Complete Binary Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

l%gi‘g;, Introduction to Data Structures, ECE430.217, 2021 FALL
%@;@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

L
Outline

0 Introducing complete binary trees
= Background
= Definitions
= Examples
= Logarithmic height
= Array storage

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Background

0 A perfect binary tree has ideal properties but restricted
in the number of nodes: n=2"*1-1forh=0,1, ...
1,3,7,15,31,63,127, 255,511, 1023,

o0 We require binary trees which are
= Similar to perfect binary trees, but
= Defined for all n

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Detinition
0 A complete binary tree filled at each depth from left to

right:

» The order is identical to that of a breadth-first traversal
CY 96 o ())
. 7 »_ijl . Q -—«)\ "

® S 7 ¢
o (*/ d56 453 @

Gf D Q) 0
/J/g\ —~ (/ \ /\, WY
'5;/' i od O S @ @, G
/

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Recursive Definition

0 Recursive definition:
i) a binary tree with a single node is a complete binary tree
of height h=0
ii) a complete binary tree of height h is a tree where either:

= The left sub-tree is a complete tree of height h - 1 and the right sub-
tree is a perfect tree of height h -2, or

= The left sub-tree is perfect tree with height h— 1 and the right sub-tree
is complete tree with height h -1

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Height

o0 Theorem

The height of a complete binary tree with n nodes is h = | Ig(n) |

Proof:

= Base case:
e When n=1then|Ig(1)] = 0 and a tree with one node is a
complete tree with height h =0
= Inductive step:

* Assume that a complete tree with n nodes has height [Ig(n)]

* Must show that |lg(n + 1)] gives the height of a complete tree with
n + 1 nodes

* Two cases:
v If the tree with n nodes is perfect, and
v’ If the tree with n nodes is complete but not perfect

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-
Height

0 Case 1 (the tree is perfect):

= |fitis a perfect tree then
e Adding one more node must increase the height

= Before the insertion, it had n = 2h*+1 -1 nodes:
2" < 2M 1< 2™
h=1g(2")<lg(2"" -1)<lg(2"")=h+1
hgtlg(zh“ —1)J§h+1

= Thus, [lg(n) =4

Correct for
| a perfect tree

= However, |lg(n+1)|= ng(Zh” —1+1)J = ng(z’”l)J —hel

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

-
Height

0 Case 2 (the tree is complete but not perfect):
= |fitis not a perfect tree of height h then

2"< n <2M
2" 1< n+1 <2M

h=1g(2")<lg(2" +1)< lg(n+1) <lg(2"")=h+1
hSng(zh +1)J£ng(n+l)J<h+1

= Consequently, the height is unchanged: |Ilg(n+ 1)] = h

0 By mathematical induction, the statement must be true
foralln =1

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Array storage

0 We are able to store a complete tree as an array
= Traverse the tree in breadth-first order, placing the entries into

the array
= What if it is not a complete tree?

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

10

Array storage

0 We can store this in an array after a quick traversal:

319|5(14[10] 6|8 |17|15]13]|23|12

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Array storage

0 To insert another node while maintaining the complete-

binary-tree structure, we must insert into the next array

location

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

11

LAB

Array storage

0 To remove a node while keeping the complete-tree

structure, we must remove the last element in the array

319|5|14[10[6 | 8 [17|15]|13|23|X

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

12

LAB

13

Array storage

0 Leaving the first entry blank yields a bonus:
* The children of the node with index k are in 2k and 2k + 1

= The parent of node with index kis in k + 2
e Note that index is always an integer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

319|5(14|10{ 6| 8 |17|15]13|23|12

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Array storage

0 Leaving the first entry blank yields a bonus:
= |n C++, this simplifies the calculations:

parent

=k > 1;

left_child = k << 1;
right_child = left_child | 1;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

319[5]14/10[6|8 [17]15

13

23

12

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

14

LAB

Array storage

0 For example, node 10 has index 5:

= |ts children 13 and 23 have indices 10 and 11, respectively

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 14[@6 8 1715{1'3@)12

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

15

LAB

16

Array storage

0 For example, node 10 has index 5:
= |ts children 13 and 23 have indices 10 and 11, respectively
= |ts parent is node 9 with index 5/2 = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
—

3{e)5[14[10)6 [8[17]15[13[23[12

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

17

Array storage

0 Question: why not store any tree as an array using
breadth-first traversals?
= There is a significant potential for a lot of wasted memory

0 Consider this tree with 12 nodes would require an array
of size 32

= Adding a child to node K doubles the required memory

Xlelcfifafofnfof Ief JF{ | [Ju]l [T [I T el T T T 11 Ikl |

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

18

Array storage

0 In the worst case, an exponential
amount of memory is required

0 These nodes would be stored
in entries 1, 3, 6, 13, 26, 52, 105

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

Summary

0 In this topic, we have covered the concept of a
complete binary tree:
= A useful relaxation of the concept of a perfect binary tree
= |t has a compact array representation

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

19

LAB

Balanced Trees

Kyunghan Lee
Networked Computing Lab (NXC Lab)

Department of Electrical and Computer Engineering
Seoul National University
https://nxc.snu.ac.kr
kyunghanlee@snu.ac.kr

QUEDD
%’L‘i"% Introduction to Data Structures, ECE430.217, 2021 FALL

¥

%@(@f SEOUL NATIONAL UNIVERSITY

NXC

LAB

21
Outline
0 In this topic, we will:
» |ntroduce the idea of balance
= We will introduce a few examples
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I.AB

Background

0 Run times depend on the height of the trees

0 As was noted in the previous section:
» The best case height is O(In(n))
= The worst case height is ©(n)

0 The average height of a randomly generated binary

search tree is actually ®(In(n))

» However, following random insertions and erases, the average
height ® (1/n) tends to increase to
e This is yet to be proven. Check more in Textbook (Weiss) $4.3.6

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

22

LAB

Requirement for Balance

o We want to ensure that the run times never fall into

w(In(n))

0 Requirement:
= We must maintain a height which is ©(In(n))

0 To do this, we will define an idea of balance

Introduction to Data Structures, ECE430.217, 2021 FALL N x c
SEOUL NATIONAL UNIVERSITY

23

LAB

24
Examples
0 For a perfect tree, all nodes have the same number of
descendants on each side
o e
N TN
7 > Nz
g b g o
\ X 'f,,.-" / \
23 oo RGO
0 Perfect binary trees are balanced while linked lists are
not
Introductionstgcg)jtaNS;[rulgllilr:st EE:E\/ASS;-;\Z’ 2021 FALL N x c I_AB

25
Examples
0 This binary tree would also probably not be considered
to be “balanced” at the root node
Y
/'./— - \"--.
= e o
Y G
/"\. , /"\‘\
; -, /“/ N —
o d N
O O Q
e ok @
1// I..“l './
OO O
Introductionstgcg)jtaNS;[rulgtlilrzst EE:E\?SSS?_;\Z, 2021 FALL N x c I_AB

26

Examples

0 How about this example?

» The root seems balanced, but what about the left sub-tree?

L
/./ ‘\\\
—~]/ o ~
S A
/ ™\ e S N
Q \(«:..' (. ()
/ \'\\ -,-"/ <'/
@ O O (-
/ ; ",."
l\'-\“ C) |/)
%
¢

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

27

Definition for Balance

0 We need a quantitative definition of balance

0 “Balanced” may be defined by:
= Height balancing: comparing the heights of the two sub trees

= Null-path-length balancing: comparing the null-path-length of
each of the two sub-trees (the length to the closest null sub-
tree/empty node)

= Weight balancing: comparing the number of null sub-trees in
each of the two sub trees

o0 We will have to mathematically prove that if a tree
satisfies the definition of balance, its height is ®(In(n))

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

28

Balanced Trees

0 Height balancing:

= AVL trees
e AVL: named after inventors Adelson-Velsky and Landis

0 Null-path-length balancing
» Red-Black Trees

0 Weight-Balanced Trees
= BB Trees

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

AVL Trees
0 A node is AVL balanced

= if two sub-trees differ in height by at most one

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

29

LAB

Red-Black Trees

0 Red-black trees maintain balance by

» All nodes are colored red or black (0O or 1)

0 Requirements:

= The root must be black

» All children of a red node
must be black

= Any path from the root
to an empty node must
have the same number
of black nodes

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

e
Red-Black Trees

0 Red-black trees are null-path-length balanced in that the
null-path length going through one sub-tree must not
be greater than twice the null-path length going
through the other

= For all path
o # of black nodes >= # of red nodes

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

32

Weight-Balanced Trees

0 Recall: an empty node/null subtree is any position within
a binary tree that could be filled with the next insertion:
= This tree has 9 nodes and 10 empty nodes:

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

33

Weight-Balanced Trees

0 The ratios of the empty nodes at the root node are 5/10
and 5/10

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

34
Weight-Balanced Trees
0 The ratios of the empty nodes at this node are 2/5 and
3/5
T UL NATIONAL UNVERSIY NXC|LAB

35

Weight-Balanced Trees

0 The ratios of the empty nodes at this node, however,
are 4/5 and 1/5

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

Weight-Balanced Trees

[

Bounded balance trees (BB(a) trees) maintain weight
balance requiring that neither side has less than a

proportion of the empty nodes, i.e., both proportions fall

infa, 1 - a]
= With one node, both are 0.5

= With two, the proportions are 1/3 and 2/3

Introduction to Data Structures, ECE430.217, 2021 FALL
SEOUL NATIONAL UNIVERSITY

NXC

LAB

37

Summary

o In this talk, we introduced the idea of balance
= We require O(In(n)) run times
= Balance will ensure the height is ®(In(n))

0 There are numerous definitions:
= AVL trees use height balancing
= Red-black trees use null-path-length balancing
= BB(a) trees use weight balancing

References

0 Blieberger, J., Discrete Loops and Worst Case Performance,
Computer Languages, Vol. 20, No. 3, pp.193-212, 1994.

Introduction to Data Structures, ECE430.217, 2021 FALL N x c I_AB
SEOUL NATIONAL UNIVERSITY

