 (the tree is perfect):
§ If it is a perfect tree then

• Adding one more node must increase the height

§ Before the insertion, it had n = 2h + 1 – 1 nodes:

§ Thus, 

§ However, 
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Height

□ Case 2 (the tree is complete but not perfect):
§ If it is not a perfect tree of height h then

§ Consequently, the height is unchanged: ⌊lg( n + 1 )⌋ = h

□ By mathematical induction, the statement must be true 
for all n ≥ 1
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Array storage

□ We are able to store a complete tree as an array
§ Traverse the tree in breadth-first order, placing the entries into 

the array
§ What if it is not a complete tree?



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

10

Array storage

□ We can store this in an array after a quick traversal:
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Array storage

□ To insert another node while maintaining the complete-
binary-tree structure, we must insert into the next array 
location
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Array storage

□ To remove a node while keeping the complete-tree 
structure, we must remove the last element in the array
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□ Leaving the first entry blank yields a bonus:
§ The children of the node with index k are in 2k and 2k + 1
§ The parent of node with index k is in k ÷ 2

• Note that index is always an integer

Array storage

0       1      2       3       4       5       6       7       8       9     10     11     12     13     14    15     16     17
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□ Leaving the first entry blank yields a bonus:
§ In C++, this simplifies the calculations:

Array storage

0       1      2       3       4       5       6       7       8       9     10     11     12     13     14    15     16     17

parent = k >> 1;
left_child = k << 1;
right_child = left_child | 1;
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Array storage
□ For example, node 10 has index 5:

§ Its children 13 and 23 have indices 10 and 11, respectively

0       1      2   3       4       5       6       7       8       9     10     11     12     13     14    15     16     17
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Array storage

□ For example, node 10 has index 5:
§ Its children 13 and 23 have indices 10 and 11, respectively
§ Its parent is node 9 with index 5/2 = 2

0       1      2 3       4       5       6       7       8       9     10     11     12     13     14    15     16     17
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Array storage

□ Question: why not store any tree as an array using 
breadth-first traversals?
§ There is a significant potential for a lot of wasted memory

□ Consider this tree with 12 nodes would require an array 
of size 32
§ Adding a child to node K doubles the required memory 
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Array storage

□ In the worst case, an exponential
amount of memory is required

□ These nodes would be stored
in entries 1, 3, 6, 13, 26, 52, 105
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Summary

□ In this topic, we have covered the concept of a 
complete binary tree:
§ A useful relaxation of the concept of a perfect binary tree
§ It has a compact array representation
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Outline

□ In this topic, we will:
§ Introduce the idea of balance
§ We will introduce a few examples
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Background

□ Run times depend on the height of the trees

□ As was noted in the previous section:
§ The best case height is Q(ln(n)) 
§ The worst case height is Q(n)

□ The average height of a randomly generated binary 
search tree is actually Q(ln(n)) 
§ However, following random insertions and erases, the average 

height Q ( 𝑛) tends to increase to 
• This is yet to be proven. Check more in Textbook (Weiss) $4.3.6
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Requirement for Balance

□ We want to ensure that the run times never fall into 
𝜔(ln(n))

□ Requirement:
§ We must maintain a height which is Q(ln(n))

□ To do this, we will define an idea of balance



Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

24

Examples

□ For a perfect tree, all nodes have the same number of 
descendants on each side

□ Perfect binary trees are balanced while linked lists are 
not
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Examples

□ This binary tree would also probably not be considered 
to be “balanced” at the root node
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Examples

□ How about this example?
§ The root seems balanced, but what about the left sub-tree?
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Definition for Balance

□ We need a quantitative definition of balance

□ “Balanced” may be defined by:
§ Height balancing:  comparing the heights of the two sub trees
§ Null-path-length balancing:  comparing the null-path-length of 

each of the two sub-trees (the length to the closest null sub-
tree/empty node)

§ Weight balancing:  comparing the number of null sub-trees in 
each of the two sub trees

□ We will have to mathematically prove that if a tree 
satisfies the definition of balance, its height is Q(ln(n))
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Balanced Trees

□ Height balancing:
§ AVL trees

• AVL: named after inventors Adelson-Velsky and Landis

□ Null-path-length balancing
§ Red-Black Trees

□ Weight-Balanced Trees
§ BB Trees
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AVL Trees

□ A node is AVL balanced
§ if two sub-trees differ in height by at most one
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Red-Black Trees

□ Red-black trees maintain balance by
§ All nodes are colored red or black (0 or 1)

□ Requirements:
§ The root must be black
§ All children of a red node

must be black
§ Any path from the root

to an empty node must
have the same number
of black nodes
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Red-Black Trees

□ Red-black trees are null-path-length balanced in that the 
null-path length going through one sub-tree must not 
be greater than twice the null-path length going 
through the other
§ For all path

• # of black nodes >= # of red nodes
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Weight-Balanced Trees

□ Recall: an empty node/null subtree is any position within 
a binary tree that could be filled with the next insertion:
§ This tree has 9 nodes and 10 empty nodes:
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Weight-Balanced Trees

□ The ratios of the empty nodes at the root node are 5/10 
and 5/10
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Weight-Balanced Trees

□ The ratios of the empty nodes at this node are 2/5 and 
3/5
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Weight-Balanced Trees

□ The ratios of the empty nodes at this node, however, 
are 4/5 and 1/5
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Weight-Balanced Trees

□ Bounded balance trees (BB(𝑎) trees) maintain weight 
balance requiring that neither side has less than a 
proportion of the empty nodes, i.e., both proportions fall 
in [𝑎, 1 – 𝑎]
§ With one node, both are 0.5

§ With two, the proportions are 1/3 and 2/3 
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Summary

□ In this talk, we introduced the idea of balance
§ We require O(ln(n)) run times
§ Balance will ensure the height is Q(ln(n)) 

□ There are numerous definitions:
§ AVL trees use height balancing
§ Red-black trees use null-path-length balancing
§ BB(a) trees use weight balancing
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